Files
libreoffice/bridges/source/cpp_uno/gcc3_linux_x86-64/uno2cpp.cxx

663 lines
23 KiB
C++
Raw Normal View History

/*************************************************************************
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: uno2cpp.cxx,v $
*
* $Revision: 1.7 $
*
* last change: $Author: rt $ $Date: 2006-12-01 14:17:59 $
*
* The Contents of this file are made available subject to
* the terms of GNU Lesser General Public License Version 2.1.
*
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2005 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <stdio.h>
#include <stdlib.h>
#include <rtl/alloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include "com/sun/star/uno/RuntimeException.hpp"
#include <uno/data.h>
#include <bridges/cpp_uno/shared/bridge.hxx>
#include <bridges/cpp_uno/shared/types.hxx>
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "abi.hxx"
#include "share.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
void dummy_can_throw_anything( char const * );
// 6 integral parameters are passed in registers
const sal_uInt32 GPR_COUNT = 6;
// 8 floating point parameters are passed in SSE registers
const sal_uInt32 FPR_COUNT = 8;
static inline void
invoke_count_words(char * pPT, // Parameter Types
sal_uInt32 & nr_gpr, // Number of arguments in GPRs
sal_uInt32 & nr_fpr, // Number of arguments in FPRs
sal_uInt32 & nr_stack) // Number of arguments in stack
{
nr_gpr = 0;
nr_fpr = 0;
nr_stack = 0;
char c;
while ((c = *pPT++) != 'X')
{
if (c == 'F' || c == 'D')
{
if (nr_fpr < FPR_COUNT)
nr_fpr++;
else
nr_stack++;
}
else
{
if (nr_gpr < GPR_COUNT)
nr_gpr++;
else
nr_stack++;
}
}
}
static void
invoke_copy_to_stack(sal_uInt64 * pDS, // Stack Storage
char * pPT, // Parameter Types
sal_uInt64 * pSV, // Source Values
sal_uInt64 * pGPR, // General Purpose Registers
double * pFPR) // Floating-Point Registers
{
sal_uInt32 nr_gpr = 0;
sal_uInt32 nr_fpr = 0;
sal_uInt64 value;
char c;
while ((c = *pPT++) != 'X')
{
switch (c)
{
case 'D': // Double
if (nr_fpr < FPR_COUNT)
pFPR[nr_fpr++] = *reinterpret_cast<double *>( pSV++ );
else
*pDS++ = *pSV++;
break;
case 'F': // Float
if (nr_fpr < FPR_COUNT)
// The value in %xmm register is already prepared to
// be retrieved as a float. Therefore, we pass the
// value verbatim, as a double without conversion.
pFPR[nr_fpr++] = *reinterpret_cast<double *>( pSV++ );
else
*pDS++ = *pSV++;
break;
case 'H': // 64-bit Word
if (nr_gpr < GPR_COUNT)
pGPR[nr_gpr++] = *pSV++;
else
*pDS++ = *pSV++;
break;
case 'I': // 32-bit Word
if (nr_gpr < GPR_COUNT)
pGPR[nr_gpr++] = *reinterpret_cast<sal_uInt32 *>( pSV++ );
else
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV++ );
break;
case 'S': // 16-bit Word
if (nr_gpr < GPR_COUNT)
pGPR[nr_gpr++] = *reinterpret_cast<sal_uInt16 *>( pSV++ );
else
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV++ );
break;
case 'B': // Byte
if (nr_gpr < GPR_COUNT)
pGPR[nr_gpr++] = *reinterpret_cast<sal_uInt8 *>( pSV++ );
else
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV++ );
break;
default: // Default, assume 64-bit values
if (nr_gpr < GPR_COUNT)
pGPR[nr_gpr++] = *pSV++;
else
*pDS++ = *pSV++;
break;
}
}
}
//==================================================================================================
static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn,
char * pPT, sal_uInt64 * pStackLongs, sal_uInt32 nStackLongs)
{
sal_uInt32 nr_gpr, nr_fpr, nr_stack;
invoke_count_words(pPT, nr_gpr, nr_fpr, nr_stack);
// Stack, if used, must be 16-bytes aligned
if (nr_stack)
nr_stack = (nr_stack + 1) & ~1;
#if OSL_DEBUG_LEVEL > 1
// Let's figure out what is really going on here
fprintf(stderr,"callVirtualMethod() parameters string is %s\n", pPT);
{
sal_uInt32 k = nStackLongs;
sal_uInt64 *q = pStackLongs;
while (k > 0)
{
fprintf(stderr, "uno stack is: %lx\n", *q);
k--;
q++;
}
}
#endif
// Load parameters to stack, if necessary
sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca(nr_stack * 8);
sal_uInt64 gpregs[GPR_COUNT];
double fpregs[FPR_COUNT];
invoke_copy_to_stack(stack, pPT, pStackLongs, gpregs, fpregs);
// Load FPR registers from fpregs[]
register double d0 asm("xmm0");
register double d1 asm("xmm1");
register double d2 asm("xmm2");
register double d3 asm("xmm3");
register double d4 asm("xmm4");
register double d5 asm("xmm5");
register double d6 asm("xmm6");
register double d7 asm("xmm7");
switch (nr_fpr) {
#define ARG_FPR(N) \
case N+1: d##N = fpregs[N];
ARG_FPR(7);
ARG_FPR(6);
ARG_FPR(5);
ARG_FPR(4);
ARG_FPR(3);
ARG_FPR(2);
ARG_FPR(1);
ARG_FPR(0);
case 0:;
#undef ARG_FPR
}
// Load GPR registers from gpregs[]
register sal_uInt64 a0 asm("rdi");
register sal_uInt64 a1 asm("rsi");
register sal_uInt64 a2 asm("rdx");
register sal_uInt64 a3 asm("rcx");
register sal_uInt64 a4 asm("r8");
register sal_uInt64 a5 asm("r9");
switch (nr_gpr) {
#define ARG_GPR(N) \
case N+1: a##N = gpregs[N];
ARG_GPR(5);
ARG_GPR(4);
ARG_GPR(3);
ARG_GPR(2);
ARG_GPR(1);
ARG_GPR(0);
case 0:;
#undef ARG_GPR
}
if ( bSimpleReturn )
a0 = (sal_uInt64) pThis;
else
a1 = (sal_uInt64) pThis;
// Ensure that assignments to SSE registers won't be optimized away
asm("" ::
"x" (d0), "x" (d1), "x" (d2), "x" (d3),
"x" (d4), "x" (d5), "x" (d6), "x" (d7));
// Get pointer to method
sal_uInt64 pMethod = *((sal_uInt64 *)pThis);
pMethod += 8 * nVtableIndex;
pMethod = *((sal_uInt64 *)pMethod);
union ReturnValue {
struct {
sal_uInt64 rax;
sal_uInt64 rdx;
} i;
struct {
double xmm0;
double xmm1;
} f;
};
typedef ReturnValue (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 );
// Perform the call
ReturnValue aRet = ( ( FunctionCall ) pMethod )( a0, a1, a2, a3, a4, a5 );
switch (pReturnTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*reinterpret_cast<sal_uInt64 *>( pRegisterReturn ) = aRet.i.rax;
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*reinterpret_cast<sal_uInt32 *>( pRegisterReturn ) = *reinterpret_cast<sal_uInt32*>( &aRet.i.rax );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*reinterpret_cast<sal_uInt16 *>( pRegisterReturn ) = *reinterpret_cast<sal_uInt16*>( &aRet.i.rax );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*reinterpret_cast<sal_uInt8 *>( pRegisterReturn ) = *reinterpret_cast<sal_uInt8*>( &aRet.i.rax );
break;
case typelib_TypeClass_FLOAT:
*reinterpret_cast<float *>( pRegisterReturn ) = *reinterpret_cast<float*>( &aRet.f.xmm0 );
break;
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double *>( pRegisterReturn ) = *reinterpret_cast<double*>( &aRet.f.xmm0 );
break;
default: {
sal_Int32 const nRetSize = pReturnTypeDescr->nSize;
if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0) {
if (nRetSize > 8)
static_cast<sal_uInt64 *>(pRegisterReturn)[1] = aRet.i.rdx;
static_cast<sal_uInt64 *>(pRegisterReturn)[0] = aRet.i.rax;
}
break;
}
}
}
//==================================================================================================
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// Maxium space for [complex ret ptr], values | ptr ...
char * pCppStack = (char *)__builtin_alloca( (nParams + 3) * sizeof(sal_uInt64) );
char * pCppStackStart = pCppStack;
// We need to know parameter types for callVirtualMethod() so generate a signature string
char * pParamType = (char *)__builtin_alloca( nParams + 3 );
char * pPT = pParamType;
// Return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bSimpleReturn = true;
if (pReturnTypeDescr)
{
if ( x86_64::return_in_hidden_param( pReturnTypeRef ) )
bSimpleReturn = false;
if (bSimpleReturn)
pCppReturn = pUnoReturn; // direct way for simple types
else
{
// complex return via ptr
pCppReturn = *(void **)pCppStack = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? __builtin_alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
*pPT++ = 'H';
pCppStack += sizeof(void *);
}
}
// Push "this" pointer
void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
*(void **)pCppStack = pAdjustedThisPtr;
*pPT++ = 'H';
pCppStack += sizeof(void *);
// stack space
// Args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// Indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// Type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
// we need to know type of each param so that we know whether to use
// gpr or fpr to pass in parameters:
// Key: I - 32-bit value passed in gpr
// B - byte value passed in gpr
// S - short value passed in gpr
// F - float value pass in fpr
// D - double value pass in fpr
// H - long value passed in gpr
// X - indicates end of parameter description string
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*pPT++ = 'I';
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
*pPT++ = 'S';
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*pPT++ = 'B';
break;
case typelib_TypeClass_FLOAT:
*pPT++ = 'F';
break;
case typelib_TypeClass_DOUBLE:
*pPT++ = 'D';
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*pPT++ = 'H';
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// FIXME: is this the right way to pass these?
*pPT++='H';
}
pCppStack += sizeof(sal_uInt64); // standard parameter length
}
// terminate the signature string
*pPT++ = 'X';
*pPT = 0;
try
{
OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 7), "UNALIGNED STACK !!! (Please DO panic)" );
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr, bSimpleReturn, pParamType,
(sal_uInt64 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_uInt64) );
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
//==================================================================================================
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" );
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; // get, then set method
cpp_call(
pThis, aVtableSlot, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" );
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
pThis->getBridge()->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }