INTEGRATION: CWS aw033 (1.5.6); FILE MERGED

2008/05/14 14:40:29 aw 1.5.6.11: RESYNC: (1.5-1.6); FILE MERGED
2008/05/14 09:16:32 aw 1.5.6.10: #i39532# aw033 progresses from git
2007/11/23 09:43:05 aw 1.5.6.9: #i39532# warning corrections
2007/11/22 14:56:58 aw 1.5.6.8: #i39532# polygon bezier changes
2007/11/19 10:17:02 aw 1.5.6.7: #i39532# Lot of changes to make polygon stuff bezier-able
2007/11/07 14:24:29 aw 1.5.6.6: #i39532# committing to have a base for HDU
2007/10/18 09:27:00 hdu 1.5.6.5: #i75669# fix typo
2007/10/18 09:23:10 hdu 1.5.6.4: #i75669# resegment polygon with curves before line->area conversion
2007/10/17 12:22:53 hdu 1.5.6.3: #i75669# fix createAreaGeometryForSimplePolygon() after resync changes
2007/08/13 15:28:43 aw 1.5.6.2: #i39532# changes after resync
2007/04/26 14:30:26 hdu 1.5.6.1: #i75669# added method createAreaGeometryForSimplePolygon()
This commit is contained in:
Vladimir Glazounov
2008-08-19 23:01:47 +00:00
parent ca68af5c34
commit ba2d94d15a

View File

@@ -7,7 +7,7 @@
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: b2dlinegeometry.cxx,v $
* $Revision: 1.6 $
* $Revision: 1.7 $
*
* This file is part of OpenOffice.org.
*
@@ -30,6 +30,7 @@
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"
#include <cstdio>
#include <osl/diagnose.h>
#include <basegfx/polygon/b2dlinegeometry.hxx>
#include <basegfx/point/b2dpoint.hxx>
@@ -38,350 +39,48 @@
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/curve/b2dcubicbezier.hxx>
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
// anonymus namespace for local helpers
namespace
{
// create area geometry for given edge. Edge is defined with the
// points rEdgeStart and rEdgeEnd. fHalfLineWidth defines the relative width.
// The created polygon will be positively oriented and free of
// self intersections.
// bCreateInBetweenPoints defines if EdgeStart and EdgeEnd themselves will
// be added (see comment in implementation).
B2DPolygon createAreaGeometryForEdge(
const B2DPoint& rEdgeStart,
const B2DPoint& rEdgeEnd,
double fHalfLineWidth,
bool bCreateInBetweenPoints)
{
OSL_ENSURE(fHalfLineWidth > 0.0, "createAreaGeometryForEdge: LineWidth too small (!)");
B2DPolygon aRetval;
// get perpendicular vector for reaching the outer edges
const B2DVector aEdgeVector(rEdgeEnd - rEdgeStart);
B2DVector aPerpendEdgeVector(getNormalizedPerpendicular(aEdgeVector));
aPerpendEdgeVector *= fHalfLineWidth;
// create polygon for edge
// Unfortunately, while it would be geometrically correct to not add
// the in-between points rEdgeEnd and rEdgeStart, it leads to rounding
// errors when converting to integer polygon coordiates for painting.
aRetval.append(rEdgeStart - aPerpendEdgeVector);
aRetval.append(rEdgeEnd - aPerpendEdgeVector);
if(bCreateInBetweenPoints)
{
aRetval.append(rEdgeEnd);
}
aRetval.append(rEdgeEnd + aPerpendEdgeVector);
aRetval.append(rEdgeStart + aPerpendEdgeVector);
if(bCreateInBetweenPoints)
{
aRetval.append(rEdgeStart);
}
aRetval.setClosed(true);
#ifdef DBG_UTIL
// check orientation (debug only)
if(tools::getOrientation(aRetval) == ORIENTATION_NEGATIVE)
{
OSL_ENSURE(false, "createAreaGeometryForEdge: orientation of return value is negative (!)");
}
#endif
return aRetval;
}
// create join polygon for given angle. Angle is defined with the
// points rLeft, rCenter and rRight. The given join type defines how
// the join segment will be created. fHalfLineWidth defines the relative width.
// fDegreeStepWidth is used when rounding edges.
// fMiterMinimumAngle is used to define when miter is forced to bevel.
// The created polygon will be positively or neuteral oriented and free of
// self intersections.
B2DPolygon createAreaGeometryForJoin(
const B2DPoint& rLeft,
const B2DPoint& rCenter,
const B2DPoint& rRight,
double fHalfLineWidth,
tools::B2DLineJoin eJoin,
double fDegreeStepWidth,
double /*fMiterMinimumAngle*/)
{
OSL_ENSURE(fHalfLineWidth > 0.0, "createAreaGeometryForJoin: LineWidth too small (!)");
OSL_ENSURE(fDegreeStepWidth > 0.0, "createAreaGeometryForJoin: DegreeStepWidth too small (!)");
OSL_ENSURE(tools::B2DLINEJOIN_NONE != eJoin, "createAreaGeometryForJoin: B2DLINEJOIN_NONE not allowed (!)");
B2DPolygon aRetval;
// get perpendicular vector for left and right
const B2DVector aLeftVector(rCenter - rLeft);
B2DVector aPerpendLeftVector(getNormalizedPerpendicular(aLeftVector));
const B2DVector aRightVector(rRight - rCenter);
B2DVector aPerpendRightVector(getNormalizedPerpendicular(aRightVector));
// get vector orientation
B2VectorOrientation aOrientation(getOrientation(aPerpendLeftVector, aPerpendRightVector));
if(ORIENTATION_NEUTRAL != aOrientation)
{
// prepare perpend vectors to be able to go from left to right.
// also multiply with fHalfLineWidth to get geometric vectors with correct length
if(ORIENTATION_POSITIVE == aOrientation)
{
// mirror to have them above the edge vectors
const double fNegativeHalfLineWidth(-fHalfLineWidth);
aPerpendLeftVector *= fNegativeHalfLineWidth;
aPerpendRightVector *= fNegativeHalfLineWidth;
}
else
{
// exchange left and right
const B2DVector aTemp(aPerpendLeftVector.getX() * fHalfLineWidth, aPerpendLeftVector.getY() * fHalfLineWidth);
aPerpendLeftVector.setX(aPerpendRightVector.getX() * fHalfLineWidth);
aPerpendLeftVector.setY(aPerpendRightVector.getY() * fHalfLineWidth);
aPerpendRightVector = aTemp;
}
// test if for Miter, the angle is too small
if(tools::B2DLINEJOIN_MITER == eJoin)
{
const double fAngle(fabs(aPerpendLeftVector.angle(aPerpendRightVector)));
if((F_PI - fAngle) < (15.0 * F_PI180))
{
// force to bevel
eJoin = tools::B2DLINEJOIN_BEVEL;
}
}
// create specific edge polygon
switch(eJoin)
{
case tools::B2DLINEJOIN_MIDDLE :
case tools::B2DLINEJOIN_BEVEL :
{
// create polygon for edge, go from left to right
aRetval.append(rCenter);
aRetval.append(rCenter + aPerpendLeftVector);
aRetval.append(rCenter + aPerpendRightVector);
aRetval.setClosed(true);
break;
}
case tools::B2DLINEJOIN_MITER :
{
// create first polygon part for edge, go from left to right
aRetval.append(rCenter);
aRetval.append(rCenter + aPerpendLeftVector);
double fCutPos(0.0);
const B2DPoint aLeftCutPoint(rCenter + aPerpendLeftVector);
const B2DPoint aRightCutPoint(rCenter + aPerpendRightVector);
if(ORIENTATION_POSITIVE == aOrientation)
{
tools::findCut(aLeftCutPoint, aLeftVector, aRightCutPoint, -aRightVector, CUTFLAG_ALL, &fCutPos);
if(0.0 != fCutPos)
{
const B2DPoint aCutPoint(
interpolate(aLeftCutPoint, aLeftCutPoint + aLeftVector, fCutPos));
aRetval.append(aCutPoint);
}
}
else
{
// peroendiculars are exchanged, also use exchanged EdgeVectors
tools::findCut(aLeftCutPoint, -aRightVector, aRightCutPoint, aLeftVector, CUTFLAG_ALL, &fCutPos);
if(0.0 != fCutPos)
{
const B2DPoint aCutPoint(
interpolate(aLeftCutPoint, aLeftCutPoint - aRightVector, fCutPos));
aRetval.append(aCutPoint);
}
}
// create last polygon part for edge
aRetval.append(rCenter + aPerpendRightVector);
aRetval.setClosed(true);
break;
}
case tools::B2DLINEJOIN_ROUND :
{
// create first polygon part for edge, go from left to right
aRetval.append(rCenter);
aRetval.append(rCenter + aPerpendLeftVector);
// get angle and prepare
double fAngle(aPerpendLeftVector.angle(aPerpendRightVector));
const bool bNegative(fAngle < 0.0);
if(bNegative)
{
fAngle = fabs(fAngle);
}
// substract first step, first position is added to
// the polygon yet
fAngle -= fDegreeStepWidth;
// create points as long as angle is > 0.0
if(fAngle > 0.0)
{
// get start angle
double fAngleOfLeftPerpendVector(
atan2(aPerpendLeftVector.getY(), aPerpendLeftVector.getX()));
while(fAngle > 0.0)
{
// calculate rotated vector
fAngleOfLeftPerpendVector += (bNegative ? -fDegreeStepWidth : fDegreeStepWidth);
const B2DVector aRotatedVector(
rCenter.getX() + (cos(fAngleOfLeftPerpendVector) * fHalfLineWidth),
rCenter.getY() + (sin(fAngleOfLeftPerpendVector) * fHalfLineWidth));
// add point
aRetval.append(aRotatedVector);
// substract next step
fAngle -= fDegreeStepWidth;
}
}
// create last polygon part for edge
aRetval.append(rCenter + aPerpendRightVector);
aRetval.setClosed(true);
break;
}
case tools::B2DLINEJOIN_NONE:
break; // nothing to add to aRetVal
default:
OSL_ENSURE(false,
"createAreaGeometryForJoin(): unexpected case.");
}
}
#ifdef DBG_UTIL
// check orientation (debug only)
if(tools::getOrientation(aRetval) == ORIENTATION_NEGATIVE)
{
OSL_ENSURE(false, "createAreaGeometryForJoin: orientation of return value is negative (!)");
}
#endif
return aRetval;
}
} // end of anonymus namespace
namespace tools
{
B2DPolyPolygon createAreaGeometryForPolygon(const B2DPolygon& rCandidate,
double fHalfLineWidth,
B2DLineJoin eJoin,
double fDegreeStepWidth,
double fMiterMinimumAngle)
{
OSL_ENSURE(fHalfLineWidth > 0.0, "createAreaGeometryForPolygon: LineWidth too small (!)");
OSL_ENSURE(fDegreeStepWidth > 0.0, "createAreaGeometryForPolygon: DegreeStepWidth too small (!)");
B2DPolyPolygon aRetval;
const sal_uInt32 nCount(rCandidate.count());
if(rCandidate.isClosed())
{
const bool bNeedToCreateJoinPolygon(B2DLINEJOIN_NONE != eJoin);
bool bLastNeededToCreateJoinPolygon(false);
for(sal_uInt32 a(0L); a < nCount; a++)
{
// get left, right, prev and next positions for edge
B2DPoint aEdgeStart(rCandidate.getB2DPoint(a));
B2DPoint aEdgeEnd(rCandidate.getB2DPoint((a + 1L) % nCount));
// create geometry for edge and add to result
B2DPolygon aEdgePolygon(createAreaGeometryForEdge(
aEdgeStart, aEdgeEnd, fHalfLineWidth,
bNeedToCreateJoinPolygon || bLastNeededToCreateJoinPolygon));
aRetval.append(aEdgePolygon);
if(bNeedToCreateJoinPolygon)
{
// create fill polygon for linejoin and add to result
B2DPoint aNextEdge(rCandidate.getB2DPoint((a + 2L) % nCount));
B2DPolygon aJoinPolygon(createAreaGeometryForJoin(
aEdgeStart, aEdgeEnd, aNextEdge, fHalfLineWidth, eJoin, fDegreeStepWidth, fMiterMinimumAngle));
if(aRetval.count())
{
aRetval.append(aJoinPolygon);
}
}
bLastNeededToCreateJoinPolygon = bNeedToCreateJoinPolygon;
}
}
else if(nCount > 1L)
{
bool bLastNeededToCreateJoinPolygon(false);
for(sal_uInt32 a(0L); a < nCount - 1L; a++)
{
// get left, right positions for edge
B2DPoint aEdgeStart(rCandidate.getB2DPoint(a));
B2DPoint aEdgeEnd(rCandidate.getB2DPoint(a + 1L));
const bool bNeedToCreateJoinPolygon((a + 2L < nCount) && B2DLINEJOIN_NONE != eJoin);
// create geometry for edge and add to result
B2DPolygon aEdgePolygon(
createAreaGeometryForEdge(aEdgeStart, aEdgeEnd, fHalfLineWidth,
bNeedToCreateJoinPolygon || bLastNeededToCreateJoinPolygon));
aRetval.append(aEdgePolygon);
// test if next exists
if(bNeedToCreateJoinPolygon)
{
// create fill polygon for linejoin and add to result
B2DPoint aNextEdge(rCandidate.getB2DPoint((a + 2L)));
B2DPolygon aJoinPolygon(createAreaGeometryForJoin(
aEdgeStart, aEdgeEnd, aNextEdge, fHalfLineWidth, eJoin, fDegreeStepWidth, fMiterMinimumAngle));
if(aRetval.count())
{
aRetval.append(aJoinPolygon);
}
}
bLastNeededToCreateJoinPolygon = bNeedToCreateJoinPolygon;
}
}
return aRetval;
}
B2DPolyPolygon createAreaGeometryForLineStartEnd(
const B2DPolygon& rCandidate,
const B2DPolyPolygon& rArrow,
bool bStart,
double fWidth,
double fCandidateLength,
double fDockingPosition, // 0->top, 1->bottom
double* pConsumedLength)
{
OSL_ENSURE(rCandidate.count() > 1L, "createAreaGeometryForLineStartEnd: Line polygon has too less points too small (!)");
OSL_ENSURE(rArrow.count() > 0L, "createAreaGeometryForLineStartEnd: No arrow PolyPolygon (!)");
B2DPolyPolygon aRetval;
OSL_ENSURE(rCandidate.count() > 1L, "createAreaGeometryForLineStartEnd: Line polygon has too less points (!)");
OSL_ENSURE(rArrow.count() > 0L, "createAreaGeometryForLineStartEnd: Empty arrow PolyPolygon (!)");
OSL_ENSURE(fWidth > 0.0, "createAreaGeometryForLineStartEnd: Width too small (!)");
OSL_ENSURE(fDockingPosition >= 0.0 && fDockingPosition <= 1.0,
"createAreaGeometryForLineStartEnd: fDockingPosition out of range [0.0 .. 1.0] (!)");
if(fWidth < 0.0)
{
fWidth = -fWidth;
}
if(rCandidate.count() > 1 && rArrow.count() && !fTools::equalZero(fWidth))
{
if(fDockingPosition < 0.0)
{
fDockingPosition = 0.0;
}
else if(fDockingPosition > 1.0)
{
fDockingPosition = 1.0;
}
// init return value from arrow
B2DPolyPolygon aRetval(rArrow);
aRetval.append(rArrow);
// get size of the arrow
const B2DRange aArrowSize(getRange(rArrow));
@@ -404,8 +103,13 @@ namespace basegfx
// move arrow to have docking position centered
aArrowTransform.translate(0.0, -fArrowYLength * fDockingPosition);
// prepare polygon length
if(fTools::equalZero(fCandidateLength))
{
fCandidateLength = getLength(rCandidate);
}
// get the polygon vector we want to plant this arrow on
const double fCandidateLength(getLength(rCandidate));
const double fConsumedLength(fArrowYLength * (1.0 - fDockingPosition));
const B2DVector aHead(rCandidate.getB2DPoint((bStart) ? 0L : rCandidate.count() - 1L));
const B2DVector aTail(getPositionAbsolute(rCandidate,
@@ -430,11 +134,563 @@ namespace basegfx
{
*pConsumedLength = fConsumedLength;
}
}
return aRetval;
}
} // end of namespace tools
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
// anonymus namespace for local helpers
namespace
{
bool impIsSimpleEdge(const B2DCubicBezier& rCandidate, double fMaxCosQuad, double fMaxPartOfEdgeQuad)
{
// isBezier() is true, already tested by caller
const B2DVector aEdge(rCandidate.getEndPoint() - rCandidate.getStartPoint());
if(aEdge.equalZero())
{
// start and end point the same, but control vectors used -> baloon curve loop
// is not a simple edge
return false;
}
// get tangentA and scalar with edge
const B2DVector aTangentA(rCandidate.getTangent(0.0));
const double fScalarAE(aEdge.scalar(aTangentA));
if(fTools::lessOrEqual(fScalarAE, 0.0))
{
// angle between TangentA and Edge is bigger or equal 90 degrees
return false;
}
// get self-scalars for E and A
const double fScalarE(aEdge.scalar(aEdge));
const double fScalarA(aTangentA.scalar(aTangentA));
const double fLengthCompareE(fScalarE * fMaxPartOfEdgeQuad);
if(fTools::moreOrEqual(fScalarA, fLengthCompareE))
{
// length of TangentA is more than fMaxPartOfEdge of length of edge
return false;
}
if(fTools::lessOrEqual(fScalarAE * fScalarAE, fScalarA * fScalarE * fMaxCosQuad))
{
// angle between TangentA and Edge is bigger or equal angle defined by fMaxCos
return false;
}
// get tangentB and scalar with edge
const B2DVector aTangentB(rCandidate.getTangent(1.0));
const double fScalarBE(aEdge.scalar(aTangentB));
if(fTools::lessOrEqual(fScalarBE, 0.0))
{
// angle between TangentB and Edge is bigger or equal 90 degrees
return false;
}
// get self-scalar for B
const double fScalarB(aTangentB.scalar(aTangentB));
if(fTools::moreOrEqual(fScalarB, fLengthCompareE))
{
// length of TangentB is more than fMaxPartOfEdge of length of edge
return false;
}
if(fTools::lessOrEqual(fScalarBE * fScalarBE, fScalarB * fScalarE * fMaxCosQuad))
{
// angle between TangentB and Edge is bigger or equal defined by fMaxCos
return false;
}
return true;
}
void impSubdivideToSimple(const B2DCubicBezier& rCandidate, B2DPolygon& rTarget, double fMaxCosQuad, double fMaxPartOfEdgeQuad, sal_uInt32 nMaxRecursionDepth)
{
if(!nMaxRecursionDepth || impIsSimpleEdge(rCandidate, fMaxCosQuad, fMaxPartOfEdgeQuad))
{
rTarget.appendBezierSegment(rCandidate.getControlPointA(), rCandidate.getControlPointB(), rCandidate.getEndPoint());
}
else
{
B2DCubicBezier aLeft, aRight;
rCandidate.split(0.5, &aLeft, &aRight);
impSubdivideToSimple(aLeft, rTarget, fMaxCosQuad, fMaxPartOfEdgeQuad, nMaxRecursionDepth - 1);
impSubdivideToSimple(aRight, rTarget, fMaxCosQuad, fMaxPartOfEdgeQuad, nMaxRecursionDepth - 1);
}
}
B2DPolygon subdivideToSimple(const B2DPolygon& rCandidate, double fMaxCosQuad, double fMaxPartOfEdgeQuad)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(rCandidate.areControlPointsUsed() && nPointCount)
{
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DPolygon aRetval;
B2DCubicBezier aEdge;
// prepare edge for loop
aEdge.setStartPoint(rCandidate.getB2DPoint(0));
aRetval.append(aEdge.getStartPoint());
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// fill B2DCubicBezier
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aEdge.setControlPointA(rCandidate.getNextControlPoint(a));
aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
// get rid of unnecessary bezier segments
aEdge.testAndSolveTrivialBezier();
if(aEdge.isBezier())
{
// before splitting recursively with internal simple criteria, use
// ExtremumPosFinder to remove those
::std::vector< double > aExtremumPositions;
aExtremumPositions.reserve(4);
aEdge.getAllExtremumPositions(aExtremumPositions);
const sal_uInt32 nCount(aExtremumPositions.size());
if(nCount)
{
if(nCount > 1)
{
// create order from left to right
::std::sort(aExtremumPositions.begin(), aExtremumPositions.end());
}
for(sal_uInt32 b(0); b < nCount;)
{
// split aEdge at next split pos
B2DCubicBezier aLeft;
const double fSplitPos(aExtremumPositions[b++]);
aEdge.split(fSplitPos, &aLeft, &aEdge);
aLeft.testAndSolveTrivialBezier();
// consume left part
if(aLeft.isBezier())
{
impSubdivideToSimple(aLeft, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6);
}
else
{
aRetval.append(aLeft.getEndPoint());
}
if(b < nCount)
{
// correct the remaining split positions to fit to shortened aEdge
const double fScaleFactor(1.0 / (1.0 - fSplitPos));
for(sal_uInt32 c(b); c < nCount; c++)
{
aExtremumPositions[c] = (aExtremumPositions[c] - fSplitPos) * fScaleFactor;
}
}
}
// test the shortened rest of aEdge
aEdge.testAndSolveTrivialBezier();
// consume right part
if(aEdge.isBezier())
{
impSubdivideToSimple(aEdge, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6);
}
else
{
aRetval.append(aEdge.getEndPoint());
}
}
else
{
impSubdivideToSimple(aEdge, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6);
}
}
else
{
// straight edge, add point
aRetval.append(aEdge.getEndPoint());
}
// prepare edge for next step
aEdge.setStartPoint(aEdge.getEndPoint());
}
// copy closed flag and check for double points
aRetval.setClosed(rCandidate.isClosed());
aRetval.removeDoublePoints();
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolygon createAreaGeometryForEdge(const B2DCubicBezier& rEdge, double fHalfLineWidth)
{
// create polygon for edge
// Unfortunately, while it would be geometrically correct to not add
// the in-between points EdgeEnd and EdgeStart, it leads to rounding
// errors when converting to integer polygon coordinates for painting
const B2DVector aEdgeVector(rEdge.getEndPoint() - rEdge.getStartPoint());
if(rEdge.isBezier())
{
// prepare target and data common for upper and lower
B2DPolygon aBezierPolygon;
const double fEdgeLength(aEdgeVector.getLength());
const bool bIsEdgeLengthZero(fTools::equalZero(fEdgeLength));
const B2DVector aTangentA(rEdge.getTangent(0.0));
const B2DVector aTangentB(rEdge.getTangent(1.0));
// create upper edge.
{
// create displacement vectors and check if they cut
const B2DVector aPerpendStart(getNormalizedPerpendicular(aTangentA) * -fHalfLineWidth);
const B2DVector aPerpendEnd(getNormalizedPerpendicular(aTangentB) * -fHalfLineWidth);
double fCut(0.0);
const tools::CutFlagValue aCut(tools::findCut(
rEdge.getStartPoint(), aPerpendStart,
rEdge.getEndPoint(), aPerpendEnd,
CUTFLAG_ALL, &fCut));
if(CUTFLAG_NONE != aCut)
{
// calculate cut point and add
const B2DPoint aCutPoint(rEdge.getStartPoint() + (aPerpendStart * fCut));
aBezierPolygon.append(aCutPoint);
}
else
{
// create scaled bezier segment
const B2DPoint aStart(rEdge.getStartPoint() + aPerpendStart);
const B2DPoint aEnd(rEdge.getEndPoint() + aPerpendEnd);
const B2DVector aEdge(aEnd - aStart);
const double fLength(aEdge.getLength());
const double fScale(bIsEdgeLengthZero ? 1.0 : fLength / fEdgeLength);
const B2DVector fRelNext(rEdge.getControlPointA() - rEdge.getStartPoint());
const B2DVector fRelPrev(rEdge.getControlPointB() - rEdge.getEndPoint());
aBezierPolygon.append(aStart);
aBezierPolygon.appendBezierSegment(aStart + (fRelNext * fScale), aEnd + (fRelPrev * fScale), aEnd);
}
}
// append original in-between point
aBezierPolygon.append(rEdge.getEndPoint());
// create lower edge.
{
// create displacement vectors and check if they cut
const B2DVector aPerpendStart(getNormalizedPerpendicular(aTangentA) * fHalfLineWidth);
const B2DVector aPerpendEnd(getNormalizedPerpendicular(aTangentB) * fHalfLineWidth);
double fCut(0.0);
const tools::CutFlagValue aCut(tools::findCut(
rEdge.getEndPoint(), aPerpendEnd,
rEdge.getStartPoint(), aPerpendStart,
CUTFLAG_ALL, &fCut));
if(CUTFLAG_NONE != aCut)
{
// calculate cut point and add
const B2DPoint aCutPoint(rEdge.getEndPoint() + (aPerpendEnd * fCut));
aBezierPolygon.append(aCutPoint);
}
else
{
// create scaled bezier segment
const B2DPoint aStart(rEdge.getEndPoint() + aPerpendEnd);
const B2DPoint aEnd(rEdge.getStartPoint() + aPerpendStart);
const B2DVector aEdge(aEnd - aStart);
const double fLength(aEdge.getLength());
const double fScale(bIsEdgeLengthZero ? 1.0 : fLength / fEdgeLength);
const B2DVector fRelNext(rEdge.getControlPointB() - rEdge.getEndPoint());
const B2DVector fRelPrev(rEdge.getControlPointA() - rEdge.getStartPoint());
aBezierPolygon.append(aStart);
aBezierPolygon.appendBezierSegment(aStart + (fRelNext * fScale), aEnd + (fRelPrev * fScale), aEnd);
}
}
// append original in-between point
aBezierPolygon.append(rEdge.getStartPoint());
// close and return
aBezierPolygon.setClosed(true);
return aBezierPolygon;
}
else
{
const B2DVector aPerpendEdgeVector(getNormalizedPerpendicular(aEdgeVector) * fHalfLineWidth);
B2DPolygon aEdgePolygon;
// create upper edge
aEdgePolygon.append(rEdge.getStartPoint() - aPerpendEdgeVector);
aEdgePolygon.append(rEdge.getEndPoint() - aPerpendEdgeVector);
// append original in-between point
aEdgePolygon.append(rEdge.getEndPoint());
// create lower edge
aEdgePolygon.append(rEdge.getEndPoint() + aPerpendEdgeVector);
aEdgePolygon.append(rEdge.getStartPoint() + aPerpendEdgeVector);
// append original in-between point
aEdgePolygon.append(rEdge.getStartPoint());
// close and return
aEdgePolygon.setClosed(true);
return aEdgePolygon;
}
}
B2DPolygon createAreaGeometryForJoin(
const B2DVector& rTangentPrev,
const B2DVector& rTangentEdge,
const B2DVector& rPerpendPrev,
const B2DVector& rPerpendEdge,
const B2DPoint& rPoint,
double fHalfLineWidth,
B2DLineJoin eJoin,
double fMiterMinimumAngle)
{
OSL_ENSURE(fHalfLineWidth > 0.0, "createAreaGeometryForJoin: LineWidth too small (!)");
OSL_ENSURE(B2DLINEJOIN_NONE != eJoin, "createAreaGeometryForJoin: B2DLINEJOIN_NONE not allowed (!)");
// LineJoin from tangent rPerpendPrev to tangent rPerpendEdge in rPoint
B2DPolygon aEdgePolygon;
const B2DPoint aStartPoint(rPoint + rPerpendPrev);
const B2DPoint aEndPoint(rPoint + rPerpendEdge);
// test if for Miter, the angle is too small and the fallback
// to bevel needs to be used
if(B2DLINEJOIN_MITER == eJoin)
{
const double fAngle(fabs(rPerpendPrev.angle(rPerpendEdge)));
if((F_PI - fAngle) < fMiterMinimumAngle)
{
// fallback to bevel
eJoin = B2DLINEJOIN_BEVEL;
}
}
// create first polygon part for edge
aEdgePolygon.append(aEndPoint);
aEdgePolygon.append(rPoint);
aEdgePolygon.append(aStartPoint);
if(B2DLINEJOIN_MITER == eJoin)
{
// Look for the cut point between start point along rTangentPrev and
// end point along rTangentEdge. -rTangentEdge should be used, but since
// the cut value is used for interpolating along the first edge, the negation
// is not needed since the same fCut will be found on the first edge.
// If it exists, insert it to complete the mitered fill polygon.
double fCutPos(0.0);
tools::findCut(aStartPoint, rTangentPrev, aEndPoint, rTangentEdge, CUTFLAG_ALL, &fCutPos);
if(0.0 != fCutPos)
{
const B2DPoint aCutPoint(interpolate(aStartPoint, aStartPoint + rTangentPrev, fCutPos));
aEdgePolygon.append(aCutPoint);
}
}
else if(B2DLINEJOIN_ROUND == eJoin)
{
// use tooling to add needed EllipseSegment
double fAngleStart(atan2(rPerpendPrev.getY(), rPerpendPrev.getX()));
double fAngleEnd(atan2(rPerpendEdge.getY(), rPerpendEdge.getX()));
// atan2 results are [-PI .. PI], consolidate to [0.0 .. 2PI]
if(fAngleStart < 0.0)
{
fAngleStart += F_2PI;
}
if(fAngleEnd < 0.0)
{
fAngleEnd += F_2PI;
}
aEdgePolygon.append(tools::createPolygonFromEllipseSegment(rPoint, fHalfLineWidth, fHalfLineWidth, fAngleStart, fAngleEnd));
}
// create last polygon part for edge
aEdgePolygon.setClosed(true);
return aEdgePolygon;
}
} // end of anonymus namespace
namespace tools
{
B2DPolyPolygon createAreaGeometry(
const B2DPolygon& rCandidate,
double fHalfLineWidth,
B2DLineJoin eJoin,
double fMaxAllowedAngle,
double fMaxPartOfEdge,
double fMiterMinimumAngle)
{
if(fMaxAllowedAngle > F_PI2)
{
fMaxAllowedAngle = F_PI2;
}
else if(fMaxAllowedAngle < 0.01 * F_PI2)
{
fMaxAllowedAngle = 0.01 * F_PI2;
}
if(fMaxPartOfEdge > 1.0)
{
fMaxPartOfEdge = 1.0;
}
else if(fMaxPartOfEdge < 0.01)
{
fMaxPartOfEdge = 0.01;
}
if(fMiterMinimumAngle > F_PI)
{
fMiterMinimumAngle = F_PI;
}
else if(fMiterMinimumAngle < 0.01 * F_PI)
{
fMiterMinimumAngle = 0.01 * F_PI;
}
B2DPolygon aCandidate(rCandidate);
const double fMaxCos(cos(fMaxAllowedAngle));
aCandidate.removeDoublePoints();
aCandidate = subdivideToSimple(aCandidate, fMaxCos * fMaxCos, fMaxPartOfEdge * fMaxPartOfEdge);
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount)
{
B2DPolyPolygon aRetval;
const bool bEventuallyCreateLineJoin(B2DLINEJOIN_NONE != eJoin);
const bool bIsClosed(aCandidate.isClosed());
const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1);
if(nEdgeCount)
{
B2DCubicBezier aEdge;
B2DCubicBezier aPrev;
// prepare edge
aEdge.setStartPoint(aCandidate.getB2DPoint(0));
if(bIsClosed && bEventuallyCreateLineJoin)
{
// prepare previous edge
const sal_uInt32 nPrevIndex(nPointCount - 1);
aPrev.setStartPoint(aCandidate.getB2DPoint(nPrevIndex));
aPrev.setControlPointA(aCandidate.getNextControlPoint(nPrevIndex));
aPrev.setControlPointB(aCandidate.getPrevControlPoint(0));
aPrev.setEndPoint(aEdge.getStartPoint());
}
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// fill current Edge
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aEdge.setControlPointA(aCandidate.getNextControlPoint(a));
aEdge.setControlPointB(aCandidate.getPrevControlPoint(nNextIndex));
aEdge.setEndPoint(aCandidate.getB2DPoint(nNextIndex));
// check and create linejoin
if(bEventuallyCreateLineJoin && (bIsClosed || 0 != a))
{
const B2DVector aTangentPrev(aPrev.getTangent(1.0));
const B2DVector aTangentEdge(aEdge.getTangent(0.0));
B2VectorOrientation aOrientation(getOrientation(aTangentPrev, aTangentEdge));
if(ORIENTATION_NEUTRAL == aOrientation)
{
// they are parallell or empty; if they are both not zero and point
// in opposite direction, a half-circle is needed
if(!aTangentPrev.equalZero() && !aTangentEdge.equalZero())
{
const double fAngle(fabs(aTangentPrev.angle(aTangentEdge)));
if(fTools::equal(fAngle, F_PI))
{
// for half-circle production, fallback to positive
// orientation
aOrientation = ORIENTATION_POSITIVE;
}
}
}
if(ORIENTATION_POSITIVE == aOrientation)
{
const B2DVector aPerpendPrev(getNormalizedPerpendicular(aTangentPrev) * -fHalfLineWidth);
const B2DVector aPerpendEdge(getNormalizedPerpendicular(aTangentEdge) * -fHalfLineWidth);
aRetval.append(createAreaGeometryForJoin(
aTangentPrev, aTangentEdge,
aPerpendPrev, aPerpendEdge,
aEdge.getStartPoint(), fHalfLineWidth,
eJoin, fMiterMinimumAngle));
}
else if(ORIENTATION_NEGATIVE == aOrientation)
{
const B2DVector aPerpendPrev(getNormalizedPerpendicular(aTangentPrev) * fHalfLineWidth);
const B2DVector aPerpendEdge(getNormalizedPerpendicular(aTangentEdge) * fHalfLineWidth);
aRetval.append(createAreaGeometryForJoin(
aTangentEdge, aTangentPrev,
aPerpendEdge, aPerpendPrev,
aEdge.getStartPoint(), fHalfLineWidth,
eJoin, fMiterMinimumAngle));
}
}
// create geometry for edge
aRetval.append(createAreaGeometryForEdge(aEdge, fHalfLineWidth));
// prepare next step
if(bEventuallyCreateLineJoin)
{
aPrev = aEdge;
}
aEdge.setStartPoint(aEdge.getEndPoint());
}
}
return aRetval;
}
else
{
return B2DPolyPolygon(rCandidate);
}
}
} // end of namespace tools
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
// eof