/************************************************************************* * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: b2dhommatrix.cxx,v $ * * $Revision: 1.14 $ * * last change: $Author: ihi $ $Date: 2006-11-14 14:06:44 $ * * The Contents of this file are made available subject to * the terms of GNU Lesser General Public License Version 2.1. * * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2005 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_basegfx.hxx" #ifndef _OSL_DIAGNOSE_H_ #include #endif #ifndef INCLUDED_RTL_INSTANCE_HXX #include #endif #ifndef _BGFX_MATRIX_B2DHOMMATRIX_HXX #include #endif #ifndef _HOMMATRIX_TEMPLATE_HXX #include #endif #ifndef _BGFX_MATRIX_B3DHOMMATRIX_HXX #include #endif #ifndef _BGFX_TUPLE_B3DTUPLE_HXX #include #endif #ifndef _BGFX_TUPLE_B2DTUPLE_HXX #include #endif #ifndef _BGFX_VECTOR_B2DVECTOR_HXX #include #endif namespace basegfx { class Impl2DHomMatrix : public ::basegfx::internal::ImplHomMatrixTemplate< 3 > { }; namespace { struct IdentityMatrix : public rtl::Static< B2DHomMatrix::ImplType, IdentityMatrix > {}; } B2DHomMatrix::B2DHomMatrix() : mpImpl( IdentityMatrix::get() ) // use common identity matrix { } B2DHomMatrix::B2DHomMatrix(const B2DHomMatrix& rMat) : mpImpl(rMat.mpImpl) { } B2DHomMatrix::~B2DHomMatrix() { } B2DHomMatrix& B2DHomMatrix::operator=(const B2DHomMatrix& rMat) { mpImpl = rMat.mpImpl; return *this; } void B2DHomMatrix::makeUnique() { mpImpl.make_unique(); } double B2DHomMatrix::get(sal_uInt16 nRow, sal_uInt16 nColumn) const { return mpImpl->get(nRow, nColumn); } void B2DHomMatrix::set(sal_uInt16 nRow, sal_uInt16 nColumn, double fValue) { mpImpl->set(nRow, nColumn, fValue); } bool B2DHomMatrix::isLastLineDefault() const { return mpImpl->isLastLineDefault(); } bool B2DHomMatrix::isIdentity() const { if(mpImpl.same_object(IdentityMatrix::get())) return true; return mpImpl->isIdentity(); } void B2DHomMatrix::identity() { mpImpl = IdentityMatrix::get(); } bool B2DHomMatrix::isInvertible() const { return mpImpl->isInvertible(); } bool B2DHomMatrix::invert() { Impl2DHomMatrix aWork(*mpImpl); sal_uInt16* pIndex = new sal_uInt16[mpImpl->getEdgeLength()]; sal_Int16 nParity; if(aWork.ludcmp(pIndex, nParity)) { mpImpl->doInvert(aWork, pIndex); delete[] pIndex; return true; } delete[] pIndex; return false; } bool B2DHomMatrix::isNormalized() const { return mpImpl->isNormalized(); } void B2DHomMatrix::normalize() { if(!const_cast(this)->mpImpl->isNormalized()) mpImpl->doNormalize(); } double B2DHomMatrix::determinant() const { return mpImpl->doDeterminant(); } double B2DHomMatrix::trace() const { return mpImpl->doTrace(); } void B2DHomMatrix::transpose() { mpImpl->doTranspose(); } B2DHomMatrix& B2DHomMatrix::operator+=(const B2DHomMatrix& rMat) { mpImpl->doAddMatrix(*rMat.mpImpl); return *this; } B2DHomMatrix& B2DHomMatrix::operator-=(const B2DHomMatrix& rMat) { mpImpl->doSubMatrix(*rMat.mpImpl); return *this; } B2DHomMatrix& B2DHomMatrix::operator*=(double fValue) { const double fOne(1.0); if(!fTools::equal(fOne, fValue)) mpImpl->doMulMatrix(fValue); return *this; } B2DHomMatrix& B2DHomMatrix::operator/=(double fValue) { const double fOne(1.0); if(!fTools::equal(fOne, fValue)) mpImpl->doMulMatrix(1.0 / fValue); return *this; } B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat) { if(!rMat.isIdentity()) mpImpl->doMulMatrix(*rMat.mpImpl); return *this; } bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const { if(mpImpl.same_object(rMat.mpImpl)) return true; return mpImpl->isEqual(*rMat.mpImpl); } bool B2DHomMatrix::operator!=(const B2DHomMatrix& rMat) const { return !(*this == rMat); } void B2DHomMatrix::rotate(double fRadiant) { if(!fTools::equalZero(fRadiant)) { double fSin; double fCos; // is the rotation angle an approximate multiple of pi/2? // If yes, force fSin/fCos to -1/0/1, to maintain // orthogonality (which might also be advantageous for the // other cases, but: for multiples of pi/2, the exact // values _can_ be attained. It would be largely // unintuitive, if a 180 degrees rotation would introduce // slight roundoff errors, instead of exactly mirroring // the coordinate system). if( fTools::equalZero( fmod( fRadiant, F_PI2 ) ) ) { // determine quadrant const sal_Int32 nQuad( (4 + fround( 4/F_2PI*fmod( fRadiant, F_2PI ) )) % 4 ); switch( nQuad ) { case 0: // -2pi,0,2pi fSin = 0.0; fCos = 1.0; break; case 1: // -3/2pi,1/2pi fSin = 1.0; fCos = 0.0; break; case 2: // -pi,pi fSin = 0.0; fCos = -1.0; break; case 3: // -1/2pi,3/2pi fSin = -1.0; fCos = 0.0; break; default: OSL_ENSURE( false, "B2DHomMatrix::rotate(): Impossible case reached" ); } } else { // TODO(P1): Maybe use glibc's sincos here (though // that's kinda non-portable...) fSin = sin(fRadiant); fCos = cos(fRadiant); } Impl2DHomMatrix aRotMat; aRotMat.set(0, 0, fCos); aRotMat.set(1, 1, fCos); aRotMat.set(1, 0, fSin); aRotMat.set(0, 1, -fSin); mpImpl->doMulMatrix(aRotMat); } } void B2DHomMatrix::translate(double fX, double fY) { if(!fTools::equalZero(fX) || !fTools::equalZero(fY)) { Impl2DHomMatrix aTransMat; aTransMat.set(0, 2, fX); aTransMat.set(1, 2, fY); mpImpl->doMulMatrix(aTransMat); } } void B2DHomMatrix::scale(double fX, double fY) { const double fOne(1.0); if(!fTools::equal(fOne, fX) || !fTools::equal(fOne, fY)) { Impl2DHomMatrix aScaleMat; aScaleMat.set(0, 0, fX); aScaleMat.set(1, 1, fY); mpImpl->doMulMatrix(aScaleMat); } } void B2DHomMatrix::shearX(double fSx) { const double fOne(1.0); if(!fTools::equal(fOne, fSx)) { Impl2DHomMatrix aShearXMat; aShearXMat.set(0, 1, fSx); mpImpl->doMulMatrix(aShearXMat); } } void B2DHomMatrix::shearY(double fSy) { const double fOne(1.0); if(!fTools::equal(fOne, fSy)) { Impl2DHomMatrix aShearYMat; aShearYMat.set(1, 0, fSy); mpImpl->doMulMatrix(aShearYMat); } } // Decomposition bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const { // when perspective is used, decompose is not made here if(!mpImpl->isLastLineDefault()) return false; // test for rotation and shear if(fTools::equalZero(get(0, 1)) && fTools::equalZero(get(1, 0))) { // no rotation and shear, direct value extraction rRotate = rShearX = 0.0; // copy scale values rScale.setX(get(0, 0)); rScale.setY(get(1, 1)); // copy translation values rTranslate.setX(get(0, 2)); rTranslate.setY(get(1, 2)); return true; } else { // test if shear is zero. That's the case, if the unit vectors in the matrix // are perpendicular -> scalar is zero const ::basegfx::B2DVector aUnitVecX(get(0, 0), get(1, 0)); const ::basegfx::B2DVector aUnitVecY(get(0, 1), get(1, 1)); if(fTools::equalZero(aUnitVecX.scalar(aUnitVecY))) { // no shear, direct value extraction rShearX = 0.0; // calculate rotation rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); // calculate scale values rScale.setX(aUnitVecX.getLength()); rScale.setY(aUnitVecY.getLength()); // copy translation values rTranslate.setX(get(0, 2)); rTranslate.setY(get(1, 2)); return true; } else { // If determinant is zero, decomposition is not possible if(0.0 == determinant()) return false; // copy 2x2 matrix and translate vector to 3x3 matrix ::basegfx::B3DHomMatrix a3DHomMat; a3DHomMat.set(0, 0, get(0, 0)); a3DHomMat.set(0, 1, get(0, 1)); a3DHomMat.set(1, 0, get(1, 0)); a3DHomMat.set(1, 1, get(1, 1)); a3DHomMat.set(0, 3, get(0, 2)); a3DHomMat.set(1, 3, get(1, 2)); ::basegfx::B3DTuple r3DScale, r3DTranslate, r3DRotate, r3DShear; if(a3DHomMat.decompose(r3DScale, r3DTranslate, r3DRotate, r3DShear)) { // copy scale values rScale.setX(r3DScale.getX()); rScale.setY(r3DScale.getY()); // copy shear rShearX = r3DShear.getX(); // copy rotate rRotate = r3DRotate.getZ(); // copy translate rTranslate.setX(r3DTranslate.getX()); rTranslate.setY(r3DTranslate.getY()); return true; } } } return false; } } // end of namespace basegfx // eof