/************************************************************************* * * $RCSfile: cpp2uno.cxx,v $ * * $Revision: 1.2 $ * * last change: $Author: hr $ $Date: 2003-07-16 17:32:29 $ * * The Contents of this file are made available subject to the terms of * either of the following licenses * * - GNU Lesser General Public License Version 2.1 * - Sun Industry Standards Source License Version 1.1 * * Sun Microsystems Inc., October, 2000 * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2000 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * * Sun Industry Standards Source License Version 1.1 * ================================================= * The contents of this file are subject to the Sun Industry Standards * Source License Version 1.1 (the "License"); You may not use this file * except in compliance with the License. You may obtain a copy of the * License at http://www.openoffice.org/license.html. * * Software provided under this License is provided on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS, * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING. * See the License for the specific provisions governing your rights and * obligations concerning the Software. * * The Initial Developer of the Original Code is: Sun Microsystems, Inc. * * Copyright: 2000 by Sun Microsystems, Inc. * * All Rights Reserved. * * Contributor(s): _______________________________________ * * ************************************************************************/ // #include #include #include #include #include #include #include #include #include "share.hxx" using namespace ::osl; using namespace ::rtl; using namespace ::com::sun::star::uno; namespace CPPU_CURRENT_NAMESPACE { //================================================================================================== rtl_StandardModuleCount g_moduleCount = MODULE_COUNT_INIT; //================================================================================================== static typelib_TypeClass cpp2uno_call( cppu_cppInterfaceProxy * pThis, const typelib_TypeDescription * pMemberTypeDescr, typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return sal_Int32 nParams, typelib_MethodParameter * pParams, void ** gpreg, void ** fpreg, void ** ovrflw, sal_Int64 * pRegisterReturn /* space for register return */ ) { // gpreg: [ret *], this, [gpr params] // fpreg: [fpr params] // ovrflw: [gpr or fpr params (space for entire parameter list in structure format properly aligned)] // return typelib_TypeDescription * pReturnTypeDescr = 0; if (pReturnTypeRef) TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef ); void * pUnoReturn = 0; void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need sal_Int32 ngpreg = 0; sal_Int32 nfpreg = 0; if (pReturnTypeDescr) { if (cppu_isSimpleType( pReturnTypeDescr )) pUnoReturn = pRegisterReturn; // direct way for simple types else // complex return via ptr (pCppReturn) { pCppReturn = *gpreg; ngpreg++; ++ovrflw; pUnoReturn = (cppu_relatesToInterface( pReturnTypeDescr ) ? alloca( pReturnTypeDescr->nSize ) : pCppReturn); // direct way } } // pop this ngpreg++; ++ovrflw; // after handling optional return pointer and "this" // make use of the space that is allocated to store all parameters in the callers stack // by comying the proper registers filled with parameters to that space char * pCppStack = (char *)ovrflw; sal_Int32 nPos; for ( nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; if (rParam.bOut) { if (ngpreg < 8) { *(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++]; } pCppStack += sizeof (sal_Int32); } else { switch (rParam.pTypeRef->eTypeClass) { case typelib_TypeClass_FLOAT: if (nfpreg < 13) { *(float *)pCppStack = ((double *)fpreg)[nfpreg++]; } pCppStack += sizeof (float); ngpreg += 1; break; case typelib_TypeClass_DOUBLE: if (nfpreg < 13) { *(double *)pCppStack = ((double *)fpreg)[nfpreg++]; } pCppStack += sizeof (double); ngpreg += 2; break; case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_HYPER: if (ngpreg < 8) { *(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++]; } pCppStack += sizeof (sal_Int32); // fall through on purpose default: if (ngpreg < 8) { *(sal_Int32 *)pCppStack = ((sal_Int32 *)gpreg)[ngpreg++]; } pCppStack += sizeof (sal_Int32); } } } // now the stack has all of the paramters stored in it ready to be processed // so we are ready to build the uno call stack pCppStack = (char *)ovrflw; // stack space OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" ); // parameters void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams ); void ** pCppArgs = pUnoArgs + nParams; // indizes of values this have to be converted (interface conversion cpp<=>uno) sal_Int32 * pTempIndizes = (sal_Int32 *)(pUnoArgs + (2 * nParams)); // type descriptions for reconversions typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams)); sal_Int32 nTempIndizes = 0; for ( nPos = 0; nPos < nParams; ++nPos ) { const typelib_MethodParameter & rParam = pParams[nPos]; typelib_TypeDescription * pParamTypeDescr = 0; TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef ); if (!rParam.bOut && cppu_isSimpleType( pParamTypeDescr )) // value { switch (pParamTypeDescr->eTypeClass) { case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: pCppArgs[nPos] = pCppStack +3; pUnoArgs[nPos] = pCppStack +3; break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: pCppArgs[nPos] = pCppStack +2; pUnoArgs[nPos] = pCppStack +2; break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_DOUBLE: pCppArgs[nPos] = pCppStack; pUnoArgs[nPos] = pCppStack; pCppStack += sizeof(sal_Int32); // extra long (two regs) break; default: pCppArgs[nPos] = pCppStack; pUnoArgs[nPos] = pCppStack; } // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } else // ptr to complex value | ref { pCppArgs[nPos] = *(void **)pCppStack; if (! rParam.bIn) // is pure out { // uno out is unconstructed mem! pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ); pTempIndizes[nTempIndizes] = nPos; // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } // is in/inout else if (cppu_relatesToInterface( pParamTypeDescr )) { uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ), *(void **)pCppStack, pParamTypeDescr, &pThis->pBridge->aCpp2Uno ); pTempIndizes[nTempIndizes] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr; } else // direct way { pUnoArgs[nPos] = *(void **)pCppStack; // no longer needed TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } } pCppStack += sizeof(sal_Int32); // standard parameter length } // ExceptionHolder uno_Any aUnoExc; // Any will be constructed by callee uno_Any * pUnoExc = &aUnoExc; // invoke uno dispatch call (*pThis->pUnoI->pDispatcher)( pThis->pUnoI, pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc ); // in case an exception occured... if (pUnoExc) { // destruct temporary in/inout params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; if (pParams[nIndex].bIn) // is in/inout => was constructed uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], 0 ); TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] ); } if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); raiseException( &aUnoExc, &pThis->pBridge->aUno2Cpp ); // has to destruct the any // is here for dummy return typelib_TypeClass_VOID; } else // else no exception occured... { // temporary params for ( ; nTempIndizes--; ) { sal_Int32 nIndex = pTempIndizes[nTempIndizes]; typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes]; if (pParams[nIndex].bOut) // inout/out { // convert and assign uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release ); uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr, &pThis->pBridge->aUno2Cpp ); } // destroy temp uno param uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); TYPELIB_DANGER_RELEASE( pParamTypeDescr ); } // return if (pCppReturn) // has complex return { if (pUnoReturn != pCppReturn) // needs reconversion { uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr, &pThis->pBridge->aUno2Cpp ); // destroy temp uno return uno_destructData( pUnoReturn, pReturnTypeDescr, 0 ); } // complex return ptr is set to return reg *(void **)pRegisterReturn = pCppReturn; } if (pReturnTypeDescr) { typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass; TYPELIB_DANGER_RELEASE( pReturnTypeDescr ); return eRet; } else return typelib_TypeClass_VOID; } } //================================================================================================== static typelib_TypeClass cpp_mediate( sal_Int32 nVtableCall, void ** gpreg, void ** fpreg, void ** ovrflw, sal_Int64 * pRegisterReturn /* space for register return */ ) { OSL_ENSURE( sizeof(sal_Int32)==sizeof(void *), "### unexpected!" ); // gpreg: [ret *], this, [other gpr params] // fpreg: [fpr params] // ovrflw: [gpr or fpr params (in space allocated for all params properly aligned)] // _this_ ptr is patched cppu_XInterfaceProxy object cppu_cppInterfaceProxy * pCppI = NULL; if( nVtableCall & 0x80000000 ) { nVtableCall &= 0x7fffffff; pCppI = (cppu_cppInterfaceProxy *)(XInterface *)*(gpreg +1); } else { pCppI = (cppu_cppInterfaceProxy *)(XInterface *)*(gpreg); } typelib_InterfaceTypeDescription * pTypeDescr = pCppI->pTypeDescr; OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" ); if (nVtableCall >= pTypeDescr->nMapFunctionIndexToMemberIndex) { throw RuntimeException( OUString::createFromAscii("illegal vtable index!"), (XInterface *)pCppI ); } // determine called method OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" ); sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nVtableCall]; OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" ); TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] ); typelib_TypeClass eRet; switch (aMemberDescr.get()->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nVtableCall) { // is GET method eRet = cpp2uno_call( pCppI, aMemberDescr.get(), ((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef, 0, 0, // no params gpreg, fpreg, ovrflw, pRegisterReturn ); } else { // is SET method typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; eRet = cpp2uno_call( pCppI, aMemberDescr.get(), 0, // indicates void return 1, &aParam, gpreg, fpreg, ovrflw, pRegisterReturn ); } break; } case typelib_TypeClass_INTERFACE_METHOD: { // is METHOD switch (nVtableCall) { case 1: // acquire() pCppI->acquireProxy(); // non virtual call! eRet = typelib_TypeClass_VOID; break; case 2: // release() pCppI->releaseProxy(); // non virtual call! eRet = typelib_TypeClass_VOID; break; case 0: // queryInterface() opt { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() ); if (pTD) { XInterface * pInterface = 0; (*pCppI->pBridge->pCppEnv->getRegisteredInterface)( pCppI->pBridge->pCppEnv, (void **)&pInterface, pCppI->oid.pData, (typelib_InterfaceTypeDescription *)pTD ); if (pInterface) { ::uno_any_construct( reinterpret_cast< uno_Any * >( gpreg[0] ), &pInterface, pTD, cpp_acquire ); pInterface->release(); TYPELIB_DANGER_RELEASE( pTD ); *(void **)pRegisterReturn = gpreg[0]; eRet = typelib_TypeClass_ANY; break; } TYPELIB_DANGER_RELEASE( pTD ); } } // else perform queryInterface() default: eRet = cpp2uno_call( pCppI, aMemberDescr.get(), ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams, ((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams, gpreg, fpreg, ovrflw, pRegisterReturn ); } break; } default: { throw RuntimeException( OUString::createFromAscii("no member description found!"), (XInterface *)pCppI ); // is here for dummy eRet = typelib_TypeClass_VOID; } } return eRet; } //================================================================================================== /** * is called on incoming vtable calls * (called by asm snippets) */ static void cpp_vtable_call( int nTableEntry, void** gpregptr, void** fpregptr, void** ovrflw) { sal_Int32 gpreg[8]; double fpreg[13]; // FIXME: why are we restoring the volatile ctr register here sal_Int32 ctrsave = ((sal_Int32*)gpregptr)[-1]; memcpy( gpreg, gpregptr, 32); memcpy( fpreg, fpregptr, 104); volatile long nRegReturn[2]; sal_Bool bComplex = nTableEntry & 0x80000000 ? sal_True : sal_False; typelib_TypeClass aType = cpp_mediate( nTableEntry, (void**)gpreg, (void**)fpreg, ovrflw, (sal_Int64*)nRegReturn ); // FIXME: why are we restoring the volatile ctr register here // FIXME: and why are we putting back the values for r4, r5, and r6 as well // FIXME: this makes no sense to me, all of these registers are volatile! __asm__( "lwz r4, %0\n\t" "mtctr r4\n\t" "lwz r4, %1\n\t" "lwz r5, %2\n\t" "lwz r6, %3\n\t" : : "m"(ctrsave), "m"(gpreg[1]), "m"(gpreg[2]), "m"(gpreg[3]) ); switch( aType ) { // move return value into register space // (will be loaded by machine code snippet) case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: __asm__( "lbz r3,%0\n\t" : : "m"(nRegReturn[0]) ); break; case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: __asm__( "lhz r3,%0\n\t" : : "m"(nRegReturn[0]) ); break; case typelib_TypeClass_FLOAT: __asm__( "lfs f1,%0\n\t" : : "m" (*((float*)nRegReturn)) ); break; case typelib_TypeClass_DOUBLE: __asm__( "lfd f1,%0\n\t" : : "m" (*((double*)nRegReturn)) ); break; case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: __asm__( "lwz r4,%0\n\t" : : "m"(nRegReturn[1]) ); // fall through default: __asm__( "lwz r3,%0\n\t" : : "m"(nRegReturn[0]) ); break; } } //__________________________________________________________________________________________________ // FIXME: this is overkill, we should flush the data caches and invalidate // the instruction caches in loop and then do the sync, isync at the end void flush_icache(char *addr) { __asm__ volatile ( "dcbf 0,%0;" "sync;" "icbi 0,%0;" "sync;" "isync;" : : "r"(addr) : "memory"); } void flush_range(char * addr1, int size) { #define MIN_LINE_SIZE 32 int i; for (i = 0; i < size; i += MIN_LINE_SIZE) flush_icache(addr1+i); flush_icache(addr1+size-1); } //================================================================================================== class MediateClassData { typedef ::std::hash_map< OUString, void *, OUStringHash > t_classdata_map; t_classdata_map m_map; Mutex m_mutex; public: void const * get_vtable( typelib_InterfaceTypeDescription * pTD ) SAL_THROW( () ); inline MediateClassData() SAL_THROW( () ) {} ~MediateClassData() SAL_THROW( () ); }; //__________________________________________________________________________________________________ MediateClassData::~MediateClassData() SAL_THROW( () ) { OSL_TRACE( "> calling ~MediateClassData(): freeing mediate vtables." ); for ( t_classdata_map::const_iterator iPos( m_map.begin() ); iPos != m_map.end(); ++iPos ) { ::rtl_freeMemory( iPos->second ); } } //-------------------------------------------------------------------------------------------------- static inline void codeSnippet( long * code, sal_uInt32 vtable_pos, bool simple_ret_type ) SAL_THROW( () ) { if (! simple_ret_type) vtable_pos |= 0x80000000; OSL_ASSERT( sizeof (long) == 4 ); // FIXME: why are we leaving an 8k gap in the stack here // FIXME: is this to allow room for signal handling frames? // FIXME: seems like overkill here but this is what was done for Mac OSX for gcc2 // FIXME: also why no saving of the non-volatile CR pieces here, to be safe // FIXME: we probably should /* generate this code */ // # so first save gpr 3 to gpr 10 (aligned to 4) // stw r3, -8000(r1) // stw r4, -7996(r1) // stw r5, -7992(r1) // stw r6, -7988(r1) // stw r7, -7984(r1) // stw r8, -7980(r1) // stw r9, -7976(r1) // stw r10,-7972(r1) // # next save fpr 1 to fpr 13 (aligned to 8) // stfd f1, -7968(r1) // stfd f2, -7960(r1) // stfd f3, -7952(r1) // stfd f4, -7944(r1) // stfd f5, -7936(r1) // stfd f6, -7928(r1) // stfd f7, -7920(r1) // stfd f8, -7912(r1) // stfd f9, -7904(r1) // stfd f10,-7896(r1) // stfd f11,-7888(r1) // stfd f12,-7880(r1) // stfd f13,-7872(r1) // FIXME: ctr is volatile, while are we saving it and not CR? // mfctr r3 // stw r3, -8004(r1) // # now here is where cpp_vtable_call must go // lis r3,0xdead // ori r3,r3,0xbeef // mtctr r3 // # now load up the the table entry number // lis r3, 0xdead // ori r3,r3,0xbeef // #now load up the pointer to the saved gpr registers // addi r4,r1,-8000 // #now load up the pointer to the saved fpr registers // addi r5,r1,-7968 // #now load up the pointer to the overflow call stack // addi r6,r1,24 # frame pointer plus 24 // bctr * code++ = 0x9061e0c0; * code++ = 0x9081e0c4; * code++ = 0x90a1e0c8; * code++ = 0x90c1e0cc; * code++ = 0x90e1e0d0; * code++ = 0x9101e0d4; * code++ = 0x9121e0d8; * code++ = 0x9141e0dc; * code++ = 0xd821e0e0; * code++ = 0xd841e0e8; * code++ = 0xd861e0f0; * code++ = 0xd881e0f8; * code++ = 0xd8a1e100; * code++ = 0xd8c1e108; * code++ = 0xd8e1e110; * code++ = 0xd901e118; * code++ = 0xd921e120; * code++ = 0xd941e128; * code++ = 0xd961e130; * code++ = 0xd981e138; * code++ = 0xd9a1e140; * code++ = 0x7c6902a6; * code++ = 0x9061e0bc; * code++ = 0x3c600000 | (((unsigned long)cpp_vtable_call) >> 16); * code++ = 0x60630000 | (((unsigned long)cpp_vtable_call) & 0x0000FFFF); * code++ = 0x7c6903a6; * code++ = 0x3c600000 | (vtable_pos >> 16); * code++ = 0x60630000 | (vtable_pos & 0x0000FFFF); * code++ = 0x3881e0c0; * code++ = 0x38a1e0e0; * code++ = 0x38c10018; * code++ = 0x4e800420; // don't forget to flush the data and caches after calling this routine // otherwise the self-modifying code we wrote above will not be processed properly // and we need to remove stale instruction cache // note the size of this snippet of code needs to be kept consistent with // nSnippetSize below (it is now 32 instructions 4 bytes long each = 128 bytes) } //__________________________________________________________________________________________________ void const * MediateClassData::get_vtable( typelib_InterfaceTypeDescription * pTD ) SAL_THROW( () ) { void * buffer; const int nSnippetSize = 128; // avoiding locked counts OUString const & unoName = *(OUString const *)&((typelib_TypeDescription *)pTD)->pTypeName; { MutexGuard aGuard( m_mutex ); t_classdata_map::const_iterator iFind( m_map.find( unoName ) ); if (iFind == m_map.end()) { // create new vtable sal_Int32 nSlots = pTD->nMapFunctionIndexToMemberIndex; buffer = ::rtl_allocateMemory( ((2+ nSlots) * sizeof (void *)) + (nSlots *nSnippetSize) ); ::std::pair< t_classdata_map::iterator, bool > insertion( m_map.insert( t_classdata_map::value_type( unoName, buffer ) ) ); OSL_ENSURE( insertion.second, "### inserting new vtable buffer failed?!" ); void ** slots = (void **)buffer; *slots++ = 0; *slots++ = 0; // rtti char * code = (char *)(slots + nSlots); sal_uInt32 vtable_pos = 0; sal_Int32 nAllMembers = pTD->nAllMembers; typelib_TypeDescriptionReference ** ppAllMembers = pTD->ppAllMembers; for ( sal_Int32 nPos = 0; nPos < nAllMembers; ++nPos ) { typelib_TypeDescription * pTD = 0; TYPELIB_DANGER_GET( &pTD, ppAllMembers[ nPos ] ); OSL_ASSERT( pTD ); if (typelib_TypeClass_INTERFACE_ATTRIBUTE == pTD->eTypeClass) { bool simple_ret = cppu_isSimpleType( ((typelib_InterfaceAttributeTypeDescription *)pTD)->pAttributeTypeRef->eTypeClass ); // get method *slots = code; codeSnippet( (long *)code, vtable_pos++, simple_ret ); flush_range( code, nSnippetSize ); code += nSnippetSize; slots++; if (! ((typelib_InterfaceAttributeTypeDescription *)pTD)->bReadOnly) { // set method *slots = code; codeSnippet( (long *)code, vtable_pos++, true ); flush_range( code, nSnippetSize ); code += nSnippetSize; slots++; } } else { bool simple_ret = cppu_isSimpleType( ((typelib_InterfaceMethodTypeDescription *)pTD)->pReturnTypeRef->eTypeClass ); *slots = code; codeSnippet( (long *)code, vtable_pos++, simple_ret ); flush_range( code, nSnippetSize ); code += nSnippetSize; slots++; } TYPELIB_DANGER_RELEASE( pTD ); } OSL_ASSERT( vtable_pos == nSlots ); } else { buffer = iFind->second; } } return ((void **)buffer +2); } //================================================================================================== void SAL_CALL cppu_cppInterfaceProxy_patchVtable( XInterface * pCppI, typelib_InterfaceTypeDescription * pTypeDescr ) throw () { static MediateClassData * s_pMediateClassData = 0; if (! s_pMediateClassData) { MutexGuard aGuard( Mutex::getGlobalMutex() ); if (! s_pMediateClassData) { #ifdef LEAK_STATIC_DATA s_pMediateClassData = new MediateClassData(); #else static MediateClassData s_aMediateClassData; s_pMediateClassData = &s_aMediateClassData; #endif } } *(void const **)pCppI = s_pMediateClassData->get_vtable( pTypeDescr ); } } extern "C" { //################################################################################################## sal_Bool SAL_CALL component_canUnload( TimeValue * pTime ) SAL_THROW_EXTERN_C() { return CPPU_CURRENT_NAMESPACE::g_moduleCount.canUnload( &CPPU_CURRENT_NAMESPACE::g_moduleCount, pTime ); } //################################################################################################## void SAL_CALL uno_initEnvironment( uno_Environment * pCppEnv ) SAL_THROW_EXTERN_C() { CPPU_CURRENT_NAMESPACE::cppu_cppenv_initEnvironment( pCppEnv ); } //################################################################################################## void SAL_CALL uno_ext_getMapping( uno_Mapping ** ppMapping, uno_Environment * pFrom, uno_Environment * pTo ) SAL_THROW_EXTERN_C() { CPPU_CURRENT_NAMESPACE::cppu_ext_getMapping( ppMapping, pFrom, pTo ); } }