/************************************************************************* * * OpenOffice.org - a multi-platform office productivity suite * * $RCSfile: solver.cpp,v $ * * $Revision: 1.3 $ * * last change: $Author: rt $ $Date: 2005-09-07 16:45:29 $ * * The Contents of this file are made available subject to * the terms of GNU Lesser General Public License Version 2.1. * * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2005 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * ************************************************************************/ #include #include "solver.h" //--------------------------------------------------------------------------- float** mgcLinearSystem::NewMatrix (int N) { float** A = new float*[N]; if ( !A ) return 0; for (int row = 0; row < N; row++) { A[row] = new float[N]; if ( !A[row] ) { for (int i = 0; i < row; i++) delete[] A[i]; return 0; } for (int col = 0; col < N; col++) A[row][col] = 0; } return A; } //--------------------------------------------------------------------------- void mgcLinearSystem::DeleteMatrix (int N, float** A) { for (int row = 0; row < N; row++) delete[] A[row]; delete[] A; } //--------------------------------------------------------------------------- float* mgcLinearSystem::NewVector (int N) { float* B = new float[N]; if ( !B ) return 0; for (int row = 0; row < N; row++) B[row] = 0; return B; } //--------------------------------------------------------------------------- void mgcLinearSystem::DeleteVector (int , float* B) { delete[] B; } //--------------------------------------------------------------------------- int mgcLinearSystem::Inverse (int n, float** a) { int* indxc = new int[n]; int* indxr = new int[n]; int* ipiv = new int[n]; int i, j, k; int irow = 0; int icol = 0; float big, pivinv, save; for (j = 0; j < n; j++) ipiv[j] = 0; for (i = 0; i < n; i++) { big = 0; for (j = 0; j < n; j++) { if ( ipiv[j] != 1 ) { for (k = 0; k < n; k++) { if ( ipiv[k] == 0 ) { if ( fabs(a[j][k]) >= big ) { big = (float)fabs(a[j][k]); irow = j; icol = k; } } else if ( ipiv[k] > 1 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } } } } ipiv[icol]++; if ( irow != icol ) { float* rowptr = a[irow]; a[irow] = a[icol]; a[icol] = rowptr; } indxr[i] = irow; indxc[i] = icol; if ( a[icol][icol] == 0 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } pivinv = 1/a[icol][icol]; a[icol][icol] = 1; for (k = 0; k < n; k++) a[icol][k] *= pivinv; for (j = 0; j < n; j++) { if ( j != icol ) { save = a[j][icol]; a[j][icol] = 0; for (k = 0; k < n; k++) a[j][k] -= a[icol][k]*save; } } } for (j = n-1; j >= 0; j--) { if ( indxr[j] != indxc[j] ) { for (k = 0; k < n; k++) { save = a[k][indxr[j]]; a[k][indxr[j]] = a[k][indxc[j]]; a[k][indxc[j]] = save; } } } delete[] ipiv; delete[] indxr; delete[] indxc; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystem::Solve (int n, float** a, float* b) { int* indxc = new int[n]; if ( !indxc ) return 0; int* indxr = new int[n]; if ( !indxr ) { delete[] indxc; return 0; } int* ipiv = new int[n]; if ( !ipiv ) { delete[] indxc; delete[] indxr; return 0; } int i, j, k; int irow = 0; int icol = 0; float big, pivinv, save; for (j = 0; j < n; j++) ipiv[j] = 0; for (i = 0; i < n; i++) { big = 0; for (j = 0; j < n; j++) { if ( ipiv[j] != 1 ) { for (k = 0; k < n; k++) { if ( ipiv[k] == 0 ) { if ( (float)fabs(a[j][k]) >= big ) { big = (float)fabs(a[j][k]); irow = j; icol = k; } } else if ( ipiv[k] > 1 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } } } } ipiv[icol]++; if ( irow != icol ) { float* rowptr = a[irow]; a[irow] = a[icol]; a[icol] = rowptr; save = b[irow]; b[irow] = b[icol]; b[icol] = save; } indxr[i] = irow; indxc[i] = icol; if ( a[icol][icol] == 0 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } pivinv = 1/a[icol][icol]; a[icol][icol] = 1; for (k = 0; k < n; k++) a[icol][k] *= pivinv; b[icol] *= pivinv; for (j = 0; j < n; j++) { if ( j != icol ) { save = a[j][icol]; a[j][icol] = 0; for (k = 0; k < n; k++) a[j][k] -= a[icol][k]*save; b[j] -= b[icol]*save; } } } for (j = n-1; j >= 0; j--) { if ( indxr[j] != indxc[j] ) { for (k = 0; k < n; k++) { save = a[k][indxr[j]]; a[k][indxr[j]] = a[k][indxc[j]]; a[k][indxc[j]] = save; } } } delete[] ipiv; delete[] indxr; delete[] indxc; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystem::SolveTri (int n, float* a, float* b, float* c, float* r, float* u) { if ( b[0] == 0 ) return 0; float* gam = new float[n-1]; if ( !gam ) return 0; float bet = b[0]; u[0] = r[0]/bet; int i, j; for (i = 0, j = 1; j < n; i++, j++) { gam[i] = c[i]/bet; bet = b[j]-a[i]*gam[i]; if ( bet == 0 ) { delete[] gam; return 0; } u[j] = (r[j]-a[i]*u[i])/bet; } for (i = n-1, j = n-2; j >= 0; i--, j--) u[j] -= gam[j]*u[i]; delete[] gam; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystem::SolveConstTri (int n, float a, float b, float c, float* r, float* u) { if ( b == 0 ) return 0; float* gam = new float[n-1]; if ( !gam ) return 0; float bet = b; u[0] = r[0]/bet; int i, j; for (i = 0, j = 1; j < n; i++, j++) { gam[i] = c/bet; bet = b-a*gam[i]; if ( bet == 0 ) { delete[] gam; return 0; } u[j] = (r[j]-a*u[i])/bet; } for (i = n-1, j = n-2; j >= 0; i--, j--) u[j] -= gam[j]*u[i]; delete[] gam; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystem::SolveSymmetric (int n, float** A, float* b) { // A = L D L^t decomposition with diagonal terms of L equal to 1 // Algorithm stores D terms in A[i][i] and off-diagonal L terms in // A[i][j] for i > j. (G. Golub and C. Van Loan, Matrix Computations) const float tolerance = 1e-06f; int i, j, k; float* v = new float[n]; if ( !v ) return 0; for (j = 0; j < n; j++) { for (i = 0; i < j; i++) v[i] = A[j][i]*A[i][i]; v[j] = A[j][j]; for (i = 0; i < j; i++) v[j] -= A[j][i]*v[i]; A[j][j] = v[j]; if ( fabs(v[j]) <= tolerance ) { delete[] v; return 0; } for (i = j+1; i < n; i++) { for (k = 0; k < j; k++) A[i][j] -= A[i][k]*v[k]; A[i][j] /= v[j]; } } delete[] v; // Solve Ax = b. // Forward substitution: Let z = DL^t x, then Lz = b. Algorithm // stores z terms in b vector. for (i = 0; i < n; i++) { for (j = 0; j < i; j++) b[i] -= A[i][j]*b[j]; } // Diagonal division: Let y = L^t x, then Dy = z. Algorithm stores // y terms in b vector. for (i = 0; i < n; i++) { if ( fabs(A[i][i]) <= tolerance ) return 0; b[i] /= A[i][i]; } // Back substitution: Solve L^t x = y. Algorithm stores x terms in // b vector. for (i = n-2; i >= 0; i--) { for (j = i+1; j < n; j++) b[i] -= A[j][i]*b[j]; } return 1; } //--------------------------------------------------------------------------- int mgcLinearSystem::SymmetricInverse (int n, float** A, float** Ainv) { // Same algorithm as SolveSymmetric, but applied simultaneously to // columns of identity matrix. int i, j, k; float* v = new float[n]; if ( !v ) return 0; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) Ainv[i][j] = ( i != j ? 0.0f : 1.0f ); } for (j = 0; j < n; j++) { for (i = 0; i < j; i++) v[i] = A[j][i]*A[i][i]; v[j] = A[j][j]; for (i = 0; i < j; i++) v[j] -= A[j][i]*v[i]; A[j][j] = v[j]; for (i = j+1; i < n; i++) { for (k = 0; k < j; k++) A[i][j] -= A[i][k]*v[k]; A[i][j] /= v[j]; } } delete[] v; for (int col = 0; col < n; col++) { // forward substitution for (i = 0; i < n; i++) { for (j = 0; j < i; j++) Ainv[i][col] -= A[i][j]*Ainv[j][col]; } // diagonal division const float tolerance = 1e-06f; for (i = 0; i < n; i++) { if ( fabs(A[i][i]) <= tolerance ) return 0; Ainv[i][col] /= A[i][i]; } // back substitution for (i = n-2; i >= 0; i--) { for (j = i+1; j < n; j++) Ainv[i][col] -= A[j][i]*Ainv[j][col]; } } return 1; } //--------------------------------------------------------------------------- //--------------------------------------------------------------------------- double** mgcLinearSystemD::NewMatrix (int N) { double** A = new double*[N]; if ( !A ) return 0; for (int row = 0; row < N; row++) { A[row] = new double[N]; if ( !A[row] ) { for (int i = 0; i < row; i++) delete[] A[i]; return 0; } for (int col = 0; col < N; col++) A[row][col] = 0; } return A; } //--------------------------------------------------------------------------- void mgcLinearSystemD::DeleteMatrix (int N, double** A) { for (int row = 0; row < N; row++) delete[] A[row]; delete[] A; } //--------------------------------------------------------------------------- double* mgcLinearSystemD::NewVector (int N) { double* B = new double[N]; if ( !B ) return 0; for (int row = 0; row < N; row++) B[row] = 0; return B; } //--------------------------------------------------------------------------- void mgcLinearSystemD::DeleteVector (int , double* B) { delete[] B; } //--------------------------------------------------------------------------- int mgcLinearSystemD::Inverse (int n, double** a) { int* indxc = new int[n]; int* indxr = new int[n]; int* ipiv = new int[n]; int i, j, k; int irow = 0; int icol = 0; double big, pivinv, save; for (j = 0; j < n; j++) ipiv[j] = 0; for (i = 0; i < n; i++) { big = 0; for (j = 0; j < n; j++) { if ( ipiv[j] != 1 ) { for (k = 0; k < n; k++) { if ( ipiv[k] == 0 ) { if ( fabs(a[j][k]) >= big ) { big = fabs(a[j][k]); irow = j; icol = k; } } else if ( ipiv[k] > 1 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } } } } ipiv[icol]++; if ( irow != icol ) { double* rowptr = a[irow]; a[irow] = a[icol]; a[icol] = rowptr; } indxr[i] = irow; indxc[i] = icol; if ( a[icol][icol] == 0 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } pivinv = 1/a[icol][icol]; a[icol][icol] = 1; for (k = 0; k < n; k++) a[icol][k] *= pivinv; for (j = 0; j < n; j++) { if ( j != icol ) { save = a[j][icol]; a[j][icol] = 0; for (k = 0; k < n; k++) a[j][k] -= a[icol][k]*save; } } } for (j = n-1; j >= 0; j--) { if ( indxr[j] != indxc[j] ) { for (k = 0; k < n; k++) { save = a[k][indxr[j]]; a[k][indxr[j]] = a[k][indxc[j]]; a[k][indxc[j]] = save; } } } delete[] ipiv; delete[] indxr; delete[] indxc; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystemD::Solve (int n, double** a, double* b) { int* indxc = new int[n]; if ( !indxc ) return 0; int* indxr = new int[n]; if ( !indxr ) { delete[] indxc; return 0; } int* ipiv = new int[n]; if ( !ipiv ) { delete[] indxc; delete[] indxr; return 0; } int i, j, k; int irow = 0; int icol = 0; double big, pivinv, save; for (j = 0; j < n; j++) ipiv[j] = 0; for (i = 0; i < n; i++) { big = 0; for (j = 0; j < n; j++) { if ( ipiv[j] != 1 ) { for (k = 0; k < n; k++) { if ( ipiv[k] == 0 ) { if ( fabs(a[j][k]) >= big ) { big = fabs(a[j][k]); irow = j; icol = k; } } else if ( ipiv[k] > 1 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } } } } ipiv[icol]++; if ( irow != icol ) { double* rowptr = a[irow]; a[irow] = a[icol]; a[icol] = rowptr; save = b[irow]; b[irow] = b[icol]; b[icol] = save; } indxr[i] = irow; indxc[i] = icol; if ( a[icol][icol] == 0 ) { delete[] ipiv; delete[] indxr; delete[] indxc; return 0; } pivinv = 1/a[icol][icol]; a[icol][icol] = 1; for (k = 0; k < n; k++) a[icol][k] *= pivinv; b[icol] *= pivinv; for (j = 0; j < n; j++) { if ( j != icol ) { save = a[j][icol]; a[j][icol] = 0; for (k = 0; k < n; k++) a[j][k] -= a[icol][k]*save; b[j] -= b[icol]*save; } } } for (j = n-1; j >= 0; j--) { if ( indxr[j] != indxc[j] ) { for (k = 0; k < n; k++) { save = a[k][indxr[j]]; a[k][indxr[j]] = a[k][indxc[j]]; a[k][indxc[j]] = save; } } } delete[] ipiv; delete[] indxr; delete[] indxc; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystemD::SolveTri (int n, double* a, double* b, double* c, double* r, double* u) { if ( b[0] == 0 ) return 0; double* gam = new double[n-1]; if ( !gam ) return 0; double bet = b[0]; u[0] = r[0]/bet; int i, j; for (i = 0, j = 1; j < n; i++, j++) { gam[i] = c[i]/bet; bet = b[j]-a[i]*gam[i]; if ( bet == 0 ) { delete[] gam; return 0; } u[j] = (r[j]-a[i]*u[i])/bet; } for (i = n-1, j = n-2; j >= 0; i--, j--) u[j] -= gam[j]*u[i]; delete[] gam; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystemD::SolveConstTri (int n, double a, double b, double c, double* r, double* u) { if ( b == 0 ) return 0; double* gam = new double[n-1]; if ( !gam ) return 0; double bet = b; u[0] = r[0]/bet; int i, j; for (i = 0, j = 1; j < n; i++, j++) { gam[i] = c/bet; bet = b-a*gam[i]; if ( bet == 0 ) { delete[] gam; return 0; } u[j] = (r[j]-a*u[i])/bet; } for (i = n-1, j = n-2; j >= 0; i--, j--) u[j] -= gam[j]*u[i]; delete[] gam; return 1; } //--------------------------------------------------------------------------- int mgcLinearSystemD::SolveSymmetric (int n, double** A, double* b) { // A = L D L^t decomposition with diagonal terms of L equal to 1 // Algorithm stores D terms in A[i][i] and off-diagonal L terms in // A[i][j] for i > j. (G. Golub and C. Van Loan, Matrix Computations) const double tolerance = 1e-06; int i, j, k; double* v = new double[n]; if ( !v ) return 0; for (j = 0; j < n; j++) { for (i = 0; i < j; i++) v[i] = A[j][i]*A[i][i]; v[j] = A[j][j]; for (i = 0; i < j; i++) v[j] -= A[j][i]*v[i]; A[j][j] = v[j]; if ( fabs(v[j]) <= tolerance ) { delete[] v; return 0; } for (i = j+1; i < n; i++) { for (k = 0; k < j; k++) A[i][j] -= A[i][k]*v[k]; A[i][j] /= v[j]; } } delete[] v; // Solve Ax = b. // Forward substitution: Let z = DL^t x, then Lz = b. Algorithm // stores z terms in b vector. for (i = 0; i < n; i++) { for (j = 0; j < i; j++) b[i] -= A[i][j]*b[j]; } // Diagonal division: Let y = L^t x, then Dy = z. Algorithm stores // y terms in b vector. for (i = 0; i < n; i++) { if ( fabs(A[i][i]) <= tolerance ) return 0; b[i] /= A[i][i]; } // Back substitution: Solve L^t x = y. Algorithm stores x terms in // b vector. for (i = n-2; i >= 0; i--) { for (j = i+1; j < n; j++) b[i] -= A[j][i]*b[j]; } return 1; } //--------------------------------------------------------------------------- int mgcLinearSystemD::SymmetricInverse (int n, double** A, double** Ainv) { // Same algorithm as SolveSymmetric, but applied simultaneously to // columns of identity matrix. int i, j, k; double* v = new double[n]; if ( !v ) return 0; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) Ainv[i][j] = ( i != j ? 0 : 1 ); } for (j = 0; j < n; j++) { for (i = 0; i < j; i++) v[i] = A[j][i]*A[i][i]; v[j] = A[j][j]; for (i = 0; i < j; i++) v[j] -= A[j][i]*v[i]; A[j][j] = v[j]; for (i = j+1; i < n; i++) { for (k = 0; k < j; k++) A[i][j] -= A[i][k]*v[k]; A[i][j] /= v[j]; } } delete[] v; for (int col = 0; col < n; col++) { // forward substitution for (i = 0; i < n; i++) { for (j = 0; j < i; j++) Ainv[i][col] -= A[i][j]*Ainv[j][col]; } // diagonal division const double tolerance = 1e-06; for (i = 0; i < n; i++) { if ( fabs(A[i][i]) <= tolerance ) return 0; Ainv[i][col] /= A[i][i]; } // back substitution for (i = n-2; i >= 0; i--) { for (j = i+1; j < n; j++) Ainv[i][col] -= A[j][i]*Ainv[j][col]; } } return 1; } //---------------------------------------------------------------------------