/************************************************************************* * * $RCSfile: LogarithmicRegressionCurveCalculator.cxx,v $ * * $Revision: 1.1 $ * * last change: $Author: bm $ $Date: 2003-12-17 14:38:29 $ * * The Contents of this file are made available subject to the terms of * either of the following licenses * * - GNU Lesser General Public License Version 2.1 * - Sun Industry Standards Source License Version 1.1 * * Sun Microsystems Inc., October, 2000 * * GNU Lesser General Public License Version 2.1 * ============================================= * Copyright 2000 by Sun Microsystems, Inc. * 901 San Antonio Road, Palo Alto, CA 94303, USA * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * * Sun Industry Standards Source License Version 1.1 * ================================================= * The contents of this file are subject to the Sun Industry Standards * Source License Version 1.1 (the "License"); You may not use this file * except in compliance with the License. You may obtain a copy of the * License at http://www.openoffice.org/license.html. * * Software provided under this License is provided on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS, * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING. * See the License for the specific provisions governing your rights and * obligations concerning the Software. * * The Initial Developer of the Original Code is: Sun Microsystems, Inc. * * Copyright: 2003 by Sun Microsystems, Inc. * * All Rights Reserved. * * Contributor(s): _______________________________________ * * ************************************************************************/ #include "LogarithmicRegressionCurveCalculator.hxx" #include "macros.hxx" #include "RegressionCalculationHelper.hxx" #ifndef INCLUDED_RTL_MATH_HXX #include #endif #ifndef _RTL_USTRBUF_HXX_ #include #endif using namespace ::com::sun::star; using namespace ::drafts::com::sun::star; using ::rtl::OUString; using ::rtl::OUStringBuffer; namespace chart { LogarithmicRegressionCurveCalculator::LogarithmicRegressionCurveCalculator() : m_fSlope( 0.0 ), m_fIntercept( 0.0 ), m_fCorrelationCoeffitient( 0.0 ) { ::rtl::math::setNan( & m_fSlope ); ::rtl::math::setNan( & m_fIntercept ); ::rtl::math::setNan( & m_fCorrelationCoeffitient ); } LogarithmicRegressionCurveCalculator::~LogarithmicRegressionCurveCalculator() {} // ____ XRegressionCurve ____ void SAL_CALL LogarithmicRegressionCurveCalculator::recalculateRegression( const uno::Sequence< double >& aXValues, const uno::Sequence< double >& aYValues ) throw (uno::RuntimeException) { RegressionCalculationHelper::tDoubleVectorPair aValues( RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValidAndXPositive())); const size_t nMax = aValues.first.size(); if( nMax == 0 ) { ::rtl::math::setNan( & m_fSlope ); ::rtl::math::setNan( & m_fIntercept ); ::rtl::math::setNan( & m_fCorrelationCoeffitient ); return; } double fAverageX = 0.0, fAverageY = 0.0; for( size_t i = 0; i < nMax; ++i ) { fAverageX += log( aValues.first[i] ); fAverageY += aValues.second[i]; } const double fN = static_cast< double >( nMax ); fAverageX /= fN; fAverageY /= fN; double fQx = 0.0, fQy = 0.0, fQxy = 0.0; for( i = 0; i < nMax; ++i ) { double fDeltaX = log( aValues.first[i] ) - fAverageX; double fDeltaY = aValues.second[i] - fAverageY; fQx += fDeltaX * fDeltaX; fQy += fDeltaY * fDeltaY; fQxy += fDeltaX * fDeltaY; } m_fSlope = fQxy / fQx; m_fIntercept = fAverageY - m_fSlope * fAverageX; m_fCorrelationCoeffitient = fQxy / sqrt( fQx * fQy ); } double SAL_CALL LogarithmicRegressionCurveCalculator::getCurveValue( double x ) throw (lang::IllegalArgumentException, uno::RuntimeException) { double fResult; ::rtl::math::setNan( & fResult ); if( ! ( ::rtl::math::isNan( m_fSlope ) || ::rtl::math::isNan( m_fIntercept ))) { fResult = m_fSlope * log( x ) + m_fIntercept; } return fResult; } double SAL_CALL LogarithmicRegressionCurveCalculator::getCorrelationCoefficient() throw (uno::RuntimeException) { return m_fCorrelationCoeffitient; } OUString SAL_CALL LogarithmicRegressionCurveCalculator::getRepresentation() throw (uno::RuntimeException) { OUStringBuffer aBuf( C2U( "f(x) = " )); bool bHaveSlope = false; if( m_fSlope != 0.0 ) { aBuf.append( NUMBER_TO_STR( m_fSlope )); aBuf.append( sal_Unicode( ' ' )); aBuf.append( sal_Unicode( 0x00b7 )); aBuf.append( sal_Unicode( ' ' )); aBuf.appendAscii( RTL_CONSTASCII_STRINGPARAM( "log(x)" )); bHaveSlope = true; } if( m_fIntercept != 0.0 ) { if( ! bHaveSlope ) { aBuf.append( NUMBER_TO_STR( m_fIntercept )); } else { if( m_fIntercept < 0.0 ) { aBuf.appendAscii( RTL_CONSTASCII_STRINGPARAM( " - " )); aBuf.append( NUMBER_TO_STR( fabs( m_fIntercept ))); } else { aBuf.appendAscii( RTL_CONSTASCII_STRINGPARAM( " + " )); aBuf.append( NUMBER_TO_STR( m_fIntercept )); } } } return aBuf.makeStringAndClear(); } } // namespace chart