Files
libreoffice/tools/source/generic/fract.cxx
Michael Stahl d6c80f239e tools: check for data loss in WriteFraction
Currently it's only used in VCL's MapMode.

Change-Id: Ib8ce09fadc704bc4d592d333d4cf3bddc9185036
2015-05-19 11:54:05 +02:00

534 lines
14 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <tools/fract.hxx>
#include <tools/debug.hxx>
#include <tools/lineend.hxx>
#include <tools/stream.hxx>
#include <rtl/ustring.hxx>
#include <sal/log.hxx>
#include <osl/diagnose.h>
#include <limits.h>
#include <algorithm>
#include <cmath>
#include <boost/rational.hpp>
#include <boost/noncopyable.hpp>
template<typename T>
static boost::rational<T> rational_FromDouble(double dVal);
template<typename T>
static void rational_ReduceInaccurate(boost::rational<T>& rRational, unsigned nSignificantBits);
struct Fraction::Impl : boost::noncopyable
{
bool valid;
boost::rational<sal_Int64> value;
};
Fraction::Fraction() : mpImpl(new Impl)
{
mpImpl->valid = true;
}
Fraction::Fraction( const Fraction& rFrac ) : mpImpl(new Impl)
{
mpImpl->valid = rFrac.mpImpl->valid;
if (mpImpl->valid)
mpImpl->value.assign( rFrac.mpImpl->value.numerator(), rFrac.mpImpl->value.denominator() );
}
// Initialized by setting nNum as nominator and nDen as denominator
// Negative values in the denominator are invalid and cause the
// inversion of both nominator and denominator signs
// in order to return the correct value.
Fraction::Fraction( long nNum, long nDen ) : mpImpl(new Impl)
{
if ( nDen == 0 )
{
mpImpl->valid = false;
SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
return;
}
mpImpl->value.assign( nNum, nDen);
mpImpl->valid = true;
}
Fraction::Fraction( double dVal ) : mpImpl(new Impl)
{
try
{
mpImpl->value = rational_FromDouble<sal_Int64>( dVal );
if ( HasOverflowValue() )
throw boost::bad_rational();
mpImpl->valid = true;
}
catch (const boost::bad_rational&)
{
mpImpl->valid = false;
SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" );
}
}
Fraction::~Fraction()
{
delete mpImpl;
}
bool Fraction::HasOverflowValue()
{
//coverity[result_independent_of_operands]
return mpImpl->value.numerator() < std::numeric_limits<long>::min() ||
mpImpl->value.numerator() > std::numeric_limits<long>::max() ||
mpImpl->value.denominator() < std::numeric_limits<long>::min() ||
mpImpl->value.denominator() > std::numeric_limits<long>::max();
}
Fraction::operator double() const
{
if (!mpImpl->valid)
{
SAL_WARN( "tools.fraction", "'double()' on invalid fraction" );
return 0.0;
}
return boost::rational_cast<double>(mpImpl->value);
}
// This methods first validates both values.
// If one of the arguments is invalid, the whole operation is invalid.
// After computation detect if result overflows a long value
// which cause the operation to be marked as invalid
Fraction& Fraction::operator += ( const Fraction& rVal )
{
if ( !rVal.mpImpl->valid )
mpImpl->valid = false;
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" );
return *this;
}
mpImpl->value += rVal.mpImpl->value;
if ( HasOverflowValue() )
{
mpImpl->valid = false;
SAL_WARN( "tools.fraction", "'operator +=' detected overflow" );
}
return *this;
}
Fraction& Fraction::operator -= ( const Fraction& rVal )
{
if ( !rVal.mpImpl->valid )
mpImpl->valid = false;
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" );
return *this;
}
mpImpl->value -= rVal.mpImpl->value;
if ( HasOverflowValue() )
{
mpImpl->valid = false;
SAL_WARN( "tools.fraction", "'operator -=' detected overflow" );
}
return *this;
}
Fraction& Fraction::operator *= ( const Fraction& rVal )
{
if ( !rVal.mpImpl->valid )
mpImpl->valid = false;
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" );
return *this;
}
mpImpl->value *= rVal.mpImpl->value;
if ( HasOverflowValue() )
{
mpImpl->valid = false;
SAL_WARN( "tools.fraction", "'operator *=' detected overflow" );
}
return *this;
}
Fraction& Fraction::operator /= ( const Fraction& rVal )
{
if ( !rVal.mpImpl->valid )
mpImpl->valid = false;
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" );
return *this;
}
mpImpl->value /= rVal.mpImpl->value;
if ( HasOverflowValue() )
{
mpImpl->valid = false;
SAL_WARN( "tools.fraction", "'operator /=' detected overflow" );
}
return *this;
}
/** Inaccurate cancellation for a fraction.
Clip both nominator and denominator to said number of bits. If
either of those already have equal or less number of bits used,
this method does nothing.
@param nSignificantBits denotes, how many significant binary
digits to maintain, in both nominator and denominator.
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
largest error occurs with the following pair of values:
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
= 1082130431/1073741824
= approx. 1.007812499
A ReduceInaccurate(8) yields 1/1.
*/
void Fraction::ReduceInaccurate( unsigned nSignificantBits )
{
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" );
return;
}
if ( !mpImpl->value.numerator() )
return;
rational_ReduceInaccurate(mpImpl->value, nSignificantBits);
}
long Fraction::GetNumerator() const
{
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" );
return 0;
}
return mpImpl->value.numerator();
}
long Fraction::GetDenominator() const
{
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" );
return -1;
}
return mpImpl->value.denominator();
}
Fraction& Fraction::operator=( const Fraction& rFrac )
{
if (this == &rFrac)
return *this;
Fraction tmp(rFrac);
std::swap(mpImpl, tmp.mpImpl);
return *this;
}
bool Fraction::IsValid() const
{
return mpImpl->valid;
}
Fraction::operator long() const
{
if ( !mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator long()' on invalid fraction" );
return 0;
}
return boost::rational_cast<long>(mpImpl->value);
}
Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg += rVal2;
return aErg;
}
Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg -= rVal2;
return aErg;
}
Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg *= rVal2;
return aErg;
}
Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg /= rVal2;
return aErg;
}
bool operator !=( const Fraction& rVal1, const Fraction& rVal2 )
{
return !(rVal1 == rVal2);
}
bool operator <=( const Fraction& rVal1, const Fraction& rVal2 )
{
return !(rVal1 > rVal2);
}
bool operator >=( const Fraction& rVal1, const Fraction& rVal2 )
{
return !(rVal1 < rVal2);
}
bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" );
return false;
}
return rVal1.mpImpl->value == rVal2.mpImpl->value;
}
bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" );
return false;
}
return rVal1.mpImpl->value < rVal2.mpImpl->value;
}
bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" );
return false;
}
return rVal1.mpImpl->value > rVal2.mpImpl->value;
}
SvStream& ReadFraction( SvStream& rIStream, Fraction& rFract )
{
sal_Int32 num(0), den(0);
rIStream.ReadInt32( num );
rIStream.ReadInt32( den );
if ( den <= 0 )
{
SAL_WARN( "tools.fraction", "'ReadFraction()' read an invalid fraction" );
rFract.mpImpl->valid = false;
}
else
{
rFract.mpImpl->value.assign( num, den );
rFract.mpImpl->valid = true;
}
return rIStream;
}
SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract )
{
if ( !rFract.mpImpl->valid )
{
SAL_WARN( "tools.fraction", "'WriteFraction()' write an invalid fraction" );
rOStream.WriteInt32( 0 );
rOStream.WriteInt32( -1 );
} else {
#if OSL_DEBUG_LEVEL > 0
// can only write 32 bits - check that no data is lost!
boost::rational<sal_Int64> copy(rFract.mpImpl->value);
rational_ReduceInaccurate(copy, 32);
assert(copy == rFract.mpImpl->value && "data loss in WriteFraction!");
#endif
rOStream.WriteInt32( rFract.mpImpl->value.numerator() );
rOStream.WriteInt32( rFract.mpImpl->value.denominator() );
}
return rOStream;
}
// If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational.
// Otherwise, dVal and denominator are multiplied by 10, until one of them
// is larger than (LONG_MAX / 10).
//
// NOTE: here we use 'long' due that only values in long range are valid.
template<typename T>
static boost::rational<T> rational_FromDouble(double dVal)
{
if ( dVal > std::numeric_limits<long>::max() ||
dVal < std::numeric_limits<long>::min() )
throw boost::bad_rational();
const long nMAX = std::numeric_limits<long>::max() / 10;
long nDen = 1;
while ( std::abs( dVal ) < nMAX && nDen < nMAX ) {
dVal *= 10;
nDen *= 10;
}
return boost::rational<T>( long(dVal), nDen );
}
// Similar to clz_table that can be googled
const char nbits_table[32] =
{
32, 1, 23, 2, 29, 24, 14, 3,
30, 27, 25, 18, 20, 15, 10, 4,
31, 22, 28, 13, 26, 17, 19, 9,
21, 12, 16, 8, 11, 7, 6, 5
};
static int impl_NumberOfBits( unsigned long nNum )
{
// http://en.wikipedia.org/wiki/De_Bruijn_sequence
// background paper: Using de Bruijn Sequences to Index a 1 in a
// Computer Word (1998) Charles E. Leiserson,
// Harald Prokop, Keith H. Randall
// (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
const sal_uInt32 nDeBruijn = 0x7DCD629;
if ( nNum == 0 )
return 0;
// Get it to form like 0000001111111111b
nNum |= ( nNum >> 1 );
nNum |= ( nNum >> 2 );
nNum |= ( nNum >> 4 );
nNum |= ( nNum >> 8 );
nNum |= ( nNum >> 16 );
sal_uInt32 nNumber;
int nBonus = 0;
#if SAL_TYPES_SIZEOFLONG == 4
nNumber = nNum;
#elif SAL_TYPES_SIZEOFLONG == 8
nNum |= ( nNum >> 32 );
if ( nNum & 0x80000000 )
{
nNumber = sal_uInt32( nNum >> 32 );
nBonus = 32;
if ( nNumber == 0 )
return 32;
}
else
nNumber = sal_uInt32( nNum & 0xFFFFFFFF );
#else
#error "Unknown size of long!"
#endif
// De facto shift left of nDeBruijn using multiplication (nNumber
// is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
// nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
// zero, sets the next bit to one, and thus effectively shift-left
// nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
// sequence in the msb for each distinct position of the last
// leading 0 bit - that's the property of a de Bruijn number.
nNumber = nDeBruijn + ( nDeBruijn * nNumber );
// 5-bit window indexes the result
return ( nbits_table[nNumber >> 27] ) + nBonus;
}
/** Inaccurate cancellation for a fraction.
Clip both nominator and denominator to said number of bits. If
either of those already have equal or less number of bits used,
this method does nothing.
@param nSignificantBits denotes, how many significant binary
digits to maintain, in both nominator and denominator.
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
largest error occurs with the following pair of values:
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
= 1082130431/1073741824
= approx. 1.007812499
A ReduceInaccurate(8) yields 1/1.
*/
template<typename T>
static void rational_ReduceInaccurate(boost::rational<T>& rRational, unsigned nSignificantBits)
{
if ( !rRational )
return;
// http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation
const bool bNeg = ( rRational.numerator() < 0 );
T nMul = bNeg? -rRational.numerator(): rRational.numerator();
T nDiv = rRational.denominator();
DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
// How much bits can we lose?
const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
// Remove the bits
nMul >>= nToLose;
nDiv >>= nToLose;
if ( !nMul || !nDiv ) {
// Return without reduction
OSL_FAIL( "Oops, we reduced too much..." );
return;
}
rRational.assign( bNeg? -T( nMul ): T( nMul ), nDiv );
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */