Files
libreoffice/svx/source/svdraw/svdtouch.cxx
Jens-Heiner Rechtien fd069bee7e initial import
2000-09-18 16:07:07 +00:00

397 lines
13 KiB
C++

/*************************************************************************
*
* $RCSfile: svdtouch.cxx,v $
*
* $Revision: 1.1.1.1 $
*
* last change: $Author: hr $ $Date: 2000-09-18 17:01:26 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#include "svdtouch.hxx"
#include "xoutx.hxx"
#ifndef _BIGINT_HXX //autogen
#include <tools/bigint.hxx>
#endif
#ifndef _SV_POLY_HXX //autogen
#include <vcl/poly.hxx>
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
class ImpPolyHitCalc {
public:
long x1,x2,y1,y2; // Koordinaten des Rect, muessen sortiert sein!
FASTBOOL bEdge; // ein Punkt lag genau auf einer Kante
FASTBOOL bIntersect; // mind. 2 Punkte auf verschiedenen Seiten einer Kante
FASTBOOL bPntInRect; // mind. 1 Punkt war vollstaendig im Rect
USHORT nOCnt; // wenn Counter ungerade, dann getroffen
USHORT nUCnt; // wenn Counter ungerade, dann getroffen
USHORT nLCnt; // wenn Counter ungerade, dann getroffen
USHORT nRCnt; // wenn Counter ungerade, dann getroffen
FASTBOOL bLine; // TRUE=PolyLine, kein Polygon
public:
ImpPolyHitCalc(const Rectangle& aR, FASTBOOL bIsLine=FALSE)
{
bLine=bIsLine;
bEdge=FALSE;
bIntersect=FALSE;
bPntInRect=FALSE;
x1=aR.Left();
x2=aR.Right();
y1=aR.Top();
y2=aR.Bottom();
nOCnt=0;
nUCnt=0;
nLCnt=0;
nRCnt=0;
}
FASTBOOL IsDecided() { return bEdge || bIntersect || bPntInRect; }
void CheckPntInRect(const Point& rP)
{
if (!bPntInRect) {
bPntInRect=rP.X()>=x1 && rP.X()<=x2 && rP.Y()>=y1 && rP.Y()<=y2;
}
}
FASTBOOL IsHit() { return (!bLine && (nOCnt & 1)==1) || IsDecided(); }
};
#define CAREFUL_MULDIV(Res,Val,Mul,Div) { \
if (Abs(Val)>0xB504 || Abs(Mul)>0xB504) { \
BigInt aBigTemp(Val); \
aBigTemp*=Mul; \
aBigTemp/=Div; \
Res=long(aBigTemp); \
} else { \
Res=Val*Mul/Div; \
} \
}
void ImpCheckIt(ImpPolyHitCalc& rH, long lx1, long ly1, long lx2, long ly2,
long rx1, long ry1, long rx2, long ry2, USHORT& nOCnt, USHORT& nUCnt)
{
if ((ly1>ly2) || ((ly1==ly2) && (lx1>lx2))) {
long nTmp; // die 2 Punkte nach Y sortieren
nTmp=lx1;
lx1=lx2;
lx2=nTmp;
nTmp=ly1;
ly1=ly2;
ly2=nTmp;
}
FASTBOOL b1=FALSE,b2=FALSE,b3=FALSE,b4=FALSE; // je 1 Flag fuer jeden der 4 Punkte LO,RO,LU,RU
FASTBOOL bx1,bx2;
FASTBOOL by1=ly1<=ry1 && ly2>ry1;
FASTBOOL by2=ly1<=ry2 && ly2>ry2;
long dx,dy,a;
if (by1 || by2) {
dx=lx2-lx1;
dy=ly2-ly1;
}
if (by1) { // Nur wer die Scanline schneidet
bx1=lx1<rx1; // x1,y1
bx2=lx2<rx1;
FASTBOOL bA=FALSE; // Optimierung: ggf eine Division sparen
if (bx1 && bx2) b1=TRUE;
else if (bx1 || bx2) {
long yTemp=ry1-ly1;
CAREFUL_MULDIV(a,dx,yTemp,dy); // a=dx*yTemp/dy;
a+=lx1;
bA=TRUE;
rH.bEdge=(a==rx1);
if (a<rx1) b1=TRUE;
} // x2,y1
bx1=lx1<rx2;
bx2=lx2<rx2;
if (bx1 && bx2) b2=TRUE;
else if (bx1 || bx2) {
if (!bA) {
long yTemp=ry1-ly1;
CAREFUL_MULDIV(a,dx,yTemp,dy);
a+=lx1;
}
rH.bEdge=(a==rx2);
if (a<rx2) b2=TRUE;
}
}
if (by2) { // Nur wer die Scanline schneidet
bx1=lx1<rx1; // x1,y2
bx2=lx2<rx1;
FASTBOOL bA=FALSE; // Optimierung: ggf eine Division sparen
if (bx1 && bx2) b3=TRUE;
else if (bx1 || bx2) {
long yTemp=ry2-ly1;
CAREFUL_MULDIV(a,dx,yTemp,dy);
a+=lx1;
bA=TRUE;
rH.bEdge=(a==rx1);
if (a<rx1) b3=TRUE;
}
bx1=lx1<rx2; // x2,y2
bx2=lx2<rx2;
if (bx1 && bx2) b4=TRUE;
else if (bx1 || bx2) {
if (!bA) {
long yTemp=ry2-ly1;
CAREFUL_MULDIV(a,dx,yTemp,dy);
a+=lx1;
}
rH.bEdge=(a==rx2);
if (a<rx2) b4=TRUE;
}
}
if (by1 || by2) { // nun die Ergebnisse auswerten
if (by1 && by2) { // Linie durch beide Scanlines
if (b1 && b2 && b3 && b4) { nOCnt++; nUCnt++; } // Rect komplett rechts neben der Linie
else if (b1 || b2 || b3 || b4) rH.bIntersect=TRUE; // Nur zum Teil->Schnittpunkt
} else { // ansonsten Ober- und Unterkante des Rects getrennt betrachten
if (by1) { // Linie durch Oberkante
if (b1 && b2) nOCnt++; // Oberkante komplett rechts neben der Linie
else if (b1 || b2) rH.bIntersect=TRUE; // Nur zum Teil->Schnittpunkt
}
if (by2) { // Linie durch Unterkante
if (b3 && b4) nUCnt++; // Unterkante komplett rechts neben der Linie
else if (b3 || b4) rH.bIntersect=TRUE; // Nur zum Teil->Schnittpunkt
}
}
}
}
void CheckPolyHit(const Polygon& rPoly, ImpPolyHitCalc& rH)
{
USHORT nAnz=rPoly.GetSize();
if (nAnz==0) return;
if (nAnz==1) { rH.CheckPntInRect(rPoly[0]); return; }
Point aPt0=rPoly[USHORT(nAnz-1)];
rH.CheckPntInRect(aPt0);
USHORT i=0;
if (rH.bLine) {
aPt0=rPoly[0];
i++;
}
for (; i<nAnz && !rH.IsDecided(); i++) {
Point aP1(aPt0);
Point aP2(rPoly[i]);
rH.CheckPntInRect(aP2);
if (!rH.IsDecided()) {
ImpCheckIt(rH,aP1.X(),aP1.Y(),aP2.X(),aP2.Y(),rH.x1,rH.y1,rH.x2,rH.y2,rH.nOCnt,rH.nUCnt);
ImpCheckIt(rH,aP1.Y(),aP1.X(),aP2.Y(),aP2.X(),rH.y1,rH.x1,rH.y2,rH.x2,rH.nLCnt,rH.nRCnt);
}
aPt0=rPoly[i];
}
if (!rH.bLine) { // Sicherheitshalber nochmal checken
if ((rH.nOCnt&1)!=(rH.nUCnt&1)) rH.bIntersect=TRUE; // da wird wohl eine durchgegangen sein
if ((rH.nLCnt&1)!=(rH.nRCnt&1)) rH.bIntersect=TRUE; // da wird wohl eine durchgegangen sein
if ((rH.nOCnt&1)!=(rH.nLCnt&1)) rH.bIntersect=TRUE; // da wird wohl eine durchgegangen sein
}
}
FASTBOOL IsRectTouchesPoly(const Polygon& rPoly, const Rectangle& rHit)
{
ImpPolyHitCalc aHit(rHit);
CheckPolyHit(rPoly,aHit);
return aHit.IsHit();
}
FASTBOOL IsRectTouchesPoly(const PolyPolygon& rPoly, const Rectangle& rHit)
{
ImpPolyHitCalc aHit(rHit);
USHORT nAnz=rPoly.Count();
for (USHORT i=0; i<nAnz && !aHit.IsDecided(); i++) {
CheckPolyHit(rPoly.GetObject(i),aHit);
}
return aHit.IsHit();
}
FASTBOOL IsRectTouchesPoly(const XPolygon& rPoly, const Rectangle& rHit, OutputDevice* pOut)
{
return IsRectTouchesPoly(XOutCreatePolygon(rPoly,pOut),rHit);
}
FASTBOOL IsRectTouchesPoly(const XPolyPolygon& rPoly, const Rectangle& rHit, OutputDevice* pOut)
{
ImpPolyHitCalc aHit(rHit);
USHORT nAnz=rPoly.Count();
for (USHORT i=0; i<nAnz && !aHit.IsDecided(); i++) {
CheckPolyHit(XOutCreatePolygon(rPoly[i],pOut),aHit);
}
return aHit.IsHit();
}
FASTBOOL IsRectTouchesLine(const Point& rPt1, const Point& rPt2, const Rectangle& rHit)
{
Polygon aPol(2);
aPol[0]=rPt1;
aPol[1]=rPt2;
ImpPolyHitCalc aHit(rHit,TRUE);
CheckPolyHit(aPol,aHit);
return aHit.IsHit();
}
FASTBOOL IsRectTouchesLine(const Polygon& rLine, const Rectangle& rHit)
{
ImpPolyHitCalc aHit(rHit,TRUE);
CheckPolyHit(rLine,aHit);
return aHit.IsHit();
}
FASTBOOL IsRectTouchesLine(const PolyPolygon& rLine, const Rectangle& rHit)
{
ImpPolyHitCalc aHit(rHit,TRUE);
USHORT nAnz=rLine.Count();
for (USHORT nNum=0; nNum<nAnz && !aHit.IsHit(); nNum++) {
CheckPolyHit(rLine[nNum],aHit);
}
return aHit.IsHit();
}
FASTBOOL IsRectTouchesLine(const XPolygon& rLine, const Rectangle& rHit, OutputDevice* pOut)
{
return IsRectTouchesLine(XOutCreatePolygon(rLine,pOut),rHit);
}
FASTBOOL IsRectTouchesLine(const XPolyPolygon& rLine, const Rectangle& rHit, OutputDevice* pOut)
{
ImpPolyHitCalc aHit(rHit,TRUE);
USHORT nAnz=rLine.Count();
for (USHORT nNum=0; nNum<nAnz && !aHit.IsHit(); nNum++) {
CheckPolyHit(XOutCreatePolygon(rLine[nNum],pOut),aHit);
}
return aHit.IsHit();
}
BYTE CheckPointTouchesPoly(const Polygon& rPoly, const Point& rHit) // 0=Ausserhalb, 1=Innerhalb, 2=Beruehrung
{
USHORT nAnz=rPoly.GetSize();
if (nAnz<2) return FALSE;
FASTBOOL bEdge=FALSE;
USHORT nCnt=0;
Point aPt0=rPoly[USHORT(nAnz-1)];
for (USHORT i=0; i<nAnz && !bEdge; i++) {
Point aP1(rPoly[i]);
Point aP2(aPt0);
if ((aP1.Y()>aP2.Y()) || ((aP1.Y()==aP2.Y()) && (aP1.X()>aP2.X()))) { Point aTmp(aP1); aP1=aP2; aP2=aTmp; }
bEdge=((aP1.X()==aP2.X()) && (rHit.X()==aP1.X()) && (rHit.Y()>=aP1.Y()) && (rHit.Y()<=aP2.Y())) ||
((aP1.Y()==aP2.Y()) && (rHit.Y()==aP1.Y()) && (rHit.X()>=aP1.X()) && (rHit.X()<=aP2.X())) ||
(rHit.X()==aP1.X()) && (rHit.Y()==aP1.Y());
if (!bEdge && aP1.Y()<=rHit.Y() && aP2.Y()>rHit.Y()) { // Nur wer die Scanline schneidet
FASTBOOL bx1=aP1.X()<rHit.X();
FASTBOOL bx2=aP2.X()<rHit.X();
if (bx1 && bx2) nCnt++;
else if (bx1 || bx2) {
long dx=aP2.X()-aP1.X();
long dy=aP2.Y()-aP1.Y();
long yTemp=rHit.Y()-aP1.Y();
long xTemp;
if (Abs(dx)>0xB504 || Abs(yTemp)>0xB504) { // gegen Integerueberlaeufe
BigInt aBigTemp(dx);
aBigTemp*=yTemp;
aBigTemp/=dy;
xTemp=long(aBigTemp);
} else {
xTemp=dx*yTemp /dy;
}
xTemp+=aP1.X();
bEdge=(xTemp==rHit.X());
if (xTemp<rHit.X()) nCnt++;
}
}
aPt0=rPoly[i];
}
if (bEdge) return 2;
return (nCnt & 1)==1;
}
FASTBOOL IsPointInsidePoly(const Polygon& rPoly, const Point& rHit)
{
return CheckPointTouchesPoly(rPoly,rHit)!=0;
}
FASTBOOL IsPointInsidePoly(const PolyPolygon& rPoly, const Point& rHit)
{
FASTBOOL bInside=FALSE;
FASTBOOL bEdge=FALSE;
USHORT nAnz=rPoly.Count();
for (USHORT i=0; i<nAnz && !bEdge; i++) {
BYTE n=CheckPointTouchesPoly(rPoly.GetObject(i),rHit);
bEdge=n==2;
if (n==1) bInside=!bInside;
}
return bInside || bEdge;
}
FASTBOOL IsPointInsidePoly(const XPolygon& rPoly, const Point& rHit, OutputDevice* pOut)
{
return IsPointInsidePoly(XOutCreatePolygon(rPoly,pOut),rHit);
}
FASTBOOL IsPointInsidePoly(const XPolyPolygon& rPoly, const Point& rHit, OutputDevice* pOut)
{
FASTBOOL bInside=FALSE;
FASTBOOL bEdge=FALSE;
USHORT nAnz=rPoly.Count();
for (USHORT i=0; i<nAnz && !bEdge; i++) {
BYTE n=CheckPointTouchesPoly(XOutCreatePolygon(rPoly[i],pOut),rHit);
bEdge=n==2;
if (n==1) bInside=!bInside;
}
return bInside || bEdge;
}
////////////////////////////////////////////////////////////////////////////////////////////////////