Files
libreoffice/sc/source/core/tool/interpr1.cxx
Kohei Yoshida 10ccf6acde Reduce the number of arguments. The first argument can go now.
Change-Id: Id2b9ca7b6e24edc0da4735c01798ab580fba910d
2013-10-18 23:22:42 -04:00

8396 lines
264 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "interpre.hxx"
#include "scitems.hxx"
#include <editeng/langitem.hxx>
#include <editeng/justifyitem.hxx>
#include <svx/algitem.hxx>
#include <unotools/textsearch.hxx>
#include <svl/zforlist.hxx>
#include <svl/zformat.hxx>
#include <tools/urlobj.hxx>
#include <unotools/charclass.hxx>
#include <sfx2/docfile.hxx>
#include <sfx2/printer.hxx>
#include <unotools/collatorwrapper.hxx>
#include <unotools/transliterationwrapper.hxx>
#include <rtl/ustring.hxx>
#include <unicode/uchar.h>
#include "patattr.hxx"
#include "global.hxx"
#include "document.hxx"
#include "dociter.hxx"
#include "formulacell.hxx"
#include "scmatrix.hxx"
#include "docoptio.hxx"
#include "globstr.hrc"
#include "attrib.hxx"
#include "jumpmatrix.hxx"
#include "random.hxx"
#include "cellkeytranslator.hxx"
#include "lookupcache.hxx"
#include "rangenam.hxx"
#include "rangeutl.hxx"
#include "compiler.hxx"
#include "externalrefmgr.hxx"
#include <basic/sbstar.hxx>
#include "doubleref.hxx"
#include "queryparam.hxx"
#include "queryentry.hxx"
#include "tokenarray.hxx"
#include "compare.hxx"
#include <comphelper/processfactory.hxx>
#include <comphelper/string.hxx>
#include "svl/sharedstringpool.hxx"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <vector>
#include <memory>
#include <limits>
static const sal_uInt64 n2power48 = SAL_CONST_UINT64( 281474976710656); // 2^48
IMPL_FIXEDMEMPOOL_NEWDEL( ScTokenStack )
IMPL_FIXEDMEMPOOL_NEWDEL( ScInterpreter )
ScCalcConfig ScInterpreter::maGlobalConfig;
ScTokenStack* ScInterpreter::pGlobalStack = NULL;
bool ScInterpreter::bGlobalStackInUse = false;
using namespace formula;
using ::std::auto_ptr;
void ScInterpreter::ScIfJump()
{
const short* pJump = pCur->GetJump();
short nJumpCount = pJump[ 0 ];
MatrixDoubleRefToMatrix();
switch ( GetStackType() )
{
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( !pMat )
PushIllegalParameter();
else
{
FormulaTokenRef xNew;
ScTokenMatrixMap::const_iterator aMapIter;
// DoubleError handled by JumpMatrix
pMat->SetErrorInterpreter( NULL);
SCSIZE nCols, nRows;
pMat->GetDimensions( nCols, nRows );
if ( nCols == 0 || nRows == 0 )
{
PushIllegalArgument();
return;
}
else if (pTokenMatrixMap && ((aMapIter = pTokenMatrixMap->find(
pCur)) != pTokenMatrixMap->end()))
xNew = (*aMapIter).second;
else
{
ScJumpMatrix* pJumpMat = new ScJumpMatrix( nCols, nRows );
for ( SCSIZE nC=0; nC < nCols; ++nC )
{
for ( SCSIZE nR=0; nR < nRows; ++nR )
{
double fVal;
bool bTrue;
bool bIsValue = pMat->IsValue(nC, nR);
if (bIsValue)
{
fVal = pMat->GetDouble(nC, nR);
bIsValue = ::rtl::math::isFinite(fVal);
bTrue = bIsValue && (fVal != 0.0);
if (bTrue)
fVal = 1.0;
}
else
{
// Treat empty and empty path as 0, but string
// as error.
bIsValue = (!pMat->IsString(nC, nR) || pMat->IsEmpty(nC, nR));
bTrue = false;
fVal = (bIsValue ? 0.0 : CreateDoubleError( errNoValue));
}
if ( bTrue )
{ // TRUE
if( nJumpCount >= 2 )
{ // THEN path
pJumpMat->SetJump( nC, nR, fVal,
pJump[ 1 ],
pJump[ nJumpCount ]);
}
else
{ // no parameter given for THEN
pJumpMat->SetJump( nC, nR, fVal,
pJump[ nJumpCount ],
pJump[ nJumpCount ]);
}
}
else
{ // FALSE
if( nJumpCount == 3 && bIsValue )
{ // ELSE path
pJumpMat->SetJump( nC, nR, fVal,
pJump[ 2 ],
pJump[ nJumpCount ]);
}
else
{ // no parameter given for ELSE,
// or DoubleError
pJumpMat->SetJump( nC, nR, fVal,
pJump[ nJumpCount ],
pJump[ nJumpCount ]);
}
}
}
}
xNew = new ScJumpMatrixToken( pJumpMat );
GetTokenMatrixMap().insert( ScTokenMatrixMap::value_type(pCur, xNew));
}
PushTempToken( xNew.get());
// set endpoint of path for main code line
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
}
}
break;
default:
{
if ( GetBool() )
{ // TRUE
if( nJumpCount >= 2 )
{ // THEN path
aCode.Jump( pJump[ 1 ], pJump[ nJumpCount ] );
}
else
{ // no parameter given for THEN
nFuncFmtType = NUMBERFORMAT_LOGICAL;
PushInt(1);
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
}
}
else
{ // FALSE
if( nJumpCount == 3 )
{ // ELSE path
aCode.Jump( pJump[ 2 ], pJump[ nJumpCount ] );
}
else
{ // no parameter given for ELSE
nFuncFmtType = NUMBERFORMAT_LOGICAL;
PushInt(0);
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
}
}
}
}
}
/** Store a matrix value in another matrix in the context of that other matrix
is the result matrix of a jump matrix. All arguments must be valid and are
not checked. */
static void lcl_storeJumpMatResult(
const ScMatrix* pMat, ScMatrix* pResMat, SCSIZE nC, SCSIZE nR )
{
if ( pMat->IsValue( nC, nR ) )
{
double fVal = pMat->GetDouble( nC, nR );
pResMat->PutDouble( fVal, nC, nR );
}
else if ( pMat->IsEmpty( nC, nR ) )
{
pResMat->PutEmpty( nC, nR );
}
else
{
pResMat->PutString(pMat->GetString(nC, nR), nC, nR);
}
}
void ScInterpreter::ScIfError( bool bNAonly )
{
const short* pJump = pCur->GetJump();
short nJumpCount = pJump[ 0 ];
if (!sp)
{
PushError( errUnknownStackVariable);
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
return;
}
FormulaTokenRef xToken( pStack[ sp - 1 ] );
bool bError = false;
sal_uInt16 nOldGlobalError = nGlobalError;
nGlobalError = 0;
MatrixDoubleRefToMatrix();
switch (GetStackType())
{
default:
Pop();
break;
case svError:
PopError();
bError = true;
break;
case svDoubleRef:
case svSingleRef:
{
ScAddress aAdr;
if (!PopDoubleRefOrSingleRef( aAdr))
bError = true;
else
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
nGlobalError = GetCellErrCode(aCell);
if (nGlobalError)
bError = true;
}
}
break;
case svExternalSingleRef:
case svExternalDoubleRef:
{
double fVal;
svl::SharedString aStr;
// Handles also existing jump matrix case and sets error on
// elements.
GetDoubleOrStringFromMatrix( fVal, aStr);
if (nGlobalError)
bError = true;
}
break;
case svMatrix:
{
const ScMatrixRef pMat = PopMatrix();
if (!pMat || (nGlobalError && (!bNAonly || nGlobalError == NOTAVAILABLE)))
{
bError = true;
break; // switch
}
// If the matrix has no queried error at all we can simply use
// it as result and don't need to bother with jump matrix.
SCSIZE nErrorCol = ::std::numeric_limits<SCSIZE>::max(),
nErrorRow = ::std::numeric_limits<SCSIZE>::max();
SCSIZE nCols, nRows;
pMat->GetDimensions( nCols, nRows );
if (nCols == 0 || nRows == 0)
{
bError = true;
break; // switch
}
for (SCSIZE nC=0; nC < nCols && !bError; ++nC)
{
for (SCSIZE nR=0; nR < nRows && !bError; ++nR)
{
sal_uInt16 nErr = pMat->GetError( nC, nR );
if (nErr && (!bNAonly || nErr == NOTAVAILABLE))
{
bError = true;
nErrorCol = nC;
nErrorRow = nR;
}
}
}
if (!bError)
break; // switch, we're done and have the result
FormulaTokenRef xNew;
ScTokenMatrixMap::const_iterator aMapIter;
if (pTokenMatrixMap && ((aMapIter = pTokenMatrixMap->find( pCur)) != pTokenMatrixMap->end()))
{
xNew = (*aMapIter).second;
}
else
{
const ScMatrix* pMatPtr = pMat.get();
ScJumpMatrix* pJumpMat = new ScJumpMatrix( nCols, nRows );
ScMatrix* pResMatPtr = pJumpMat->GetResultMatrix();
// Init all jumps to no error to save single calls. Error
// is the exceptional condition.
const double fFlagResult = CreateDoubleError( errJumpMatHasResult);
pJumpMat->SetAllJumps( fFlagResult, pJump[ nJumpCount ], pJump[ nJumpCount ] );
// Up to first error position simply store results, no need
// to evaluate error conditions again.
SCSIZE nC = 0, nR = 0;
for ( ; nC < nCols && (nC != nErrorCol || nR != nErrorRow); /*nop*/ )
{
for ( ; nR < nRows && (nC != nErrorCol || nR != nErrorRow); ++nR)
{
lcl_storeJumpMatResult(pMatPtr, pResMatPtr, nC, nR);
}
if (nC != nErrorCol || nR != nErrorRow)
++nC;
}
// Now the mixed cases.
for ( ; nC < nCols; ++nC)
{
for ( ; nR < nRows; ++nR)
{
sal_uInt16 nErr = pMat->GetError( nC, nR );
if (nErr && (!bNAonly || nErr == NOTAVAILABLE))
{ // TRUE, THEN path
pJumpMat->SetJump( nC, nR, 1.0, pJump[ 1 ], pJump[ nJumpCount ] );
}
else
{ // FALSE, EMPTY path, store result instead
lcl_storeJumpMatResult(pMatPtr, pResMatPtr, nC, nR);
}
}
}
xNew = new ScJumpMatrixToken( pJumpMat );
GetTokenMatrixMap().insert( ScTokenMatrixMap::value_type( pCur, xNew ));
}
nGlobalError = nOldGlobalError;
PushTempToken( xNew.get() );
// set endpoint of path for main code line
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
return;
}
break;
}
if (bError && (!bNAonly || nGlobalError == NOTAVAILABLE))
{
// error, calculate 2nd argument
nGlobalError = 0;
aCode.Jump( pJump[ 1 ], pJump[ nJumpCount ] );
}
else
{
// no error, push 1st argument and continue
nGlobalError = nOldGlobalError;
PushTempToken( xToken.get());
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
}
}
void ScInterpreter::ScChoseJump()
{
// We have to set a jump, if there was none chosen because of an error set
// it to endpoint.
bool bHaveJump = false;
const short* pJump = pCur->GetJump();
short nJumpCount = pJump[ 0 ];
MatrixDoubleRefToMatrix();
switch ( GetStackType() )
{
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( !pMat )
PushIllegalParameter();
else
{
FormulaTokenRef xNew;
ScTokenMatrixMap::const_iterator aMapIter;
// DoubleError handled by JumpMatrix
pMat->SetErrorInterpreter( NULL);
SCSIZE nCols, nRows;
pMat->GetDimensions( nCols, nRows );
if ( nCols == 0 || nRows == 0 )
PushIllegalParameter();
else if (pTokenMatrixMap && ((aMapIter = pTokenMatrixMap->find(
pCur)) != pTokenMatrixMap->end()))
xNew = (*aMapIter).second;
else
{
ScJumpMatrix* pJumpMat = new ScJumpMatrix( nCols, nRows );
for ( SCSIZE nC=0; nC < nCols; ++nC )
{
for ( SCSIZE nR=0; nR < nRows; ++nR )
{
double fVal;
bool bIsValue = pMat->IsValue(nC, nR);
if ( bIsValue )
{
fVal = pMat->GetDouble(nC, nR);
bIsValue = ::rtl::math::isFinite( fVal );
if ( bIsValue )
{
fVal = ::rtl::math::approxFloor( fVal);
if ( (fVal < 1) || (fVal >= nJumpCount))
{
bIsValue = false;
fVal = CreateDoubleError(
errIllegalArgument);
}
}
}
else
{
fVal = CreateDoubleError( errNoValue);
}
if ( bIsValue )
{
pJumpMat->SetJump( nC, nR, fVal,
pJump[ (short)fVal ],
pJump[ nJumpCount ]);
}
else
{
pJumpMat->SetJump( nC, nR, fVal,
pJump[ nJumpCount ],
pJump[ nJumpCount ]);
}
}
}
xNew = new ScJumpMatrixToken( pJumpMat );
GetTokenMatrixMap().insert( ScTokenMatrixMap::value_type(
pCur, xNew));
}
PushTempToken( xNew.get());
// set endpoint of path for main code line
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
bHaveJump = true;
}
}
break;
default:
{
double nJumpIndex = ::rtl::math::approxFloor( GetDouble() );
if (!nGlobalError && (nJumpIndex >= 1) && (nJumpIndex < nJumpCount))
{
aCode.Jump( pJump[ (short) nJumpIndex ], pJump[ nJumpCount ] );
bHaveJump = true;
}
else
PushIllegalArgument();
}
}
if (!bHaveJump)
aCode.Jump( pJump[ nJumpCount ], pJump[ nJumpCount ] );
}
static void lcl_AdjustJumpMatrix( ScJumpMatrix* pJumpM, ScMatrixRef& pResMat, SCSIZE nParmCols, SCSIZE nParmRows )
{
SCSIZE nJumpCols, nJumpRows;
SCSIZE nResCols, nResRows;
SCSIZE nAdjustCols, nAdjustRows;
pJumpM->GetDimensions( nJumpCols, nJumpRows );
pJumpM->GetResMatDimensions( nResCols, nResRows );
if (( nJumpCols == 1 && nParmCols > nResCols ) ||
( nJumpRows == 1 && nParmRows > nResRows ))
{
if ( nJumpCols == 1 && nJumpRows == 1 )
{
nAdjustCols = nParmCols > nResCols ? nParmCols : nResCols;
nAdjustRows = nParmRows > nResRows ? nParmRows : nResRows;
}
else if ( nJumpCols == 1 )
{
nAdjustCols = nParmCols;
nAdjustRows = nResRows;
}
else
{
nAdjustCols = nResCols;
nAdjustRows = nParmRows;
}
pJumpM->SetNewResMat( nAdjustCols, nAdjustRows );
pResMat = pJumpM->GetResultMatrix();
}
}
bool ScInterpreter::JumpMatrix( short nStackLevel )
{
pJumpMatrix = static_cast<ScToken*>(pStack[sp-nStackLevel])->GetJumpMatrix();
ScMatrixRef pResMat = pJumpMatrix->GetResultMatrix();
SCSIZE nC, nR;
if ( nStackLevel == 2 )
{
if ( aCode.HasStacked() )
aCode.Pop(); // pop what Jump() pushed
else
{
OSL_FAIL( "ScInterpreter::JumpMatrix: pop goes the weasel" );
}
if ( !pResMat )
{
Pop();
SetError( errUnknownStackVariable );
}
else
{
pJumpMatrix->GetPos( nC, nR );
switch ( GetStackType() )
{
case svDouble:
{
double fVal = GetDouble();
if ( nGlobalError )
{
fVal = CreateDoubleError( nGlobalError );
nGlobalError = 0;
}
pResMat->PutDouble( fVal, nC, nR );
}
break;
case svString:
{
svl::SharedString aStr = GetString();
if ( nGlobalError )
{
pResMat->PutDouble( CreateDoubleError( nGlobalError),
nC, nR);
nGlobalError = 0;
}
else
pResMat->PutString(aStr, nC, nR);
}
break;
case svSingleRef:
{
ScAddress aAdr;
PopSingleRef( aAdr );
if ( nGlobalError )
{
pResMat->PutDouble( CreateDoubleError( nGlobalError),
nC, nR);
nGlobalError = 0;
}
else
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasEmptyValue())
pResMat->PutEmpty( nC, nR );
else if (aCell.hasNumeric())
{
double fVal = GetCellValue(aAdr, aCell);
if ( nGlobalError )
{
fVal = CreateDoubleError(
nGlobalError);
nGlobalError = 0;
}
pResMat->PutDouble( fVal, nC, nR );
}
else
{
svl::SharedString aStr;
GetCellString(aStr, aCell);
if ( nGlobalError )
{
pResMat->PutDouble( CreateDoubleError(
nGlobalError), nC, nR);
nGlobalError = 0;
}
else
pResMat->PutString(aStr, nC, nR);
}
}
}
break;
case svDoubleRef:
{ // upper left plus offset within matrix
double fVal;
ScRange aRange;
PopDoubleRef( aRange );
if ( nGlobalError )
{
fVal = CreateDoubleError( nGlobalError );
nGlobalError = 0;
pResMat->PutDouble( fVal, nC, nR );
}
else
{
// Do not modify the original range because we use it
// to adjust the size of the result matrix if necessary.
ScAddress aAdr( aRange.aStart);
sal_uLong nCol = (sal_uLong)aAdr.Col() + nC;
sal_uLong nRow = (sal_uLong)aAdr.Row() + nR;
if ((nCol > static_cast<sal_uLong>(aRange.aEnd.Col()) &&
aRange.aEnd.Col() != aRange.aStart.Col())
|| (nRow > static_cast<sal_uLong>(aRange.aEnd.Row()) &&
aRange.aEnd.Row() != aRange.aStart.Row()))
{
fVal = CreateDoubleError( NOTAVAILABLE );
pResMat->PutDouble( fVal, nC, nR );
}
else
{
// Replicate column and/or row of a vector if it is
// one. Note that this could be a range reference
// that in fact consists of only one cell, e.g. A1:A1
if (aRange.aEnd.Col() == aRange.aStart.Col())
nCol = aRange.aStart.Col();
if (aRange.aEnd.Row() == aRange.aStart.Row())
nRow = aRange.aStart.Row();
aAdr.SetCol( static_cast<SCCOL>(nCol) );
aAdr.SetRow( static_cast<SCROW>(nRow) );
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasEmptyValue())
pResMat->PutEmpty( nC, nR );
else if (aCell.hasNumeric())
{
double fCellVal = GetCellValue(aAdr, aCell);
if ( nGlobalError )
{
fCellVal = CreateDoubleError(
nGlobalError);
nGlobalError = 0;
}
pResMat->PutDouble( fCellVal, nC, nR );
}
else
{
svl::SharedString aStr;
GetCellString(aStr, aCell);
if ( nGlobalError )
{
pResMat->PutDouble( CreateDoubleError(
nGlobalError), nC, nR);
nGlobalError = 0;
}
else
pResMat->PutString(aStr, nC, nR);
}
}
SCSIZE nParmCols = aRange.aEnd.Col() - aRange.aStart.Col() + 1;
SCSIZE nParmRows = aRange.aEnd.Row() - aRange.aStart.Row() + 1;
lcl_AdjustJumpMatrix( pJumpMatrix, pResMat, nParmCols, nParmRows );
}
}
break;
case svMatrix:
{ // match matrix offsets
double fVal;
ScMatrixRef pMat = PopMatrix();
if ( nGlobalError )
{
fVal = CreateDoubleError( nGlobalError );
nGlobalError = 0;
pResMat->PutDouble( fVal, nC, nR );
}
else if ( !pMat )
{
fVal = CreateDoubleError( errUnknownVariable );
pResMat->PutDouble( fVal, nC, nR );
}
else
{
SCSIZE nCols, nRows;
pMat->GetDimensions( nCols, nRows );
if ((nCols <= nC && nCols != 1) ||
(nRows <= nR && nRows != 1))
{
fVal = CreateDoubleError( NOTAVAILABLE );
pResMat->PutDouble( fVal, nC, nR );
}
else
{
lcl_storeJumpMatResult(pMat.get(), pResMat.get(), nC, nR);
}
lcl_AdjustJumpMatrix( pJumpMatrix, pResMat, nCols, nRows );
}
}
break;
case svError:
{
PopError();
double fVal = CreateDoubleError( nGlobalError);
nGlobalError = 0;
pResMat->PutDouble( fVal, nC, nR );
}
break;
default:
{
Pop();
double fVal = CreateDoubleError( errIllegalArgument);
pResMat->PutDouble( fVal, nC, nR );
}
}
}
}
bool bCont = pJumpMatrix->Next( nC, nR );
if ( bCont )
{
double fBool;
short nStart, nNext, nStop;
pJumpMatrix->GetJump( nC, nR, fBool, nStart, nNext, nStop );
while ( bCont && nStart == nNext )
{ // push all results that have no jump path
if ( pResMat && (GetDoubleErrorValue( fBool) != errJumpMatHasResult) )
{
// a false without path results in an empty path value
if ( fBool == 0.0 )
pResMat->PutEmptyPath( nC, nR );
else
pResMat->PutDouble( fBool, nC, nR );
}
bCont = pJumpMatrix->Next( nC, nR );
if ( bCont )
pJumpMatrix->GetJump( nC, nR, fBool, nStart, nNext, nStop );
}
if ( bCont && nStart != nNext )
{
const ScTokenVec* pParams = pJumpMatrix->GetJumpParameters();
if ( pParams )
{
for ( ScTokenVec::const_iterator i = pParams->begin();
i != pParams->end(); ++i )
{
// This is not the current state of the interpreter, so
// push without error, and elements' errors are coded into
// double.
PushWithoutError( *(*i));
}
}
aCode.Jump( nStart, nNext, nStop );
}
}
if ( !bCont )
{ // we're done with it, throw away jump matrix, keep result
pJumpMatrix = NULL;
Pop();
PushMatrix( pResMat );
// Remove jump matrix from map and remember result matrix in case it
// could be reused in another path of the same condition.
if (pTokenMatrixMap)
{
pTokenMatrixMap->erase( pCur);
pTokenMatrixMap->insert( ScTokenMatrixMap::value_type( pCur,
pStack[sp-1]));
}
return true;
}
return false;
}
double ScInterpreter::Compare()
{
OUString aVal1, aVal2;
sc::Compare aComp( &aVal1, &aVal2 );
aComp.mbIgnoreCase = pDok->GetDocOptions().IsIgnoreCase();
for( short i = 1; i >= 0; i-- )
{
switch ( GetRawStackType() )
{
case svEmptyCell:
Pop();
aComp.bEmpty[ i ] = true;
break;
case svMissing:
case svDouble:
aComp.nVal[ i ] = GetDouble();
aComp.bVal[ i ] = true;
break;
case svString:
*aComp.pVal[ i ] = GetString().getString();
aComp.bVal[ i ] = false;
break;
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasEmptyValue())
aComp.bEmpty[i] = true;
else if (aCell.hasString())
{
svl::SharedString aStr;
GetCellString(aStr, aCell);
*aComp.pVal[i] = aStr.getString();
aComp.bVal[i] = false;
}
else
{
aComp.nVal[i] = GetCellValue(aAdr, aCell);
aComp.bVal[i] = true;
}
}
break;
case svExternalSingleRef:
{
ScMatrixRef pMat = GetMatrix();
if (!pMat)
{
SetError( errIllegalParameter);
break;
}
SCSIZE nC, nR;
pMat->GetDimensions(nC, nR);
if (!nC || !nR)
{
SetError( errIllegalParameter);
break;
}
if (pMat->IsEmpty(0, 0))
aComp.bEmpty[i] = true;
else if (pMat->IsString(0, 0))
{
*aComp.pVal[i] = pMat->GetString(0, 0).getString();
aComp.bVal[i] = false;
}
else
{
aComp.nVal[i] = pMat->GetDouble(0, 0);
aComp.bVal[i] = true;
}
}
break;
case svExternalDoubleRef:
// TODO: Find out how to handle this...
default:
SetError( errIllegalParameter);
break;
}
}
if( nGlobalError )
return 0;
nCurFmtType = nFuncFmtType = NUMBERFORMAT_LOGICAL;
return sc::CompareFunc(aComp);
}
sc::RangeMatrix ScInterpreter::CompareMat( sc::CompareOptions* pOptions )
{
OUString aVal1, aVal2;
sc::Compare aComp( &aVal1, &aVal2 );
aComp.mbIgnoreCase = pDok->GetDocOptions().IsIgnoreCase();
sc::RangeMatrix aMat[2];
ScAddress aAdr;
for( short i = 1; i >= 0; i-- )
{
switch (GetRawStackType())
{
case svEmptyCell:
Pop();
aComp.bEmpty[ i ] = true;
break;
case svMissing:
case svDouble:
aComp.nVal[ i ] = GetDouble();
aComp.bVal[ i ] = true;
break;
case svString:
*aComp.pVal[ i ] = GetString().getString();
aComp.bVal[ i ] = false;
break;
case svSingleRef:
{
PopSingleRef( aAdr );
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasEmptyValue())
aComp.bEmpty[i] = true;
else if (aCell.hasString())
{
svl::SharedString aStr;
GetCellString(aStr, aCell);
*aComp.pVal[i] = aStr.getString();
aComp.bVal[i] = false;
}
else
{
aComp.nVal[i] = GetCellValue(aAdr, aCell);
aComp.bVal[i] = true;
}
}
break;
case svDoubleRef:
case svMatrix:
aMat[i] = GetRangeMatrix();
if (!aMat[i].mpMat)
SetError( errIllegalParameter);
else
aMat[i].mpMat->SetErrorInterpreter(NULL);
// errors are transported as DoubleError inside matrix
break;
default:
SetError( errIllegalParameter);
break;
}
}
sc::RangeMatrix aRes;
if( !nGlobalError )
{
if (aMat[0].mpMat && aMat[1].mpMat)
{
SCSIZE nC0, nC1;
SCSIZE nR0, nR1;
aMat[0].mpMat->GetDimensions(nC0, nR0);
aMat[1].mpMat->GetDimensions(nC1, nR1);
SCSIZE nC = std::max( nC0, nC1 );
SCSIZE nR = std::max( nR0, nR1 );
aRes.mpMat = GetNewMat( nC, nR);
if (!aRes.mpMat)
return aRes;
for ( SCSIZE j=0; j<nC; j++ )
{
for ( SCSIZE k=0; k<nR; k++ )
{
SCSIZE nCol = j, nRow = k;
if (aMat[0].mpMat->ValidColRowOrReplicated(nCol, nRow) &&
aMat[1].mpMat->ValidColRowOrReplicated(nCol, nRow))
{
for ( short i=1; i>=0; i-- )
{
if (aMat[i].mpMat->IsString(j, k))
{
aComp.bVal[i] = false;
*aComp.pVal[i] = aMat[i].mpMat->GetString(j, k).getString();
aComp.bEmpty[i] = aMat[i].mpMat->IsEmpty(j, k);
}
else
{
aComp.bVal[i] = true;
aComp.nVal[i] = aMat[i].mpMat->GetDouble(j, k);
aComp.bEmpty[i] = false;
}
}
aRes.mpMat->PutDouble(sc::CompareFunc(aComp, pOptions), j, k);
}
else
aRes.mpMat->PutString(mrStrPool.intern(ScGlobal::GetRscString(STR_NO_VALUE)), j, k);
}
}
}
else if (aMat[0].mpMat || aMat[1].mpMat)
{
size_t i = ( aMat[0].mpMat ? 0 : 1);
SCSIZE nC, nR;
aMat[i].mpMat->GetDimensions(nC, nR);
aRes.mpMat = GetNewMat(nC, nR, false);
if (!aRes.mpMat)
return aRes;
aRes.mnCol1 = aMat[i].mnCol1;
aRes.mnRow1 = aMat[i].mnRow1;
aRes.mnTab1 = aMat[i].mnTab1;
aRes.mnCol2 = aMat[i].mnCol2;
aRes.mnRow2 = aMat[i].mnRow2;
aRes.mnTab2 = aMat[i].mnTab2;
ScMatrix& rMat = *aMat[i].mpMat;
ScMatrix& rResMat = *aRes.mpMat;
rMat.CompareMatrix(rResMat, aComp, i, pOptions);
}
}
nCurFmtType = nFuncFmtType = NUMBERFORMAT_LOGICAL;
return aRes;
}
ScMatrixRef ScInterpreter::QueryMat( const ScMatrixRef& pMat, sc::CompareOptions& rOptions )
{
short nSaveCurFmtType = nCurFmtType;
short nSaveFuncFmtType = nFuncFmtType;
PushMatrix( pMat);
const ScQueryEntry::Item& rItem = rOptions.aQueryEntry.GetQueryItem();
if (rItem.meType == ScQueryEntry::ByString)
PushString(rItem.maString.getString());
else
PushDouble(rItem.mfVal);
ScMatrixRef pResultMatrix = CompareMat( &rOptions).mpMat;
nCurFmtType = nSaveCurFmtType;
nFuncFmtType = nSaveFuncFmtType;
if (nGlobalError || !pResultMatrix)
{
SetError( errIllegalParameter);
return pResultMatrix;
}
switch (rOptions.aQueryEntry.eOp)
{
case SC_EQUAL:
pResultMatrix->CompareEqual();
break;
case SC_LESS:
pResultMatrix->CompareLess();
break;
case SC_GREATER:
pResultMatrix->CompareGreater();
break;
case SC_LESS_EQUAL:
pResultMatrix->CompareLessEqual();
break;
case SC_GREATER_EQUAL:
pResultMatrix->CompareGreaterEqual();
break;
case SC_NOT_EQUAL:
pResultMatrix->CompareNotEqual();
break;
default:
SetError( errIllegalArgument);
OSL_TRACE( "ScInterpreter::QueryMat: unhandled comparison operator: %d", (int)rOptions.aQueryEntry.eOp);
}
return pResultMatrix;
}
void ScInterpreter::ScEqual()
{
if ( GetStackType(1) == svMatrix || GetStackType(2) == svMatrix )
{
sc::RangeMatrix aMat = CompareMat();
if (!aMat.mpMat)
{
PushIllegalParameter();
return;
}
aMat.mpMat->CompareEqual();
PushMatrix(aMat);
}
else
PushInt( Compare() == 0 );
}
void ScInterpreter::ScNotEqual()
{
if ( GetStackType(1) == svMatrix || GetStackType(2) == svMatrix )
{
sc::RangeMatrix aMat = CompareMat();
if (!aMat.mpMat)
{
PushIllegalParameter();
return;
}
aMat.mpMat->CompareNotEqual();
PushMatrix(aMat);
}
else
PushInt( Compare() != 0 );
}
void ScInterpreter::ScLess()
{
if ( GetStackType(1) == svMatrix || GetStackType(2) == svMatrix )
{
sc::RangeMatrix aMat = CompareMat();
if (!aMat.mpMat)
{
PushIllegalParameter();
return;
}
aMat.mpMat->CompareLess();
PushMatrix(aMat);
}
else
PushInt( Compare() < 0 );
}
void ScInterpreter::ScGreater()
{
if ( GetStackType(1) == svMatrix || GetStackType(2) == svMatrix )
{
sc::RangeMatrix aMat = CompareMat();
if (!aMat.mpMat)
{
PushIllegalParameter();
return;
}
aMat.mpMat->CompareGreater();
PushMatrix(aMat);
}
else
PushInt( Compare() > 0 );
}
void ScInterpreter::ScLessEqual()
{
if ( GetStackType(1) == svMatrix || GetStackType(2) == svMatrix )
{
sc::RangeMatrix aMat = CompareMat();
if (!aMat.mpMat)
{
PushIllegalParameter();
return;
}
aMat.mpMat->CompareLessEqual();
PushMatrix(aMat);
}
else
PushInt( Compare() <= 0 );
}
void ScInterpreter::ScGreaterEqual()
{
if ( GetStackType(1) == svMatrix || GetStackType(2) == svMatrix )
{
sc::RangeMatrix aMat = CompareMat();
if (!aMat.mpMat)
{
PushIllegalParameter();
return;
}
aMat.mpMat->CompareGreaterEqual();
PushMatrix(aMat);
}
else
PushInt( Compare() >= 0 );
}
void ScInterpreter::ScAnd()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nParamCount = GetByte();
if ( MustHaveParamCountMin( nParamCount, 1 ) )
{
bool bHaveValue = false;
short nRes = true;
size_t nRefInList = 0;
while( nParamCount-- > 0)
{
if ( !nGlobalError )
{
switch ( GetStackType() )
{
case svDouble :
bHaveValue = true;
nRes &= ( PopDouble() != 0.0 );
break;
case svString :
Pop();
SetError( errNoValue );
break;
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
if ( !nGlobalError )
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
bHaveValue = true;
nRes &= ( GetCellValue(aAdr, aCell) != 0.0 );
}
// else: Xcl raises no error here
}
}
break;
case svDoubleRef:
case svRefList:
{
ScRange aRange;
PopDoubleRef( aRange, nParamCount, nRefInList);
if ( !nGlobalError )
{
double fVal;
sal_uInt16 nErr = 0;
ScValueIterator aValIter( pDok, aRange );
if ( aValIter.GetFirst( fVal, nErr ) )
{
bHaveValue = true;
do
{
nRes &= ( fVal != 0.0 );
} while ( (nErr == 0) &&
aValIter.GetNext( fVal, nErr ) );
}
SetError( nErr );
}
}
break;
case svExternalSingleRef:
case svExternalDoubleRef:
case svMatrix:
{
ScMatrixRef pMat = GetMatrix();
if ( pMat )
{
bHaveValue = true;
double fVal = pMat->And();
sal_uInt16 nErr = GetDoubleErrorValue( fVal );
if ( nErr )
{
SetError( nErr );
nRes = false;
}
else
nRes &= (fVal != 0.0);
}
// else: GetMatrix did set errIllegalParameter
}
break;
default:
Pop();
SetError( errIllegalParameter);
}
}
else
Pop();
}
if ( bHaveValue )
PushInt( nRes );
else
PushNoValue();
}
}
void ScInterpreter::ScOr()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nParamCount = GetByte();
if ( MustHaveParamCountMin( nParamCount, 1 ) )
{
bool bHaveValue = false;
short nRes = false;
size_t nRefInList = 0;
while( nParamCount-- > 0)
{
if ( !nGlobalError )
{
switch ( GetStackType() )
{
case svDouble :
bHaveValue = true;
nRes |= ( PopDouble() != 0.0 );
break;
case svString :
Pop();
SetError( errNoValue );
break;
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
if ( !nGlobalError )
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
bHaveValue = true;
nRes |= ( GetCellValue(aAdr, aCell) != 0.0 );
}
// else: Xcl raises no error here
}
}
break;
case svDoubleRef:
case svRefList:
{
ScRange aRange;
PopDoubleRef( aRange, nParamCount, nRefInList);
if ( !nGlobalError )
{
double fVal;
sal_uInt16 nErr = 0;
ScValueIterator aValIter( pDok, aRange );
if ( aValIter.GetFirst( fVal, nErr ) )
{
bHaveValue = true;
do
{
nRes |= ( fVal != 0.0 );
} while ( (nErr == 0) &&
aValIter.GetNext( fVal, nErr ) );
}
SetError( nErr );
}
}
break;
case svExternalSingleRef:
case svExternalDoubleRef:
case svMatrix:
{
bHaveValue = true;
ScMatrixRef pMat = GetMatrix();
if ( pMat )
{
bHaveValue = true;
double fVal = pMat->Or();
sal_uInt16 nErr = GetDoubleErrorValue( fVal );
if ( nErr )
{
SetError( nErr );
nRes = false;
}
else
nRes |= (fVal != 0.0);
}
// else: GetMatrix did set errIllegalParameter
}
break;
default:
Pop();
SetError( errIllegalParameter);
}
}
else
Pop();
}
if ( bHaveValue )
PushInt( nRes );
else
PushNoValue();
}
}
void ScInterpreter::ScXor()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nParamCount = GetByte();
if ( MustHaveParamCountMin( nParamCount, 1 ) )
{
bool bHaveValue = false;
short nRes = false;
size_t nRefInList = 0;
while( nParamCount-- > 0)
{
if ( !nGlobalError )
{
switch ( GetStackType() )
{
case svDouble :
bHaveValue = true;
nRes ^= ( PopDouble() != 0.0 );
break;
case svString :
Pop();
SetError( errNoValue );
break;
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
if ( !nGlobalError )
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
bHaveValue = true;
nRes ^= ( GetCellValue(aAdr, aCell) != 0.0 );
}
/* TODO: set error? Excel doesn't have XOR, but
* doesn't set an error in this case for AND and
* OR. */
}
}
break;
case svDoubleRef:
case svRefList:
{
ScRange aRange;
PopDoubleRef( aRange, nParamCount, nRefInList);
if ( !nGlobalError )
{
double fVal;
sal_uInt16 nErr = 0;
ScValueIterator aValIter( pDok, aRange );
if ( aValIter.GetFirst( fVal, nErr ) )
{
bHaveValue = true;
do
{
nRes ^= ( fVal != 0.0 );
} while ( (nErr == 0) &&
aValIter.GetNext( fVal, nErr ) );
}
SetError( nErr );
}
}
break;
case svExternalSingleRef:
case svExternalDoubleRef:
case svMatrix:
{
bHaveValue = true;
ScMatrixRef pMat = GetMatrix();
if ( pMat )
{
bHaveValue = true;
double fVal = pMat->Xor();
sal_uInt16 nErr = GetDoubleErrorValue( fVal );
if ( nErr )
{
SetError( nErr );
nRes = 0;
}
else
nRes ^= ( fVal != 0.0 );
}
// else: GetMatrix did set errIllegalParameter
}
break;
default:
Pop();
SetError( errIllegalParameter);
}
}
else
Pop();
}
if ( bHaveValue )
PushInt( nRes );
else
PushNoValue();
}
}
void ScInterpreter::ScNeg()
{
// Simple negation doesn't change current format type to number, keep
// current type.
nFuncFmtType = nCurFmtType;
switch ( GetStackType() )
{
case svMatrix :
{
ScMatrixRef pMat = GetMatrix();
if ( !pMat )
PushIllegalParameter();
else
{
SCSIZE nC, nR;
pMat->GetDimensions( nC, nR );
ScMatrixRef pResMat = GetNewMat( nC, nR);
if ( !pResMat )
PushIllegalArgument();
else
{
for (SCSIZE i = 0; i < nC; ++i)
{
for (SCSIZE j = 0; j < nR; ++j)
{
if ( pMat->IsValueOrEmpty(i,j) )
pResMat->PutDouble( -pMat->GetDouble(i,j), i, j );
else
pResMat->PutString(
mrStrPool.intern(ScGlobal::GetRscString(STR_NO_VALUE)), i, j);
}
}
PushMatrix( pResMat );
}
}
}
break;
default:
PushDouble( -GetDouble() );
}
}
void ScInterpreter::ScPercentSign()
{
nFuncFmtType = NUMBERFORMAT_PERCENT;
const FormulaToken* pSaveCur = pCur;
sal_uInt8 nSavePar = cPar;
PushInt( 100 );
cPar = 2;
FormulaByteToken aDivOp( ocDiv, cPar );
pCur = &aDivOp;
ScDiv();
pCur = pSaveCur;
cPar = nSavePar;
}
void ScInterpreter::ScNot()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
switch ( GetStackType() )
{
case svMatrix :
{
ScMatrixRef pMat = GetMatrix();
if ( !pMat )
PushIllegalParameter();
else
{
SCSIZE nC, nR;
pMat->GetDimensions( nC, nR );
ScMatrixRef pResMat = GetNewMat( nC, nR);
if ( !pResMat )
PushIllegalArgument();
else
{
for (SCSIZE i = 0; i < nC; ++i)
{
for (SCSIZE j = 0; j < nR; ++j)
{
if ( pMat->IsValueOrEmpty(i,j) )
pResMat->PutDouble( (pMat->GetDouble(i,j) == 0.0), i, j );
else
pResMat->PutString(
mrStrPool.intern(ScGlobal::GetRscString(STR_NO_VALUE)), i, j);
}
}
PushMatrix( pResMat );
}
}
}
break;
default:
PushInt( GetDouble() == 0.0 );
}
}
void ScInterpreter::ScBitAnd()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double num1 = ::rtl::math::approxFloor( GetDouble());
double num2 = ::rtl::math::approxFloor( GetDouble());
if ( (num1 >= n2power48) || (num1 < 0) ||
(num2 >= n2power48) || (num2 < 0))
PushIllegalArgument();
else
PushDouble ((sal_uInt64) num1 & (sal_uInt64) num2);
}
void ScInterpreter::ScBitOr()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double num1 = ::rtl::math::approxFloor( GetDouble());
double num2 = ::rtl::math::approxFloor( GetDouble());
if ( (num1 >= n2power48) || (num1 < 0) ||
(num2 >= n2power48) || (num2 < 0))
PushIllegalArgument();
else
PushDouble ((sal_uInt64) num1 | (sal_uInt64) num2);
}
void ScInterpreter::ScBitXor()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double num1 = ::rtl::math::approxFloor( GetDouble());
double num2 = ::rtl::math::approxFloor( GetDouble());
if ( (num1 >= n2power48) || (num1 < 0) ||
(num2 >= n2power48) || (num2 < 0))
PushIllegalArgument();
else
PushDouble ((sal_uInt64) num1 ^ (sal_uInt64) num2);
}
void ScInterpreter::ScBitLshift()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double fShift = ::rtl::math::approxFloor( GetDouble());
double num = ::rtl::math::approxFloor( GetDouble());
if ((num >= n2power48) || (num < 0))
PushIllegalArgument();
else
{
double fRes;
if (fShift < 0)
fRes = ::rtl::math::approxFloor( num / pow( 2.0, -fShift));
else if (fShift == 0)
fRes = num;
else
fRes = num * pow( 2.0, fShift);
PushDouble( fRes);
}
}
void ScInterpreter::ScBitRshift()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double fShift = ::rtl::math::approxFloor( GetDouble());
double num = ::rtl::math::approxFloor( GetDouble());
if ((num >= n2power48) || (num < 0))
PushIllegalArgument();
else
{
double fRes;
if (fShift < 0)
fRes = num * pow( 2.0, -fShift);
else if (fShift == 0)
fRes = num;
else
fRes = ::rtl::math::approxFloor( num / pow( 2.0, fShift));
PushDouble( fRes);
}
}
void ScInterpreter::ScPi()
{
PushDouble(F_PI);
}
void ScInterpreter::ScRandom()
{
PushDouble(sc::rng::uniform());
}
void ScInterpreter::ScTrue()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
PushInt(1);
}
void ScInterpreter::ScFalse()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
PushInt(0);
}
void ScInterpreter::ScDeg()
{
PushDouble((GetDouble() / F_PI) * 180.0);
}
void ScInterpreter::ScRad()
{
PushDouble(GetDouble() * (F_PI / 180));
}
void ScInterpreter::ScSin()
{
PushDouble(::rtl::math::sin(GetDouble()));
}
void ScInterpreter::ScCos()
{
PushDouble(::rtl::math::cos(GetDouble()));
}
void ScInterpreter::ScTan()
{
PushDouble(::rtl::math::tan(GetDouble()));
}
void ScInterpreter::ScCot()
{
PushDouble(1.0 / ::rtl::math::tan(GetDouble()));
}
void ScInterpreter::ScArcSin()
{
PushDouble(asin(GetDouble()));
}
void ScInterpreter::ScArcCos()
{
PushDouble(acos(GetDouble()));
}
void ScInterpreter::ScArcTan()
{
PushDouble(atan(GetDouble()));
}
void ScInterpreter::ScArcCot()
{
PushDouble((F_PI2) - atan(GetDouble()));
}
void ScInterpreter::ScSinHyp()
{
PushDouble(sinh(GetDouble()));
}
void ScInterpreter::ScCosHyp()
{
PushDouble(cosh(GetDouble()));
}
void ScInterpreter::ScTanHyp()
{
PushDouble(tanh(GetDouble()));
}
void ScInterpreter::ScCotHyp()
{
PushDouble(1.0 / tanh(GetDouble()));
}
void ScInterpreter::ScArcSinHyp()
{
PushDouble( ::rtl::math::asinh( GetDouble()));
}
void ScInterpreter::ScArcCosHyp()
{
double fVal = GetDouble();
if (fVal < 1.0)
PushIllegalArgument();
else
PushDouble( ::rtl::math::acosh( fVal));
}
void ScInterpreter::ScArcTanHyp()
{
double fVal = GetDouble();
if (fabs(fVal) >= 1.0)
PushIllegalArgument();
else
PushDouble( ::rtl::math::atanh( fVal));
}
void ScInterpreter::ScArcCotHyp()
{
double nVal = GetDouble();
if (fabs(nVal) <= 1.0)
PushIllegalArgument();
else
PushDouble(0.5 * log((nVal + 1.0) / (nVal - 1.0)));
}
void ScInterpreter::ScCosecant()
{
PushDouble(1.0 / ::rtl::math::sin(GetDouble()));
}
void ScInterpreter::ScSecant()
{
PushDouble(1.0 / ::rtl::math::cos(GetDouble()));
}
void ScInterpreter::ScCosecantHyp()
{
PushDouble(1.0 / sinh(GetDouble()));
}
void ScInterpreter::ScSecantHyp()
{
PushDouble(1.0 / cosh(GetDouble()));
}
void ScInterpreter::ScExp()
{
PushDouble(exp(GetDouble()));
}
void ScInterpreter::ScSqrt()
{
double fVal = GetDouble();
if (fVal >= 0.0)
PushDouble(sqrt(fVal));
else
PushIllegalArgument();
}
void ScInterpreter::ScIsEmpty()
{
short nRes = 0;
nFuncFmtType = NUMBERFORMAT_LOGICAL;
switch ( GetRawStackType() )
{
case svEmptyCell:
{
FormulaTokenRef p = PopToken();
if (!static_cast<const ScEmptyCellToken*>(p.get())->IsInherited())
nRes = 1;
}
break;
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
// NOTE: this could test also on inherited emptiness, but then the
// cell tested wouldn't be empty. Must correspond with
// ScCountEmptyCells().
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.meType == CELLTYPE_NONE)
nRes = 1;
}
break;
case svExternalSingleRef:
case svExternalDoubleRef:
case svMatrix:
{
ScMatrixRef pMat = GetMatrix();
if ( !pMat )
; // nothing
else if ( !pJumpMatrix )
nRes = pMat->IsEmpty( 0, 0);
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
nRes = pMat->IsEmpty( nC, nR);
// else: false, not empty (which is what Xcl does)
}
}
break;
default:
Pop();
}
nGlobalError = 0;
PushInt( nRes );
}
short ScInterpreter::IsString()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetRawStackType() )
{
case svString:
Pop();
nRes = 1;
break;
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (GetCellErrCode(aCell) == 0)
{
switch (aCell.meType)
{
case CELLTYPE_STRING :
case CELLTYPE_EDIT :
nRes = 1;
break;
case CELLTYPE_FORMULA :
nRes = (!aCell.mpFormula->IsValue() && !aCell.mpFormula->IsEmpty());
break;
default:
; // nothing
}
}
}
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( !pMat )
; // nothing
else if ( !pJumpMatrix )
nRes = pMat->IsString(0, 0) && !pMat->IsEmpty(0, 0);
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
nRes = pMat->IsString( nC, nR) && !pMat->IsEmpty( nC, nR);
}
}
break;
default:
Pop();
}
nGlobalError = 0;
return nRes;
}
void ScInterpreter::ScIsString()
{
PushInt( IsString() );
}
void ScInterpreter::ScIsNonString()
{
PushInt( !IsString() );
}
void ScInterpreter::ScIsLogical()
{
short nRes = 0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (GetCellErrCode(aCell) == 0)
{
if (aCell.hasNumeric())
{
sal_uLong nFormat = GetCellNumberFormat(aAdr, aCell);
nRes = (pFormatter->GetType(nFormat) == NUMBERFORMAT_LOGICAL);
}
}
}
break;
case svMatrix:
// TODO: we don't have type information for arrays except
// numerical/string.
// Fall thru
default:
PopError();
if ( !nGlobalError )
nRes = ( nCurFmtType == NUMBERFORMAT_LOGICAL );
}
nCurFmtType = nFuncFmtType = NUMBERFORMAT_LOGICAL;
nGlobalError = 0;
PushInt( nRes );
}
void ScInterpreter::ScType()
{
short nType = 0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (GetCellErrCode(aCell) == 0)
{
switch (aCell.meType)
{
// NOTE: this is Xcl nonsense!
case CELLTYPE_STRING :
case CELLTYPE_EDIT :
nType = 2;
break;
case CELLTYPE_VALUE :
{
sal_uLong nFormat = GetCellNumberFormat(aAdr, aCell);
if (pFormatter->GetType(nFormat) == NUMBERFORMAT_LOGICAL)
nType = 4;
else
nType = 1;
}
break;
case CELLTYPE_FORMULA :
nType = 8;
break;
default:
PushIllegalArgument();
}
}
else
nType = 16;
}
break;
case svString:
PopError();
if ( nGlobalError )
{
nType = 16;
nGlobalError = 0;
}
else
nType = 2;
break;
case svMatrix:
PopMatrix();
if ( nGlobalError )
{
nType = 16;
nGlobalError = 0;
}
else
nType = 64;
// we could return the type of one element if in JumpMatrix or
// ForceArray mode, but Xcl doesn't ...
break;
default:
PopError();
if ( nGlobalError )
{
nType = 16;
nGlobalError = 0;
}
else
nType = 1;
}
PushInt( nType );
}
static inline bool lcl_FormatHasNegColor( const SvNumberformat* pFormat )
{
return pFormat && pFormat->GetColor( 1 );
}
static inline bool lcl_FormatHasOpenPar( const SvNumberformat* pFormat )
{
return pFormat && (pFormat->GetFormatstring().indexOf('(') != -1);
}
namespace {
void getFormatString(SvNumberFormatter* pFormatter, sal_uLong nFormat, OUString& rFmtStr)
{
bool bAppendPrec = true;
sal_uInt16 nPrec, nLeading;
bool bThousand, bIsRed;
pFormatter->GetFormatSpecialInfo( nFormat, bThousand, bIsRed, nPrec, nLeading );
switch( pFormatter->GetType( nFormat ) )
{
case NUMBERFORMAT_NUMBER: if(bThousand) rFmtStr = ","; else rFmtStr = "F"; break;
case NUMBERFORMAT_CURRENCY: rFmtStr = "C"; break;
case NUMBERFORMAT_SCIENTIFIC: rFmtStr = "S"; break;
case NUMBERFORMAT_PERCENT: rFmtStr = "P"; break;
default:
{
bAppendPrec = false;
switch( pFormatter->GetIndexTableOffset( nFormat ) )
{
case NF_DATE_SYSTEM_SHORT:
case NF_DATE_SYS_DMMMYY:
case NF_DATE_SYS_DDMMYY:
case NF_DATE_SYS_DDMMYYYY:
case NF_DATE_SYS_DMMMYYYY:
case NF_DATE_DIN_DMMMYYYY:
case NF_DATE_SYS_DMMMMYYYY:
case NF_DATE_DIN_DMMMMYYYY: rFmtStr = "D1"; break;
case NF_DATE_SYS_DDMMM: rFmtStr = "D2"; break;
case NF_DATE_SYS_MMYY: rFmtStr = "D3"; break;
case NF_DATETIME_SYSTEM_SHORT_HHMM:
case NF_DATETIME_SYS_DDMMYYYY_HHMMSS:
rFmtStr = "D4"; break;
case NF_DATE_DIN_MMDD: rFmtStr = "D5"; break;
case NF_TIME_HHMMSSAMPM: rFmtStr = "D6"; break;
case NF_TIME_HHMMAMPM: rFmtStr = "D7"; break;
case NF_TIME_HHMMSS: rFmtStr = "D8"; break;
case NF_TIME_HHMM: rFmtStr = "D9"; break;
default: rFmtStr = "G";
}
}
}
if( bAppendPrec )
rFmtStr += OUString::number(nPrec);
const SvNumberformat* pFormat = pFormatter->GetEntry( nFormat );
if( lcl_FormatHasNegColor( pFormat ) )
rFmtStr += "-";
if( lcl_FormatHasOpenPar( pFormat ) )
rFmtStr += "()";
}
}
void ScInterpreter::ScCell()
{ // ATTRIBUTE ; [REF]
sal_uInt8 nParamCount = GetByte();
if( MustHaveParamCount( nParamCount, 1, 2 ) )
{
ScAddress aCellPos( aPos );
bool bError = false;
if( nParamCount == 2 )
{
switch (GetStackType())
{
case svExternalSingleRef:
case svExternalDoubleRef:
{
// Let's handle external reference separately...
ScCellExternal();
return;
}
default:
;
}
bError = !PopDoubleRefOrSingleRef( aCellPos );
}
OUString aInfoType = GetString().getString();
if( bError || nGlobalError )
PushIllegalParameter();
else
{
ScRefCellValue aCell;
aCell.assign(*pDok, aCellPos);
ScCellKeywordTranslator::transKeyword(aInfoType, ScGlobal::GetLocale(), ocCell);
// *** ADDRESS INFO ***
if( aInfoType.equalsAscii( "COL" ) )
{ // column number (1-based)
PushInt( aCellPos.Col() + 1 );
}
else if( aInfoType.equalsAscii( "ROW" ) )
{ // row number (1-based)
PushInt( aCellPos.Row() + 1 );
}
else if( aInfoType.equalsAscii( "SHEET" ) )
{ // table number (1-based)
PushInt( aCellPos.Tab() + 1 );
}
else if( aInfoType.equalsAscii( "ADDRESS" ) )
{ // address formatted as [['FILENAME'#]$TABLE.]$COL$ROW
sal_uInt16 nFlags = (aCellPos.Tab() == aPos.Tab()) ? (SCA_ABS) : (SCA_ABS_3D);
OUString aStr(aCellPos.Format(nFlags, pDok, pDok->GetAddressConvention()));
PushString(aStr);
}
else if( aInfoType.equalsAscii( "FILENAME" ) )
{ // file name and table name: 'FILENAME'#$TABLE
SCTAB nTab = aCellPos.Tab();
OUString aFuncResult;
if( nTab < pDok->GetTableCount() )
{
if( pDok->GetLinkMode( nTab ) == SC_LINK_VALUE )
pDok->GetName( nTab, aFuncResult );
else
{
SfxObjectShell* pShell = pDok->GetDocumentShell();
if( pShell && pShell->GetMedium() )
{
OUStringBuffer aBuf;
aBuf.append(sal_Unicode('\''));
const INetURLObject& rURLObj = pShell->GetMedium()->GetURLObject();
aBuf.append(rURLObj.GetMainURL(INetURLObject::DECODE_UNAMBIGUOUS));
aBuf.appendAscii("'#$");
OUString aTabName;
pDok->GetName( nTab, aTabName );
aBuf.append(aTabName);
aFuncResult = aBuf.makeStringAndClear();
}
}
}
PushString( aFuncResult );
}
else if( aInfoType.equalsAscii( "COORD" ) )
{ // address, lotus 1-2-3 formatted: $TABLE:$COL$ROW
// Yes, passing tab as col is intentional!
OUStringBuffer aFuncResult;
OUString aCellStr =
ScAddress( static_cast<SCCOL>(aCellPos.Tab()), 0, 0 ).Format(
(SCA_COL_ABSOLUTE|SCA_VALID_COL), NULL, pDok->GetAddressConvention() );
aFuncResult.append(aCellStr);
aFuncResult.append(sal_Unicode(':'));
aCellStr = aCellPos.Format((SCA_COL_ABSOLUTE|SCA_VALID_COL|SCA_ROW_ABSOLUTE|SCA_VALID_ROW),
NULL, pDok->GetAddressConvention());
aFuncResult.append(aCellStr);
PushString( aFuncResult.makeStringAndClear() );
}
// *** CELL PROPERTIES ***
else if( aInfoType.equalsAscii( "CONTENTS" ) )
{ // contents of the cell, no formatting
if (aCell.hasString())
{
svl::SharedString aStr;
GetCellString(aStr, aCell);
PushString( aStr );
}
else
PushDouble(GetCellValue(aCellPos, aCell));
}
else if( aInfoType.equalsAscii( "TYPE" ) )
{ // b = blank; l = string (label); v = otherwise (value)
sal_Unicode c;
if (aCell.hasString())
c = 'l';
else
c = aCell.hasNumeric() ? 'v' : 'b';
PushString( OUString(c) );
}
else if( aInfoType.equalsAscii( "WIDTH" ) )
{ // column width (rounded off as count of zero characters in standard font and size)
Printer* pPrinter = pDok->GetPrinter();
MapMode aOldMode( pPrinter->GetMapMode() );
Font aOldFont( pPrinter->GetFont() );
Font aDefFont;
pPrinter->SetMapMode( MAP_TWIP );
// font color doesn't matter here
pDok->GetDefPattern()->GetFont( aDefFont, SC_AUTOCOL_BLACK, pPrinter );
pPrinter->SetFont( aDefFont );
long nZeroWidth = pPrinter->GetTextWidth( OUString( '0' ) );
pPrinter->SetFont( aOldFont );
pPrinter->SetMapMode( aOldMode );
int nZeroCount = (int)(pDok->GetColWidth( aCellPos.Col(), aCellPos.Tab() ) / nZeroWidth);
PushInt( nZeroCount );
}
else if( aInfoType.equalsAscii( "PREFIX" ) )
{ // ' = left; " = right; ^ = centered
sal_Unicode c = 0;
if (aCell.hasString())
{
const SvxHorJustifyItem* pJustAttr = (const SvxHorJustifyItem*)
pDok->GetAttr( aCellPos.Col(), aCellPos.Row(), aCellPos.Tab(), ATTR_HOR_JUSTIFY );
switch( pJustAttr->GetValue() )
{
case SVX_HOR_JUSTIFY_STANDARD:
case SVX_HOR_JUSTIFY_LEFT:
case SVX_HOR_JUSTIFY_BLOCK: c = '\''; break;
case SVX_HOR_JUSTIFY_CENTER: c = '^'; break;
case SVX_HOR_JUSTIFY_RIGHT: c = '"'; break;
case SVX_HOR_JUSTIFY_REPEAT: c = '\\'; break;
}
}
PushString( OUString(c) );
}
else if( aInfoType.equalsAscii( "PROTECT" ) )
{ // 1 = cell locked
const ScProtectionAttr* pProtAttr = (const ScProtectionAttr*)
pDok->GetAttr( aCellPos.Col(), aCellPos.Row(), aCellPos.Tab(), ATTR_PROTECTION );
PushInt( pProtAttr->GetProtection() ? 1 : 0 );
}
// *** FORMATTING ***
else if( aInfoType.equalsAscii( "FORMAT" ) )
{ // specific format code for standard formats
OUString aFuncResult;
sal_uLong nFormat = pDok->GetNumberFormat( aCellPos );
getFormatString(pFormatter, nFormat, aFuncResult);
PushString( aFuncResult );
}
else if( aInfoType.equalsAscii( "COLOR" ) )
{ // 1 = negative values are colored, otherwise 0
const SvNumberformat* pFormat = pFormatter->GetEntry( pDok->GetNumberFormat( aCellPos ) );
PushInt( lcl_FormatHasNegColor( pFormat ) ? 1 : 0 );
}
else if( aInfoType.equalsAscii( "PARENTHESES" ) )
{ // 1 = format string contains a '(' character, otherwise 0
const SvNumberformat* pFormat = pFormatter->GetEntry( pDok->GetNumberFormat( aCellPos ) );
PushInt( lcl_FormatHasOpenPar( pFormat ) ? 1 : 0 );
}
else
PushIllegalArgument();
}
}
}
void ScInterpreter::ScCellExternal()
{
sal_uInt16 nFileId;
OUString aTabName;
ScSingleRefData aRef;
ScExternalRefCache::TokenRef pToken;
ScExternalRefCache::CellFormat aFmt;
PopExternalSingleRef(nFileId, aTabName, aRef, pToken, &aFmt);
if (nGlobalError)
{
PushIllegalParameter();
return;
}
OUString aInfoType = GetString().getString();
if (nGlobalError)
{
PushIllegalParameter();
return;
}
SCCOL nCol;
SCROW nRow;
SCTAB nTab;
aRef.SetAbsTab(0); // external ref has a tab index of -1, which SingleRefToVars() don't like.
SingleRefToVars(aRef, nCol, nRow, nTab);
if (nGlobalError)
{
PushIllegalParameter();
return;
}
aRef.SetAbsTab(-1); // revert the value.
ScCellKeywordTranslator::transKeyword(aInfoType, ScGlobal::GetLocale(), ocCell);
ScExternalRefManager* pRefMgr = pDok->GetExternalRefManager();
if ( aInfoType == "COL" )
PushInt(nCol + 1);
else if ( aInfoType == "ROW" )
PushInt(nRow + 1);
else if ( aInfoType == "SHEET" )
{
// For SHEET, No idea what number we should set, but let's always set
// 1 if the external sheet exists, no matter what sheet. Excel does
// the same.
if (pRefMgr->getCacheTable(nFileId, aTabName, false, NULL).get())
PushInt(1);
else
SetError(errNoName);
}
else if ( aInfoType == "ADDRESS" )
{
// ODF 1.2 says we need to always display address using the ODF A1 grammar.
ScTokenArray aArray;
aArray.AddExternalSingleReference(nFileId, aTabName, aRef);
ScCompiler aComp(pDok, aPos, aArray);
aComp.SetGrammar(formula::FormulaGrammar::GRAM_ODFF_A1);
OUString aStr;
aComp.CreateStringFromTokenArray(aStr);
PushString(aStr);
}
else if ( aInfoType == "FILENAME" )
{
// 'file URI'#$SheetName
const OUString* p = pRefMgr->getExternalFileName(nFileId);
if (!p)
{
// In theory this should never happen...
SetError(errNoName);
return;
}
OUStringBuffer aBuf;
aBuf.append(sal_Unicode('\''));
aBuf.append(*p);
aBuf.appendAscii("'#$");
aBuf.append(aTabName);
PushString(aBuf.makeStringAndClear());
}
else if ( aInfoType == "CONTENTS" )
{
switch (pToken->GetType())
{
case svString:
PushString(pToken->GetString());
break;
case svDouble:
PushString(OUString::number(pToken->GetDouble()));
break;
case svError:
PushString(ScGlobal::GetErrorString(pToken->GetError()));
break;
default:
PushString(ScGlobal::GetEmptyOUString());
}
}
else if ( aInfoType == "TYPE" )
{
sal_Unicode c = 'v';
switch (pToken->GetType())
{
case svString:
c = 'l';
break;
case svEmptyCell:
c = 'b';
break;
default:
;
}
PushString(OUString(c));
}
else if ( aInfoType == "FORMAT" )
{
OUString aFmtStr;
sal_uLong nFmt = aFmt.mbIsSet ? aFmt.mnIndex : 0;
getFormatString(pFormatter, nFmt, aFmtStr);
PushString(aFmtStr);
}
else if ( aInfoType == "COLOR" )
{
// 1 = negative values are colored, otherwise 0
int nVal = 0;
if (aFmt.mbIsSet)
{
const SvNumberformat* pFormat = pFormatter->GetEntry(aFmt.mnIndex);
nVal = lcl_FormatHasNegColor(pFormat) ? 1 : 0;
}
PushInt(nVal);
}
else if ( aInfoType == "PARENTHESES" )
{
// 1 = format string contains a '(' character, otherwise 0
int nVal = 0;
if (aFmt.mbIsSet)
{
const SvNumberformat* pFormat = pFormatter->GetEntry(aFmt.mnIndex);
nVal = lcl_FormatHasOpenPar(pFormat) ? 1 : 0;
}
PushInt(nVal);
}
else
PushIllegalParameter();
}
void ScInterpreter::ScIsRef()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetStackType() )
{
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
if ( !nGlobalError )
nRes = 1;
}
break;
case svDoubleRef :
{
ScRange aRange;
PopDoubleRef( aRange );
if ( !nGlobalError )
nRes = 1;
}
break;
case svRefList :
{
FormulaTokenRef x = PopToken();
if ( !nGlobalError )
nRes = !static_cast<ScToken*>(x.get())->GetRefList()->empty();
}
break;
default:
Pop();
}
nGlobalError = 0;
PushInt( nRes );
}
void ScInterpreter::ScIsValue()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetRawStackType() )
{
case svDouble:
Pop();
nRes = 1;
break;
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (GetCellErrCode(aCell) == 0)
{
switch (aCell.meType)
{
case CELLTYPE_VALUE :
nRes = 1;
break;
case CELLTYPE_FORMULA :
nRes = (aCell.mpFormula->IsValue() && !aCell.mpFormula->IsEmpty());
break;
default:
; // nothing
}
}
}
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( !pMat )
; // nothing
else if ( !pJumpMatrix )
{
if (pMat->GetErrorIfNotString( 0, 0) == 0)
nRes = pMat->IsValue( 0, 0);
}
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
if (pMat->GetErrorIfNotString( nC, nR) == 0)
nRes = pMat->IsValue( nC, nR);
}
}
break;
default:
Pop();
}
nGlobalError = 0;
PushInt( nRes );
}
void ScInterpreter::ScIsFormula()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
nRes = (pDok->GetCellType(aAdr) == CELLTYPE_FORMULA);
}
break;
default:
Pop();
}
nGlobalError = 0;
PushInt( nRes );
}
void ScInterpreter::ScFormula()
{
OUString aFormula;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
switch (aCell.meType)
{
case CELLTYPE_FORMULA :
aCell.mpFormula->GetFormula(aFormula);
break;
default:
SetError( NOTAVAILABLE );
}
}
break;
default:
Pop();
SetError( NOTAVAILABLE );
}
PushString( aFormula );
}
void ScInterpreter::ScIsNV()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
PopDoubleRefOrSingleRef( aAdr );
if ( nGlobalError == NOTAVAILABLE )
nRes = 1;
else
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
sal_uInt16 nErr = GetCellErrCode(aCell);
nRes = (nErr == NOTAVAILABLE);
}
}
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( !pMat )
; // nothing
else if ( !pJumpMatrix )
nRes = (pMat->GetErrorIfNotString( 0, 0) == NOTAVAILABLE);
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
nRes = (pMat->GetErrorIfNotString( nC, nR) == NOTAVAILABLE);
}
}
break;
default:
PopError();
if ( nGlobalError == NOTAVAILABLE )
nRes = 1;
}
nGlobalError = 0;
PushInt( nRes );
}
void ScInterpreter::ScIsErr()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
PopDoubleRefOrSingleRef( aAdr );
if ( nGlobalError && nGlobalError != NOTAVAILABLE )
nRes = 1;
else
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
sal_uInt16 nErr = GetCellErrCode(aCell);
nRes = (nErr && nErr != NOTAVAILABLE);
}
}
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( nGlobalError || !pMat )
nRes = ((nGlobalError && nGlobalError != NOTAVAILABLE) || !pMat);
else if ( !pJumpMatrix )
{
sal_uInt16 nErr = pMat->GetErrorIfNotString( 0, 0);
nRes = (nErr && nErr != NOTAVAILABLE);
}
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
{
sal_uInt16 nErr = pMat->GetErrorIfNotString( nC, nR);
nRes = (nErr && nErr != NOTAVAILABLE);
}
}
}
break;
default:
PopError();
if ( nGlobalError && nGlobalError != NOTAVAILABLE )
nRes = 1;
}
nGlobalError = 0;
PushInt( nRes );
}
void ScInterpreter::ScIsError()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
{
nRes = 1;
break;
}
if ( nGlobalError )
nRes = 1;
else
{
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
nRes = (GetCellErrCode(aCell) != 0);
}
}
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( nGlobalError || !pMat )
nRes = 1;
else if ( !pJumpMatrix )
nRes = (pMat->GetErrorIfNotString( 0, 0) != 0);
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
nRes = (pMat->GetErrorIfNotString( nC, nR) != 0);
}
}
break;
default:
PopError();
if ( nGlobalError )
nRes = 1;
}
nGlobalError = 0;
PushInt( nRes );
}
short ScInterpreter::IsEven()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
short nRes = 0;
double fVal = 0.0;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
break;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
sal_uInt16 nErr = GetCellErrCode(aCell);
if (nErr != 0)
SetError(nErr);
else
{
switch (aCell.meType)
{
case CELLTYPE_VALUE :
fVal = GetCellValue(aAdr, aCell);
nRes = 1;
break;
case CELLTYPE_FORMULA :
if (aCell.mpFormula->IsValue())
{
fVal = GetCellValue(aAdr, aCell);
nRes = 1;
}
break;
default:
; // nothing
}
}
}
break;
case svDouble:
{
fVal = PopDouble();
nRes = 1;
}
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if ( !pMat )
; // nothing
else if ( !pJumpMatrix )
{
nRes = pMat->IsValue( 0, 0);
if ( nRes )
fVal = pMat->GetDouble( 0, 0);
}
else
{
SCSIZE nCols, nRows, nC, nR;
pMat->GetDimensions( nCols, nRows);
pJumpMatrix->GetPos( nC, nR);
if ( nC < nCols && nR < nRows )
{
nRes = pMat->IsValue( nC, nR);
if ( nRes )
fVal = pMat->GetDouble( nC, nR);
}
else
SetError( errNoValue);
}
}
break;
default:
; // nothing
}
if ( !nRes )
SetError( errIllegalParameter);
else
nRes = ( fmod( ::rtl::math::approxFloor( fabs( fVal ) ), 2.0 ) < 0.5 );
return nRes;
}
void ScInterpreter::ScIsEven()
{
PushInt( IsEven() );
}
void ScInterpreter::ScIsOdd()
{
PushInt( !IsEven() );
}
void ScInterpreter::ScN()
{
sal_uInt16 nErr = nGlobalError;
nGlobalError = 0;
// Temporarily override the ConvertStringToValue() error for
// GetCellValue() / GetCellValueOrZero()
sal_uInt16 nSErr = mnStringNoValueError;
mnStringNoValueError = errCellNoValue;
double fVal = GetDouble();
mnStringNoValueError = nSErr;
if (nErr)
nGlobalError = nErr; // preserve previous error if any
else if (nGlobalError == errCellNoValue)
nGlobalError = 0; // reset temporary detection error
PushDouble(fVal);
}
void ScInterpreter::ScTrim()
{
// Doesn't only trim but also removes duplicated blanks within!
OUString aVal = comphelper::string::strip(GetString().getString(), ' ');
OUStringBuffer aStr;
const sal_Unicode* p = aVal.getStr();
const sal_Unicode* const pEnd = p + aVal.getLength();
while ( p < pEnd )
{
if ( *p != ' ' || p[-1] != ' ' ) // first can't be ' ', so -1 is fine
aStr.append(*p);
p++;
}
PushString(aStr.makeStringAndClear());
}
void ScInterpreter::ScUpper()
{
OUString aString = ScGlobal::pCharClass->uppercase(GetString().getString());
PushString(aString);
}
void ScInterpreter::ScPropper()
{
//2do: what to do with I18N-CJK ?!?
OUStringBuffer aStr(GetString().getString());
const sal_Int32 nLen = aStr.getLength();
if ( nLen > 0 )
{
OUString aUpr(ScGlobal::pCharClass->uppercase(aStr.toString()));
OUString aLwr(ScGlobal::pCharClass->lowercase(aStr.toString()));
aStr[0] = aUpr[0];
sal_Int32 nPos = 1;
while( nPos < nLen )
{
OUString aTmpStr( aStr[nPos-1] );
if ( !ScGlobal::pCharClass->isLetter( aTmpStr, 0 ) )
aStr[nPos] = aUpr[nPos];
else
aStr[nPos] = aLwr[nPos];
++nPos;
}
}
PushString(aStr.makeStringAndClear());
}
void ScInterpreter::ScLower()
{
OUString aString = ScGlobal::pCharClass->lowercase(GetString().getString());
PushString(aString);
}
void ScInterpreter::ScLen()
{
PushDouble(GetString().getLength());
}
void ScInterpreter::ScT()
{
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
{
PushInt(0);
return ;
}
bool bValue = false;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (GetCellErrCode(aCell) == 0)
{
switch (aCell.meType)
{
case CELLTYPE_VALUE :
bValue = true;
break;
case CELLTYPE_FORMULA :
bValue = aCell.mpFormula->IsValue();
break;
default:
; // nothing
}
}
if ( bValue )
PushString(EMPTY_OUSTRING);
else
{
// like GetString()
svl::SharedString aStr;
GetCellString(aStr, aCell);
PushString(aStr);
}
}
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
double fVal;
svl::SharedString aStr;
ScMatValType nMatValType = GetDoubleOrStringFromMatrix( fVal, aStr);
if (ScMatrix::IsValueType( nMatValType))
PushString(svl::SharedString::getEmptyString());
else
PushString( aStr);
}
break;
case svDouble :
{
PopError();
PushString( EMPTY_OUSTRING );
}
break;
case svString :
; // leave on stack
break;
default :
PushError( errUnknownOpCode);
}
}
void ScInterpreter::ScValue()
{
OUString aInputString;
double fVal;
switch ( GetRawStackType() )
{
case svMissing:
case svEmptyCell:
Pop();
PushInt(0);
return;
case svDouble:
return; // leave on stack
//break;
case svSingleRef:
case svDoubleRef:
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
{
PushInt(0);
return;
}
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasString())
{
svl::SharedString aSS;
GetCellString(aSS, aCell);
aInputString = aSS.getString();
}
else if (aCell.hasNumeric())
{
PushDouble( GetCellValue(aAdr, aCell) );
return;
}
else
{
PushDouble(0.0);
return;
}
}
break;
case svMatrix:
{
svl::SharedString aSS;
ScMatValType nType = GetDoubleOrStringFromMatrix( fVal,
aSS);
aInputString = aSS.getString();
switch (nType)
{
case SC_MATVAL_EMPTY:
fVal = 0.0;
// fallthru
case SC_MATVAL_VALUE:
case SC_MATVAL_BOOLEAN:
PushDouble( fVal);
return;
//break;
case SC_MATVAL_STRING:
// evaluated below
break;
default:
PushIllegalArgument();
}
}
break;
default:
aInputString = GetString().getString();
break;
}
sal_uInt32 nFIndex = 0; // 0 for default locale
if (pFormatter->IsNumberFormat(aInputString, nFIndex, fVal))
PushDouble(fVal);
else
PushIllegalArgument();
}
// fdo#57180
void ScInterpreter::ScNumberValue()
{
sal_uInt8 nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 1, 3 ) )
return;
OUString aInputString;
OUString aDecimalSeparator, aGroupSeparator;
sal_Unicode cDecimalSeparator = 0;
if ( nParamCount == 3 )
aGroupSeparator = GetString().getString();
if ( nParamCount >= 2 )
{
aDecimalSeparator = GetString().getString();
if ( aDecimalSeparator.getLength() == 1 )
cDecimalSeparator = aDecimalSeparator[ 0 ];
else
{
PushIllegalArgument(); //if given, separator length must be 1
return;
}
}
if ( cDecimalSeparator && aGroupSeparator.indexOf( cDecimalSeparator ) != -1 )
{
PushIllegalArgument(); //decimal separator cannot appear in group separator
return;
}
switch (GetStackType())
{
case svDouble:
return; // leave on stack
default:
aInputString = GetString().getString();
}
if ( nGlobalError )
{
PushError( nGlobalError );
return;
}
if ( aInputString.isEmpty() )
{
if ( GetGlobalConfig().mbEmptyStringAsZero )
PushDouble( 0.0 );
else
PushNoValue();
return;
}
sal_Int32 nDecSep = aInputString.indexOf( cDecimalSeparator );
if ( nDecSep != 0 )
{
OUString aTemporary( nDecSep >= 0 ? aInputString.copy( 0, nDecSep ) : aInputString );
sal_Int32 nIndex = 0;
do
{
sal_uInt32 nChar = aGroupSeparator.iterateCodePoints( &nIndex );
aTemporary = aTemporary.replaceAll( OUString( &nChar, 1 ), "" );
} while ( nIndex < aGroupSeparator.getLength() );
if ( nDecSep >= 0 )
aInputString = aTemporary + aInputString.copy( nDecSep );
else
aInputString = aTemporary;
}
for ( sal_Int32 i = aInputString.getLength(); --i >= 0; )
{
sal_Unicode c = aInputString[ i ];
if ( c == 0x0020 || c == 0x0009 || c == 0x000A || c == 0x000D )
aInputString = aInputString.replaceAt( i, 1, "" ); // remove spaces etc.
}
sal_Int32 nPercentCount = 0;
for ( sal_Int32 i = aInputString.getLength() - 1; i >= 0 && aInputString[ i ] == 0x0025; i-- )
{
aInputString = aInputString.replaceAt( i, 1, "" ); // remove and count trailing '%'
nPercentCount++;
}
rtl_math_ConversionStatus eStatus;
sal_Int32 nParseEnd;
double fVal = ::rtl::math::stringToDouble( aInputString, cDecimalSeparator, 0, &eStatus, &nParseEnd );
if ( eStatus == rtl_math_ConversionStatus_Ok && nParseEnd == aInputString.getLength() )
{
if (nPercentCount)
fVal *= pow( 10.0, -(nPercentCount * 2)); // process '%' from input string
PushDouble(fVal);
return;
}
PushNoValue();
}
//2do: this should be a proper unicode string method
static inline bool lcl_ScInterpreter_IsPrintable( sal_Unicode c )
{
return 0x20 <= c && c != 0x7f;
}
void ScInterpreter::ScClean()
{
OUString aStr = GetString().getString();
for ( xub_StrLen i = 0; i < aStr.getLength(); i++ )
{
if ( !lcl_ScInterpreter_IsPrintable( aStr[i] ) )
aStr = aStr.replaceAt(i,1,"");
}
PushString(aStr);
}
void ScInterpreter::ScCode()
{
//2do: make it full range unicode?
OUString aStr = GetString().getString();
//"classic" ByteString conversion flags
const sal_uInt32 convertFlags =
RTL_UNICODETOTEXT_FLAGS_NONSPACING_IGNORE |
RTL_UNICODETOTEXT_FLAGS_CONTROL_IGNORE |
RTL_UNICODETOTEXT_FLAGS_FLUSH |
RTL_UNICODETOTEXT_FLAGS_UNDEFINED_DEFAULT |
RTL_UNICODETOTEXT_FLAGS_INVALID_DEFAULT |
RTL_UNICODETOTEXT_FLAGS_UNDEFINED_REPLACE;
PushInt( (sal_uChar) OUStringToOString(OUString(aStr[0]), osl_getThreadTextEncoding(), convertFlags).toChar() );
}
void ScInterpreter::ScChar()
{
//2do: make it full range unicode?
double fVal = GetDouble();
if (fVal < 0.0 || fVal >= 256.0)
PushIllegalArgument();
else
{
//"classic" ByteString conversion flags
const sal_uInt32 convertFlags =
RTL_TEXTTOUNICODE_FLAGS_UNDEFINED_DEFAULT |
RTL_TEXTTOUNICODE_FLAGS_MBUNDEFINED_DEFAULT |
RTL_TEXTTOUNICODE_FLAGS_INVALID_DEFAULT;
sal_Char cEncodedChar = static_cast<sal_Char>(fVal);
OUString aStr(&cEncodedChar, 1, osl_getThreadTextEncoding(), convertFlags);
PushString(aStr);
}
}
/* #i70213# fullwidth/halfwidth conversion provided by
* Takashi Nakamoto <bluedwarf@ooo>
* erAck: added Excel compatibility conversions as seen in issue's test case. */
static OUString lcl_convertIntoHalfWidth( const OUString & rStr )
{
static bool bFirstASCCall = true;
static utl::TransliterationWrapper aTrans( ::comphelper::getProcessComponentContext(), 0 );
if( bFirstASCCall )
{
aTrans.loadModuleByImplName( OUString( "FULLWIDTH_HALFWIDTH_LIKE_ASC" ), LANGUAGE_SYSTEM );
bFirstASCCall = false;
}
return aTrans.transliterate( rStr, 0, sal_uInt16( rStr.getLength() ), NULL );
}
static OUString lcl_convertIntoFullWidth( const OUString & rStr )
{
static bool bFirstJISCall = true;
static utl::TransliterationWrapper aTrans( ::comphelper::getProcessComponentContext(), 0 );
if( bFirstJISCall )
{
aTrans.loadModuleByImplName( OUString( "HALFWIDTH_FULLWIDTH_LIKE_JIS" ), LANGUAGE_SYSTEM );
bFirstJISCall = false;
}
return aTrans.transliterate( rStr, 0, sal_uInt16( rStr.getLength() ), NULL );
}
/* ODFF:
* Summary: Converts half-width to full-width ASCII and katakana characters.
* Semantics: Conversion is done for half-width ASCII and katakana characters,
* other characters are simply copied from T to the result. This is the
* complementary function to ASC.
* For references regarding halfwidth and fullwidth characters see
* http://www.unicode.org/reports/tr11/
* http://www.unicode.org/charts/charindex2.html#H
* http://www.unicode.org/charts/charindex2.html#F
*/
void ScInterpreter::ScJis()
{
if (MustHaveParamCount( GetByte(), 1))
PushString( lcl_convertIntoFullWidth( GetString().getString()));
}
/* ODFF:
* Summary: Converts full-width to half-width ASCII and katakana characters.
* Semantics: Conversion is done for full-width ASCII and katakana characters,
* other characters are simply copied from T to the result. This is the
* complementary function to JIS.
*/
void ScInterpreter::ScAsc()
{
if (MustHaveParamCount( GetByte(), 1))
PushString( lcl_convertIntoHalfWidth( GetString().getString()));
}
void ScInterpreter::ScUnicode()
{
if ( MustHaveParamCount( GetByte(), 1 ) )
{
OUString aStr = GetString().getString();
if (aStr.isEmpty())
PushIllegalParameter();
else
{
sal_Int32 i = 0;
PushDouble(aStr.iterateCodePoints(&i));
}
}
}
void ScInterpreter::ScUnichar()
{
if ( MustHaveParamCount( GetByte(), 1 ) )
{
double dVal = ::rtl::math::approxFloor( GetDouble() );
if ((dVal < 0x000000) || (dVal > 0x10FFFF))
PushIllegalArgument();
else
{
sal_uInt32 nCodePoint = static_cast<sal_uInt32>( dVal );
OUString aStr( &nCodePoint, 1 );
PushString( aStr );
}
}
}
void ScInterpreter::ScMin( bool bTextAsZero )
{
short nParamCount = GetByte();
if (!MustHaveParamCountMin( nParamCount, 1))
return;
double nMin = ::std::numeric_limits<double>::max();
double nVal = 0.0;
ScAddress aAdr;
ScRange aRange;
size_t nRefInList = 0;
while (nParamCount-- > 0)
{
switch (GetStackType())
{
case svDouble :
{
nVal = GetDouble();
if (nMin > nVal) nMin = nVal;
nFuncFmtType = NUMBERFORMAT_NUMBER;
}
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
nVal = GetCellValue(aAdr, aCell);
CurFmtToFuncFmt();
if (nMin > nVal) nMin = nVal;
}
else if (bTextAsZero && aCell.hasString())
{
if ( nMin > 0.0 )
nMin = 0.0;
}
}
break;
case svDoubleRef :
case svRefList :
{
sal_uInt16 nErr = 0;
PopDoubleRef( aRange, nParamCount, nRefInList);
ScValueIterator aValIter( pDok, aRange, glSubTotal, bTextAsZero );
if (aValIter.GetFirst(nVal, nErr))
{
if (nMin > nVal)
nMin = nVal;
aValIter.GetCurNumFmtInfo( nFuncFmtType, nFuncFmtIndex );
while ((nErr == 0) && aValIter.GetNext(nVal, nErr))
{
if (nMin > nVal)
nMin = nVal;
}
SetError(nErr);
}
}
break;
case svMatrix :
case svExternalSingleRef:
case svExternalDoubleRef:
{
ScMatrixRef pMat = GetMatrix();
if (pMat)
{
nFuncFmtType = NUMBERFORMAT_NUMBER;
nVal = pMat->GetMinValue(bTextAsZero);
if (nMin > nVal)
nMin = nVal;
}
}
break;
case svString :
{
Pop();
if ( bTextAsZero )
{
if ( nMin > 0.0 )
nMin = 0.0;
}
else
SetError(errIllegalParameter);
}
break;
default :
Pop();
SetError(errIllegalParameter);
}
}
if ( nVal < nMin )
PushDouble(0.0);
else
PushDouble(nMin);
}
void ScInterpreter::ScMax( bool bTextAsZero )
{
short nParamCount = GetByte();
if (!MustHaveParamCountMin( nParamCount, 1))
return;
double nMax = -(::std::numeric_limits<double>::max());
double nVal = 0.0;
ScAddress aAdr;
ScRange aRange;
size_t nRefInList = 0;
while (nParamCount-- > 0)
{
switch (GetStackType())
{
case svDouble :
{
nVal = GetDouble();
if (nMax < nVal) nMax = nVal;
nFuncFmtType = NUMBERFORMAT_NUMBER;
}
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
nVal = GetCellValue(aAdr, aCell);
CurFmtToFuncFmt();
if (nMax < nVal) nMax = nVal;
}
else if (bTextAsZero && aCell.hasString())
{
if ( nMax < 0.0 )
nMax = 0.0;
}
}
break;
case svDoubleRef :
case svRefList :
{
sal_uInt16 nErr = 0;
PopDoubleRef( aRange, nParamCount, nRefInList);
ScValueIterator aValIter( pDok, aRange, glSubTotal, bTextAsZero );
if (aValIter.GetFirst(nVal, nErr))
{
if (nMax < nVal)
nMax = nVal;
aValIter.GetCurNumFmtInfo( nFuncFmtType, nFuncFmtIndex );
while ((nErr == 0) && aValIter.GetNext(nVal, nErr))
{
if (nMax < nVal)
nMax = nVal;
}
SetError(nErr);
}
}
break;
case svMatrix :
case svExternalSingleRef:
case svExternalDoubleRef:
{
ScMatrixRef pMat = GetMatrix();
if (pMat)
{
nFuncFmtType = NUMBERFORMAT_NUMBER;
nVal = pMat->GetMaxValue(bTextAsZero);
if (nMax < nVal)
nMax = nVal;
}
}
break;
case svString :
{
Pop();
if ( bTextAsZero )
{
if ( nMax < 0.0 )
nMax = 0.0;
}
else
SetError(errIllegalParameter);
}
break;
default :
Pop();
SetError(errIllegalParameter);
}
}
if ( nVal > nMax )
PushDouble(0.0);
else
PushDouble(nMax);
}
void ScInterpreter::GetStVarParams( double& rVal, double& rValCount,
bool bTextAsZero )
{
short nParamCount = GetByte();
std::vector<double> values;
double fSum = 0.0;
double vSum = 0.0;
double vMean = 0.0;
double fVal = 0.0;
rValCount = 0.0;
ScAddress aAdr;
ScRange aRange;
size_t nRefInList = 0;
while (nParamCount-- > 0)
{
switch (GetStackType())
{
case svDouble :
{
fVal = GetDouble();
values.push_back(fVal);
fSum += fVal;
rValCount++;
}
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
fVal = GetCellValue(aAdr, aCell);
values.push_back(fVal);
fSum += fVal;
rValCount++;
}
else if (bTextAsZero && aCell.hasString())
{
values.push_back(0.0);
rValCount++;
}
}
break;
case svDoubleRef :
case svRefList :
{
sal_uInt16 nErr = 0;
PopDoubleRef( aRange, nParamCount, nRefInList);
ScValueIterator aValIter( pDok, aRange, glSubTotal, bTextAsZero );
if (aValIter.GetFirst(fVal, nErr))
{
do
{
values.push_back(fVal);
fSum += fVal;
rValCount++;
}
while ((nErr == 0) && aValIter.GetNext(fVal, nErr));
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
if (pMat)
{
SCSIZE nC, nR;
pMat->GetDimensions(nC, nR);
for (SCSIZE nMatCol = 0; nMatCol < nC; nMatCol++)
{
for (SCSIZE nMatRow = 0; nMatRow < nR; nMatRow++)
{
if (!pMat->IsString(nMatCol,nMatRow))
{
fVal= pMat->GetDouble(nMatCol,nMatRow);
values.push_back(fVal);
fSum += fVal;
rValCount++;
}
else if ( bTextAsZero )
{
values.push_back(0.0);
rValCount++;
}
}
}
}
}
break;
case svString :
{
Pop();
if ( bTextAsZero )
{
values.push_back(0.0);
rValCount++;
}
else
SetError(errIllegalParameter);
}
break;
default :
Pop();
SetError(errIllegalParameter);
}
}
::std::vector<double>::size_type n = values.size();
vMean = fSum / n;
for (::std::vector<double>::size_type i = 0; i < n; i++)
vSum += ::rtl::math::approxSub( values[i], vMean) * ::rtl::math::approxSub( values[i], vMean);
rVal = vSum;
}
void ScInterpreter::ScVar( bool bTextAsZero )
{
double nVal;
double nValCount;
GetStVarParams( nVal, nValCount, bTextAsZero );
if (nValCount <= 1.0)
PushError( errDivisionByZero );
else
PushDouble( nVal / (nValCount - 1.0));
}
void ScInterpreter::ScVarP( bool bTextAsZero )
{
double nVal;
double nValCount;
GetStVarParams( nVal, nValCount, bTextAsZero );
PushDouble( div( nVal, nValCount));
}
void ScInterpreter::ScStDev( bool bTextAsZero )
{
double nVal;
double nValCount;
GetStVarParams( nVal, nValCount, bTextAsZero );
if (nValCount <= 1.0)
PushError( errDivisionByZero );
else
PushDouble( sqrt( nVal / (nValCount - 1.0)));
}
void ScInterpreter::ScStDevP( bool bTextAsZero )
{
double nVal;
double nValCount;
GetStVarParams( nVal, nValCount, bTextAsZero );
if (nValCount == 0.0)
PushError( errDivisionByZero );
else
PushDouble( sqrt( nVal / nValCount));
/* this was: PushDouble( sqrt( div( nVal, nValCount)));
*
* Besides that the special NAN gets lost in the call through sqrt(),
* unxlngi6.pro then looped back and forth somewhere between div() and
* ::rtl::math::setNan(). Tests showed that
*
* sqrt( div( 1, 0));
*
* produced a loop, but
*
* double f1 = div( 1, 0);
* sqrt( f1 );
*
* was fine. There seems to be some compiler optimization problem. It does
* not occur when compiled with debug=t.
*/
}
void ScInterpreter::ScColumns()
{
sal_uInt8 nParamCount = GetByte();
sal_uLong nVal = 0;
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
SCCOL nCol2;
SCROW nRow2;
SCTAB nTab2;
while (nParamCount-- > 0)
{
switch ( GetStackType() )
{
case svSingleRef:
PopError();
nVal++;
break;
case svDoubleRef:
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
nVal += static_cast<sal_uLong>(nTab2 - nTab1 + 1) *
static_cast<sal_uLong>(nCol2 - nCol1 + 1);
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if (pMat)
{
SCSIZE nC, nR;
pMat->GetDimensions(nC, nR);
nVal += nC;
}
}
break;
case svExternalSingleRef:
PopError();
nVal++;
break;
case svExternalDoubleRef:
{
sal_uInt16 nFileId;
OUString aTabName;
ScComplexRefData aRef;
PopExternalDoubleRef( nFileId, aTabName, aRef);
ScRange aAbs = aRef.toAbs(aPos);
nVal += static_cast<sal_uLong>(aAbs.aEnd.Tab() - aAbs.aStart.Tab() + 1) *
static_cast<sal_uLong>(aAbs.aEnd.Col() - aAbs.aStart.Col() + 1);
}
break;
default:
PopError();
SetError(errIllegalParameter);
}
}
PushDouble((double)nVal);
}
void ScInterpreter::ScRows()
{
sal_uInt8 nParamCount = GetByte();
sal_uLong nVal = 0;
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
SCCOL nCol2;
SCROW nRow2;
SCTAB nTab2;
while (nParamCount-- > 0)
{
switch ( GetStackType() )
{
case svSingleRef:
PopError();
nVal++;
break;
case svDoubleRef:
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
nVal += static_cast<sal_uLong>(nTab2 - nTab1 + 1) *
static_cast<sal_uLong>(nRow2 - nRow1 + 1);
break;
case svMatrix:
{
ScMatrixRef pMat = PopMatrix();
if (pMat)
{
SCSIZE nC, nR;
pMat->GetDimensions(nC, nR);
nVal += nR;
}
}
break;
case svExternalSingleRef:
PopError();
nVal++;
break;
case svExternalDoubleRef:
{
sal_uInt16 nFileId;
OUString aTabName;
ScComplexRefData aRef;
PopExternalDoubleRef( nFileId, aTabName, aRef);
ScRange aAbs = aRef.toAbs(aPos);
nVal += static_cast<sal_uLong>(aAbs.aEnd.Tab() - aAbs.aStart.Tab() + 1) *
static_cast<sal_uLong>(aAbs.aEnd.Row() - aAbs.aStart.Row() + 1);
}
break;
default:
PopError();
SetError(errIllegalParameter);
}
}
PushDouble((double)nVal);
}
void ScInterpreter::ScTables()
{
sal_uInt8 nParamCount = GetByte();
sal_uLong nVal;
if ( nParamCount == 0 )
nVal = pDok->GetTableCount();
else
{
nVal = 0;
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
SCCOL nCol2;
SCROW nRow2;
SCTAB nTab2;
while (nParamCount-- > 0)
{
switch ( GetStackType() )
{
case svSingleRef:
PopError();
nVal++;
break;
case svDoubleRef:
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
nVal += static_cast<sal_uLong>(nTab2 - nTab1 + 1);
break;
case svMatrix:
PopError();
nVal++;
break;
case svExternalSingleRef:
PopError();
nVal++;
break;
case svExternalDoubleRef:
{
sal_uInt16 nFileId;
OUString aTabName;
ScComplexRefData aRef;
PopExternalDoubleRef( nFileId, aTabName, aRef);
ScRange aAbs = aRef.toAbs(aPos);
nVal += static_cast<sal_uLong>(aAbs.aEnd.Tab() - aAbs.aStart.Tab() + 1);
}
break;
default:
PopError();
SetError( errIllegalParameter );
}
}
}
PushDouble( (double) nVal );
}
void ScInterpreter::ScColumn()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 0, 1 ) )
{
double nVal = 0;
if (nParamCount == 0)
{
nVal = aPos.Col() + 1;
if (bMatrixFormula)
{
SCCOL nCols;
SCROW nRows;
pMyFormulaCell->GetMatColsRows( nCols, nRows);
if (nCols == 0)
{
// Happens if called via ScViewFunc::EnterMatrix()
// ScFormulaCell::GetResultDimensions() as of course a
// matrix result is not available yet.
nCols = 1;
}
ScMatrixRef pResMat = GetNewMat( static_cast<SCSIZE>(nCols), 1);
if (pResMat)
{
for (SCCOL i=0; i < nCols; ++i)
pResMat->PutDouble( nVal + i, static_cast<SCSIZE>(i), 0);
PushMatrix( pResMat);
return;
}
}
}
else
{
switch ( GetStackType() )
{
case svSingleRef :
{
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
PopSingleRef( nCol1, nRow1, nTab1 );
nVal = (double) (nCol1 + 1);
}
break;
case svDoubleRef :
{
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
SCCOL nCol2;
SCROW nRow2;
SCTAB nTab2;
PopDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
if (nCol2 > nCol1)
{
ScMatrixRef pResMat = GetNewMat(
static_cast<SCSIZE>(nCol2-nCol1+1), 1);
if (pResMat)
{
for (SCCOL i = nCol1; i <= nCol2; i++)
pResMat->PutDouble((double)(i+1),
static_cast<SCSIZE>(i-nCol1), 0);
PushMatrix(pResMat);
return;
}
else
nVal = 0.0;
}
else
nVal = (double) (nCol1 + 1);
}
break;
default:
SetError( errIllegalParameter );
nVal = 0.0;
}
}
PushDouble( nVal );
}
}
void ScInterpreter::ScRow()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 0, 1 ) )
{
double nVal = 0;
if (nParamCount == 0)
{
nVal = aPos.Row() + 1;
if (bMatrixFormula)
{
SCCOL nCols;
SCROW nRows;
pMyFormulaCell->GetMatColsRows( nCols, nRows);
if (nRows == 0)
{
// Happens if called via ScViewFunc::EnterMatrix()
// ScFormulaCell::GetResultDimensions() as of course a
// matrix result is not available yet.
nRows = 1;
}
ScMatrixRef pResMat = GetNewMat( 1, static_cast<SCSIZE>(nRows));
if (pResMat)
{
for (SCROW i=0; i < nRows; i++)
pResMat->PutDouble( nVal + i, 0, static_cast<SCSIZE>(i));
PushMatrix( pResMat);
return;
}
}
}
else
{
switch ( GetStackType() )
{
case svSingleRef :
{
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
PopSingleRef( nCol1, nRow1, nTab1 );
nVal = (double) (nRow1 + 1);
}
break;
case svDoubleRef :
{
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
SCCOL nCol2;
SCROW nRow2;
SCTAB nTab2;
PopDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
if (nRow2 > nRow1)
{
ScMatrixRef pResMat = GetNewMat( 1,
static_cast<SCSIZE>(nRow2-nRow1+1));
if (pResMat)
{
for (SCROW i = nRow1; i <= nRow2; i++)
pResMat->PutDouble((double)(i+1), 0,
static_cast<SCSIZE>(i-nRow1));
PushMatrix(pResMat);
return;
}
else
nVal = 0.0;
}
else
nVal = (double) (nRow1 + 1);
}
break;
default:
SetError( errIllegalParameter );
nVal = 0.0;
}
}
PushDouble( nVal );
}
}
void ScInterpreter::ScTable()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 0, 1 ) )
{
SCTAB nVal = 0;
if ( nParamCount == 0 )
nVal = aPos.Tab() + 1;
else
{
switch ( GetStackType() )
{
case svString :
{
svl::SharedString aStr = PopString();
if ( pDok->GetTable(aStr.getString(), nVal))
++nVal;
else
SetError( errIllegalArgument );
}
break;
case svSingleRef :
{
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
PopSingleRef( nCol1, nRow1, nTab1 );
nVal = nTab1 + 1;
}
break;
case svDoubleRef :
{
SCCOL nCol1;
SCROW nRow1;
SCTAB nTab1;
SCCOL nCol2;
SCROW nRow2;
SCTAB nTab2;
PopDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
nVal = nTab1 + 1;
}
break;
default:
SetError( errIllegalParameter );
}
if ( nGlobalError )
nVal = 0;
}
PushDouble( (double) nVal );
}
}
namespace {
class VectorMatrixAccessor
{
public:
VectorMatrixAccessor(const ScMatrix& rMat, bool bColVec) :
mrMat(rMat), mbColVec(bColVec) {}
bool IsEmpty(SCSIZE i) const
{
return mbColVec ? mrMat.IsEmpty(0, i) : mrMat.IsEmpty(i, 0);
}
bool IsEmptyPath(SCSIZE i) const
{
return mbColVec ? mrMat.IsEmptyPath(0, i) : mrMat.IsEmptyPath(i, 0);
}
bool IsValue(SCSIZE i) const
{
return mbColVec ? mrMat.IsValue(0, i) : mrMat.IsValue(i, 0);
}
bool IsString(SCSIZE i) const
{
return mbColVec ? mrMat.IsString(0, i) : mrMat.IsString(i, 0);
}
double GetDouble(SCSIZE i) const
{
return mbColVec ? mrMat.GetDouble(0, i) : mrMat.GetDouble(i, 0);
}
OUString GetString(SCSIZE i) const
{
return mbColVec ? mrMat.GetString(0, i).getString() : mrMat.GetString(i, 0).getString();
}
SCSIZE GetElementCount() const
{
SCSIZE nC, nR;
mrMat.GetDimensions(nC, nR);
return mbColVec ? nR : nC;
}
private:
const ScMatrix& mrMat;
bool mbColVec;
};
/** returns -1 when the matrix value is smaller than the query value, 0 when
they are equal, and 1 when the matrix value is larger than the query
value. */
static sal_Int32 lcl_CompareMatrix2Query(
SCSIZE i, const VectorMatrixAccessor& rMat, const ScQueryEntry& rEntry)
{
if (rMat.IsEmpty(i))
{
/* TODO: in case we introduced query for real empty this would have to
* be changed! */
return -1; // empty always less than anything else
}
/* FIXME: what is an empty path (result of IF(false;true_path) in
* comparisons? */
bool bByString = rEntry.GetQueryItem().meType == ScQueryEntry::ByString;
if (rMat.IsValue(i))
{
if (bByString)
return -1; // numeric always less than string
const double nVal1 = rMat.GetDouble(i);
const double nVal2 = rEntry.GetQueryItem().mfVal;
if (nVal1 == nVal2)
return 0;
return nVal1 < nVal2 ? -1 : 1;
}
if (!bByString)
return 1; // string always greater than numeric
OUString aStr1 = rMat.GetString(i);
OUString aStr2 = rEntry.GetQueryItem().maString.getString();
return ScGlobal::GetCollator()->compareString(aStr1, aStr2); // case-insensitive
}
/** returns the last item with the identical value as the original item
value. */
static void lcl_GetLastMatch( SCSIZE& rIndex, const VectorMatrixAccessor& rMat,
SCSIZE nMatCount, bool bReverse)
{
if (rMat.IsValue(rIndex))
{
double nVal = rMat.GetDouble(rIndex);
if (bReverse)
while (rIndex > 0 && rMat.IsValue(rIndex-1) &&
nVal == rMat.GetDouble(rIndex-1))
--rIndex;
else
while (rIndex < nMatCount-1 && rMat.IsValue(rIndex+1) &&
nVal == rMat.GetDouble(rIndex+1))
++rIndex;
}
//! Order of IsEmptyPath, IsEmpty, IsString is significant!
else if (rMat.IsEmptyPath(rIndex))
{
if (bReverse)
while (rIndex > 0 && rMat.IsEmptyPath(rIndex-1))
--rIndex;
else
while (rIndex < nMatCount-1 && rMat.IsEmptyPath(rIndex+1))
++rIndex;
}
else if (rMat.IsEmpty(rIndex))
{
if (bReverse)
while (rIndex > 0 && rMat.IsEmpty(rIndex-1))
--rIndex;
else
while (rIndex < nMatCount-1 && rMat.IsEmpty(rIndex+1))
++rIndex;
}
else if (rMat.IsString(rIndex))
{
OUString aStr( rMat.GetString(rIndex));
if (bReverse)
while (rIndex > 0 && rMat.IsString(rIndex-1) &&
aStr == rMat.GetString(rIndex-1))
--rIndex;
else
while (rIndex < nMatCount-1 && rMat.IsString(rIndex+1) &&
aStr == rMat.GetString(rIndex+1))
++rIndex;
}
else
{
OSL_FAIL("lcl_GetLastMatch: unhandled matrix type");
}
}
}
void ScInterpreter::ScMatch()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 2, 3 ) )
{
double fTyp;
if (nParamCount == 3)
fTyp = GetDouble();
else
fTyp = 1.0;
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
SCCOL nCol2 = 0;
SCROW nRow2 = 0;
SCTAB nTab2 = 0;
ScMatrixRef pMatSrc = NULL;
switch (GetStackType())
{
case svSingleRef:
PopSingleRef( nCol1, nRow1, nTab1);
nCol2 = nCol1;
nRow2 = nRow1;
nTab2 = nTab1;
break;
case svDoubleRef:
{
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
if (nTab1 != nTab2 || (nCol1 != nCol2 && nRow1 != nRow2))
{
PushIllegalParameter();
return;
}
}
break;
case svMatrix:
case svExternalDoubleRef:
{
if (GetStackType() == svMatrix)
pMatSrc = PopMatrix();
else
PopExternalDoubleRef(pMatSrc);
if (!pMatSrc)
{
PushIllegalParameter();
return;
}
}
break;
default:
PushIllegalParameter();
return;
}
if (nGlobalError == 0)
{
double fVal;
ScQueryParam rParam;
rParam.nCol1 = nCol1;
rParam.nRow1 = nRow1;
rParam.nCol2 = nCol2;
rParam.nTab = nTab1;
ScQueryEntry& rEntry = rParam.GetEntry(0);
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
rEntry.bDoQuery = true;
if (fTyp < 0.0)
rEntry.eOp = SC_GREATER_EQUAL;
else if (fTyp > 0.0)
rEntry.eOp = SC_LESS_EQUAL;
switch ( GetStackType() )
{
case svDouble:
{
fVal = GetDouble();
rItem.mfVal = fVal;
rItem.meType = ScQueryEntry::ByValue;
}
break;
case svString:
{
rItem.meType = ScQueryEntry::ByString;
rItem.maString = GetString();
}
break;
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
{
PushInt(0);
return ;
}
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
fVal = GetCellValue(aAdr, aCell);
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = fVal;
}
else
{
GetCellString(rItem.maString, aCell);
rItem.meType = ScQueryEntry::ByString;
}
}
break;
case svExternalSingleRef:
{
ScExternalRefCache::TokenRef pToken;
PopExternalSingleRef(pToken);
if (!pToken)
{
PushInt(0);
return;
}
if (pToken->GetType() == svDouble)
{
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = pToken->GetDouble();
}
else
{
rItem.meType = ScQueryEntry::ByString;
rItem.maString = pToken->GetString();
}
}
break;
case svExternalDoubleRef:
// TODO: Implement this.
PushIllegalParameter();
return;
break;
case svMatrix :
{
svl::SharedString aStr;
ScMatValType nType = GetDoubleOrStringFromMatrix(
rItem.mfVal, aStr);
rItem.maString = aStr;
rItem.meType = ScMatrix::IsNonValueType(nType) ?
ScQueryEntry::ByString : ScQueryEntry::ByValue;
}
break;
default:
{
PushIllegalParameter();
return;
}
}
if (rItem.meType == ScQueryEntry::ByString)
{
bool bIsVBAMode = false;
if ( pDok )
bIsVBAMode = pDok->IsInVBAMode();
// #TODO handle MSO wildcards
if ( bIsVBAMode )
rParam.bRegExp = false;
else
rParam.bRegExp = MayBeRegExp(rEntry.GetQueryItem().maString.getString(), pDok);
}
if (pMatSrc) // The source data is matrix array.
{
SCSIZE nC, nR;
pMatSrc->GetDimensions( nC, nR);
if (nC > 1 && nR > 1)
{
// The source matrix must be a vector.
PushIllegalParameter();
return;
}
SCSIZE nMatCount = (nC == 1) ? nR : nC;
VectorMatrixAccessor aMatAcc(*pMatSrc, nC == 1);
// simple serial search for equality mode (source data doesn't
// need to be sorted).
if (rEntry.eOp == SC_EQUAL)
{
for (SCSIZE i = 0; i < nMatCount; ++i)
{
if (lcl_CompareMatrix2Query( i, aMatAcc, rEntry) == 0)
{
PushDouble(i+1); // found !
return;
}
}
PushNA(); // not found
return;
}
// binary search for non-equality mode (the source data is
// assumed to be sorted).
bool bAscOrder = (rEntry.eOp == SC_LESS_EQUAL);
SCSIZE nFirst = 0, nLast = nMatCount-1, nHitIndex = 0;
for (SCSIZE nLen = nLast-nFirst; nLen > 0; nLen = nLast-nFirst)
{
SCSIZE nMid = nFirst + nLen/2;
sal_Int32 nCmp = lcl_CompareMatrix2Query( nMid, aMatAcc, rEntry);
if (nCmp == 0)
{
// exact match. find the last item with the same value.
lcl_GetLastMatch( nMid, aMatAcc, nMatCount, !bAscOrder);
PushDouble( nMid+1);
return;
}
if (nLen == 1) // first and last items are next to each other.
{
if (nCmp < 0)
nHitIndex = bAscOrder ? nLast : nFirst;
else
nHitIndex = bAscOrder ? nFirst : nLast;
break;
}
if (nCmp < 0)
{
if (bAscOrder)
nFirst = nMid;
else
nLast = nMid;
}
else
{
if (bAscOrder)
nLast = nMid;
else
nFirst = nMid;
}
}
if (nHitIndex == nMatCount-1) // last item
{
sal_Int32 nCmp = lcl_CompareMatrix2Query( nHitIndex, aMatAcc, rEntry);
if ((bAscOrder && nCmp <= 0) || (!bAscOrder && nCmp >= 0))
{
// either the last item is an exact match or the real
// hit is beyond the last item.
PushDouble( nHitIndex+1);
return;
}
}
if (nHitIndex > 0) // valid hit must be 2nd item or higher
{
PushDouble( nHitIndex); // non-exact match
return;
}
PushNA();
return;
}
SCCOLROW nDelta = 0;
if (nCol1 == nCol2)
{ // search row in column
rParam.nRow2 = nRow2;
rEntry.nField = nCol1;
ScAddress aResultPos( nCol1, nRow1, nTab1);
if (!LookupQueryWithCache( aResultPos, rParam))
{
PushNA();
return;
}
nDelta = aResultPos.Row() - nRow1;
}
else
{ // search column in row
SCCOL nC;
rParam.bByRow = false;
rParam.nRow2 = nRow1;
rEntry.nField = nCol1;
ScQueryCellIterator aCellIter(pDok, nTab1, rParam, false);
// Advance Entry.nField in Iterator if column changed
aCellIter.SetAdvanceQueryParamEntryField( true );
if (fTyp == 0.0)
{ // EQUAL
if ( aCellIter.GetFirst() )
nC = aCellIter.GetCol();
else
{
PushNA();
return;
}
}
else
{ // <= or >=
SCROW nR;
if ( !aCellIter.FindEqualOrSortedLastInRange( nC, nR ) )
{
PushNA();
return;
}
}
nDelta = nC - nCol1;
}
PushDouble((double) (nDelta + 1));
}
else
PushIllegalParameter();
}
}
void ScInterpreter::ScCountEmptyCells()
{
if ( MustHaveParamCount( GetByte(), 1 ) )
{
sal_uLong nMaxCount = 0, nCount = 0;
CellType eCellType;
switch (GetStackType())
{
case svSingleRef :
{
nMaxCount = 1;
ScAddress aAdr;
PopSingleRef( aAdr );
eCellType = pDok->GetCellType(aAdr);
if (eCellType != CELLTYPE_NONE)
nCount = 1;
}
break;
case svDoubleRef :
case svRefList :
{
ScRange aRange;
short nParam = 1;
size_t nRefInList = 0;
while (nParam-- > 0)
{
PopDoubleRef( aRange, nParam, nRefInList);
nMaxCount +=
static_cast<sal_uLong>(aRange.aEnd.Row() - aRange.aStart.Row() + 1) *
static_cast<sal_uLong>(aRange.aEnd.Col() - aRange.aStart.Col() + 1) *
static_cast<sal_uLong>(aRange.aEnd.Tab() - aRange.aStart.Tab() + 1);
ScCellIterator aIter( pDok, aRange, glSubTotal);
for (bool bHas = aIter.first(); bHas; bHas = aIter.next())
{
if (!aIter.hasEmptyData())
++nCount;
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
PushDouble(nMaxCount - nCount);
}
}
double ScInterpreter::IterateParametersIf( ScIterFuncIf eFunc )
{
sal_uInt8 nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
return 0;
SCCOL nCol3 = 0;
SCROW nRow3 = 0;
SCTAB nTab3 = 0;
ScMatrixRef pSumExtraMatrix;
bool bSumExtraRange = (nParamCount == 3);
if (bSumExtraRange)
{
// Save only the upperleft cell in case of cell range. The geometry
// of the 3rd parameter is taken from the 1st parameter.
switch ( GetStackType() )
{
case svDoubleRef :
{
SCCOL nColJunk = 0;
SCROW nRowJunk = 0;
SCTAB nTabJunk = 0;
PopDoubleRef( nCol3, nRow3, nTab3, nColJunk, nRowJunk, nTabJunk );
if ( nTabJunk != nTab3 )
{
SetError( errIllegalParameter);
return 0;
}
}
break;
case svSingleRef :
PopSingleRef( nCol3, nRow3, nTab3 );
break;
case svMatrix:
pSumExtraMatrix = PopMatrix();
//! nCol3, nRow3, nTab3 remain 0
break;
case svExternalSingleRef:
{
pSumExtraMatrix = new ScMatrix(1, 1, 0.0);
ScExternalRefCache::TokenRef pToken;
PopExternalSingleRef(pToken);
if (!pToken)
{
SetError( errIllegalParameter);
return 0;
}
if (pToken->GetType() == svDouble)
pSumExtraMatrix->PutDouble(pToken->GetDouble(), 0, 0);
else
pSumExtraMatrix->PutString(pToken->GetString(), 0, 0);
}
break;
case svExternalDoubleRef:
PopExternalDoubleRef(pSumExtraMatrix);
break;
default:
SetError( errIllegalParameter);
return 0;
}
}
svl::SharedString aString;
double fVal = 0.0;
bool bIsString = true;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
return 0;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
switch (aCell.meType)
{
case CELLTYPE_VALUE :
fVal = GetCellValue(aAdr, aCell);
bIsString = false;
break;
case CELLTYPE_FORMULA :
if (aCell.mpFormula->IsValue())
{
fVal = GetCellValue(aAdr, aCell);
bIsString = false;
}
else
GetCellString(aString, aCell);
break;
case CELLTYPE_STRING :
case CELLTYPE_EDIT :
GetCellString(aString, aCell);
break;
default:
fVal = 0.0;
bIsString = false;
}
}
break;
case svString:
aString = GetString();
break;
case svMatrix :
case svExternalDoubleRef:
{
ScMatValType nType = GetDoubleOrStringFromMatrix( fVal, aString);
bIsString = ScMatrix::IsNonValueType( nType);
}
break;
case svExternalSingleRef:
{
ScExternalRefCache::TokenRef pToken;
PopExternalSingleRef(pToken);
if (pToken)
{
if (pToken->GetType() == svDouble)
{
fVal = pToken->GetDouble();
bIsString = false;
}
else
aString = pToken->GetString();
}
}
break;
default:
{
fVal = GetDouble();
bIsString = false;
}
}
double fSum = 0.0;
double fMem = 0.0;
double fRes = 0.0;
double fCount = 0.0;
bool bNull = true;
short nParam = 1;
size_t nRefInList = 0;
while (nParam-- > 0)
{
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
SCCOL nCol2 = 0;
SCROW nRow2 = 0;
SCTAB nTab2 = 0;
ScMatrixRef pQueryMatrix;
switch ( GetStackType() )
{
case svRefList :
if (bSumExtraRange)
{
SetError( errIllegalParameter);
}
else
{
ScRange aRange;
PopDoubleRef( aRange, nParam, nRefInList);
aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
}
break;
case svDoubleRef :
PopDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
break;
case svSingleRef :
PopSingleRef( nCol1, nRow1, nTab1 );
nCol2 = nCol1;
nRow2 = nRow1;
nTab2 = nTab1;
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
pQueryMatrix = GetMatrix();
if (!pQueryMatrix)
{
SetError( errIllegalParameter);
return 0;
}
nCol1 = 0;
nRow1 = 0;
nTab1 = 0;
SCSIZE nC, nR;
pQueryMatrix->GetDimensions( nC, nR);
nCol2 = static_cast<SCCOL>(nC - 1);
nRow2 = static_cast<SCROW>(nR - 1);
nTab2 = 0;
}
break;
default:
SetError( errIllegalParameter);
}
if ( nTab1 != nTab2 )
{
SetError( errIllegalParameter);
}
if (bSumExtraRange)
{
// Take the range geometry of the 1st parameter and apply it to
// the 3rd. If parts of the resulting range would point outside
// the sheet, don't complain but silently ignore and simply cut
// them away, this is what Xcl does :-/
// For the cut-away part we also don't need to determine the
// criteria match, so shrink the source range accordingly,
// instead of the result range.
SCCOL nColDelta = nCol2 - nCol1;
SCROW nRowDelta = nRow2 - nRow1;
SCCOL nMaxCol;
SCROW nMaxRow;
if (pSumExtraMatrix)
{
SCSIZE nC, nR;
pSumExtraMatrix->GetDimensions( nC, nR);
nMaxCol = static_cast<SCCOL>(nC - 1);
nMaxRow = static_cast<SCROW>(nR - 1);
}
else
{
nMaxCol = MAXCOL;
nMaxRow = MAXROW;
}
if (nCol3 + nColDelta > nMaxCol)
{
SCCOL nNewDelta = nMaxCol - nCol3;
nCol2 = nCol1 + nNewDelta;
}
if (nRow3 + nRowDelta > nMaxRow)
{
SCROW nNewDelta = nMaxRow - nRow3;
nRow2 = nRow1 + nNewDelta;
}
}
else
{
nCol3 = nCol1;
nRow3 = nRow1;
nTab3 = nTab1;
}
if (nGlobalError == 0)
{
ScQueryParam rParam;
rParam.nRow1 = nRow1;
rParam.nRow2 = nRow2;
ScQueryEntry& rEntry = rParam.GetEntry(0);
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
rEntry.bDoQuery = true;
if (!bIsString)
{
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = fVal;
rEntry.eOp = SC_EQUAL;
}
else
{
rParam.FillInExcelSyntax(pDok->GetSharedStringPool(), aString.getString(), 0);
sal_uInt32 nIndex = 0;
bool bNumber = pFormatter->IsNumberFormat(
rItem.maString.getString(), nIndex, rItem.mfVal);
rItem.meType = bNumber ? ScQueryEntry::ByValue : ScQueryEntry::ByString;
if (rItem.meType == ScQueryEntry::ByString)
rParam.bRegExp = MayBeRegExp(rItem.maString.getString(), pDok);
}
ScAddress aAdr;
aAdr.SetTab( nTab3 );
rParam.nCol1 = nCol1;
rParam.nCol2 = nCol2;
rEntry.nField = nCol1;
SCsCOL nColDiff = nCol3 - nCol1;
SCsROW nRowDiff = nRow3 - nRow1;
if (pQueryMatrix)
{
// Never case-sensitive.
sc::CompareOptions aOptions( pDok, rEntry, rParam.bRegExp);
ScMatrixRef pResultMatrix = QueryMat( pQueryMatrix, aOptions);
if (nGlobalError || !pResultMatrix)
{
SetError( errIllegalParameter);
}
if (pSumExtraMatrix)
{
for (SCCOL nCol = nCol1; nCol <= nCol2; ++nCol)
{
for (SCROW nRow = nRow1; nRow <= nRow2; ++nRow)
{
if (pResultMatrix->IsValue( nCol, nRow) &&
pResultMatrix->GetDouble( nCol, nRow))
{
SCSIZE nC = nCol + nColDiff;
SCSIZE nR = nRow + nRowDiff;
if (pSumExtraMatrix->IsValue( nC, nR))
{
fVal = pSumExtraMatrix->GetDouble( nC, nR);
++fCount;
if ( bNull && fVal != 0.0 )
{
bNull = false;
fMem = fVal;
}
else
fSum += fVal;
}
}
}
}
}
else
{
for (SCCOL nCol = nCol1; nCol <= nCol2; ++nCol)
{
for (SCROW nRow = nRow1; nRow <= nRow2; ++nRow)
{
if (pResultMatrix->GetDouble( nCol, nRow))
{
aAdr.SetCol( nCol + nColDiff);
aAdr.SetRow( nRow + nRowDiff);
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
fVal = GetCellValue(aAdr, aCell);
++fCount;
if ( bNull && fVal != 0.0 )
{
bNull = false;
fMem = fVal;
}
else
fSum += fVal;
}
}
}
}
}
}
else
{
ScQueryCellIterator aCellIter(pDok, nTab1, rParam, false);
// Increment Entry.nField in iterator when switching to next column.
aCellIter.SetAdvanceQueryParamEntryField( true );
if ( aCellIter.GetFirst() )
{
if (pSumExtraMatrix)
{
do
{
SCSIZE nC = aCellIter.GetCol() + nColDiff;
SCSIZE nR = aCellIter.GetRow() + nRowDiff;
if (pSumExtraMatrix->IsValue( nC, nR))
{
fVal = pSumExtraMatrix->GetDouble( nC, nR);
++fCount;
if ( bNull && fVal != 0.0 )
{
bNull = false;
fMem = fVal;
}
else
fSum += fVal;
}
} while ( aCellIter.GetNext() );
}
else
{
do
{
aAdr.SetCol( aCellIter.GetCol() + nColDiff);
aAdr.SetRow( aCellIter.GetRow() + nRowDiff);
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
fVal = GetCellValue(aAdr, aCell);
++fCount;
if ( bNull && fVal != 0.0 )
{
bNull = false;
fMem = fVal;
}
else
fSum += fVal;
}
} while ( aCellIter.GetNext() );
}
}
}
}
else
{
SetError( errIllegalParameter);
return 0;
}
}
switch( eFunc )
{
case ifSUMIF: fRes = ::rtl::math::approxAdd( fSum, fMem ); break;
case ifAVERAGEIF: fRes = div( ::rtl::math::approxAdd( fSum, fMem ), fCount); break;
}
return fRes;
}
void ScInterpreter::ScSumIf()
{
PushDouble( IterateParametersIf( ifSUMIF));
}
void ScInterpreter::ScAverageIf()
{
PushDouble( IterateParametersIf( ifAVERAGEIF));
}
void ScInterpreter::ScCountIf()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
svl::SharedString aString;
double fVal = 0.0;
bool bIsString = true;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
{
PushInt(0);
return ;
}
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
switch (aCell.meType)
{
case CELLTYPE_VALUE :
fVal = GetCellValue(aAdr, aCell);
bIsString = false;
break;
case CELLTYPE_FORMULA :
if (aCell.mpFormula->IsValue())
{
fVal = GetCellValue(aAdr, aCell);
bIsString = false;
}
else
GetCellString(aString, aCell);
break;
case CELLTYPE_STRING :
case CELLTYPE_EDIT :
GetCellString(aString, aCell);
break;
default:
fVal = 0.0;
bIsString = false;
}
}
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
ScMatValType nType = GetDoubleOrStringFromMatrix(fVal, aString);
bIsString = ScMatrix::IsNonValueType( nType);
}
break;
case svString:
aString = GetString();
break;
default:
{
fVal = GetDouble();
bIsString = false;
}
}
double fCount = 0.0;
short nParam = 1;
size_t nRefInList = 0;
while (nParam-- > 0)
{
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
SCCOL nCol2 = 0;
SCROW nRow2 = 0;
SCTAB nTab2 = 0;
ScMatrixRef pQueryMatrix;
switch ( GetStackType() )
{
case svDoubleRef :
case svRefList :
{
ScRange aRange;
PopDoubleRef( aRange, nParam, nRefInList);
aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
}
break;
case svSingleRef :
PopSingleRef( nCol1, nRow1, nTab1 );
nCol2 = nCol1;
nRow2 = nRow1;
nTab2 = nTab1;
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
pQueryMatrix = GetMatrix();
if (!pQueryMatrix)
{
PushIllegalParameter();
return;
}
nCol1 = 0;
nRow1 = 0;
nTab1 = 0;
SCSIZE nC, nR;
pQueryMatrix->GetDimensions( nC, nR);
nCol2 = static_cast<SCCOL>(nC - 1);
nRow2 = static_cast<SCROW>(nR - 1);
nTab2 = 0;
}
break;
default:
PushIllegalParameter();
return ;
}
if ( nTab1 != nTab2 )
{
PushIllegalParameter();
return;
}
if (nCol1 > nCol2)
{
PushIllegalParameter();
return;
}
if (nGlobalError == 0)
{
ScQueryParam rParam;
rParam.nRow1 = nRow1;
rParam.nRow2 = nRow2;
ScQueryEntry& rEntry = rParam.GetEntry(0);
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
rEntry.bDoQuery = true;
if (!bIsString)
{
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = fVal;
rEntry.eOp = SC_EQUAL;
}
else
{
rParam.FillInExcelSyntax(pDok->GetSharedStringPool(), aString.getString(), 0);
sal_uInt32 nIndex = 0;
bool bNumber = pFormatter->IsNumberFormat(
rItem.maString.getString(), nIndex, rItem.mfVal);
rItem.meType = bNumber ? ScQueryEntry::ByValue : ScQueryEntry::ByString;
if (rItem.meType == ScQueryEntry::ByString)
rParam.bRegExp = MayBeRegExp(rItem.maString.getString(), pDok);
}
rParam.nCol1 = nCol1;
rParam.nCol2 = nCol2;
rEntry.nField = nCol1;
if (pQueryMatrix)
{
// Never case-sensitive.
sc::CompareOptions aOptions( pDok, rEntry, rParam.bRegExp);
ScMatrixRef pResultMatrix = QueryMat( pQueryMatrix, aOptions);
if (nGlobalError || !pResultMatrix)
{
PushIllegalParameter();
return;
}
SCSIZE nSize = pResultMatrix->GetElementCount();
for (SCSIZE nIndex = 0; nIndex < nSize; ++nIndex)
{
if (pResultMatrix->IsValue( nIndex) &&
pResultMatrix->GetDouble( nIndex))
++fCount;
}
}
else
{
ScQueryCellIterator aCellIter(pDok, nTab1, rParam, false);
// Keep Entry.nField in iterator on column change
aCellIter.SetAdvanceQueryParamEntryField( true );
if ( aCellIter.GetFirst() )
{
do
{
fCount++;
} while ( aCellIter.GetNext() );
}
}
}
else
{
PushIllegalParameter();
return;
}
}
PushDouble(fCount);
}
}
double ScInterpreter::IterateParametersIfs( ScIterFuncIfs eFunc )
{
sal_uInt8 nParamCount = GetByte();
sal_uInt8 nQueryCount = nParamCount / 2;
bool bCheck;
if ( eFunc == ifCOUNTIFS )
bCheck = (nParamCount >= 2) && (nParamCount % 2 == 0);
else
bCheck = (nParamCount >= 3) && (nParamCount % 2 == 1);
if ( !bCheck )
{
SetError( errParameterExpected);
}
else
{
ScMatrixRef pResMat;
double fVal = 0.0;
double fSum = 0.0;
double fMem = 0.0;
double fRes = 0.0;
double fCount = 0.0;
short nParam = 1;
size_t nRefInList = 0;
SCCOL nDimensionCols = 0;
SCROW nDimensionRows = 0;
while (nParamCount > 1 && !nGlobalError)
{
// take criteria
svl::SharedString aString;
fVal = 0.0;
bool bIsString = true;
switch ( GetStackType() )
{
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
return 0;
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
switch (aCell.meType)
{
case CELLTYPE_VALUE :
fVal = GetCellValue(aAdr, aCell);
bIsString = false;
break;
case CELLTYPE_FORMULA :
if (aCell.mpFormula->IsValue())
{
fVal = GetCellValue(aAdr, aCell);
bIsString = false;
}
else
GetCellString(aString, aCell);
break;
case CELLTYPE_STRING :
case CELLTYPE_EDIT :
GetCellString(aString, aCell);
break;
default:
fVal = 0.0;
bIsString = false;
}
}
break;
case svString:
aString = GetString();
break;
case svMatrix :
case svExternalDoubleRef:
{
ScMatValType nType = GetDoubleOrStringFromMatrix( fVal, aString);
bIsString = ScMatrix::IsNonValueType( nType);
}
break;
case svExternalSingleRef:
{
ScExternalRefCache::TokenRef pToken;
PopExternalSingleRef(pToken);
if (pToken)
{
if (pToken->GetType() == svDouble)
{
fVal = pToken->GetDouble();
bIsString = false;
}
else
aString = pToken->GetString();
}
}
break;
default:
{
fVal = GetDouble();
bIsString = false;
}
}
if (nGlobalError)
continue; // and bail out, no need to evaluate other arguments
// take range
nParam = 1;
nRefInList = 0;
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
SCCOL nCol2 = 0;
SCROW nRow2 = 0;
SCTAB nTab2 = 0;
ScMatrixRef pQueryMatrix;
switch ( GetStackType() )
{
case svRefList :
{
ScRange aRange;
PopDoubleRef( aRange, nParam, nRefInList);
aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
}
break;
case svDoubleRef :
PopDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
break;
case svSingleRef :
PopSingleRef( nCol1, nRow1, nTab1 );
nCol2 = nCol1;
nRow2 = nRow1;
nTab2 = nTab1;
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
pQueryMatrix = PopMatrix();
if (!pQueryMatrix)
{
SetError( errIllegalParameter);
}
nCol1 = 0;
nRow1 = 0;
nTab1 = 0;
SCSIZE nC, nR;
pQueryMatrix->GetDimensions( nC, nR);
nCol2 = static_cast<SCCOL>(nC - 1);
nRow2 = static_cast<SCROW>(nR - 1);
nTab2 = 0;
}
break;
default:
SetError( errIllegalParameter);
}
if ( nTab1 != nTab2 )
SetError( errIllegalArgument);
// All reference ranges must be of same dimension and size.
if (!nDimensionCols)
nDimensionCols = nCol2 - nCol1 + 1;
if (!nDimensionRows)
nDimensionRows = nRow2 - nRow1 + 1;
if ((nDimensionCols != (nCol2 - nCol1 + 1)) || (nDimensionRows != (nRow2 - nRow1 + 1)))
SetError ( errIllegalArgument);
// recalculate matrix values
if (nGlobalError == 0)
{
// initialize temporary result matrix
if (!pResMat)
{
SCSIZE nResC, nResR;
nResC = nCol2 - nCol1 + 1;
nResR = nRow2 - nRow1 + 1;
pResMat = GetNewMat(nResC, nResR);
if (!pResMat)
SetError( errIllegalParameter);
else
pResMat->FillDouble( 0.0, 0, 0, nResC-1, nResR-1);
}
ScQueryParam rParam;
rParam.nRow1 = nRow1;
rParam.nRow2 = nRow2;
ScQueryEntry& rEntry = rParam.GetEntry(0);
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
rEntry.bDoQuery = true;
if (!bIsString)
{
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = fVal;
rEntry.eOp = SC_EQUAL;
}
else
{
rParam.FillInExcelSyntax(pDok->GetSharedStringPool(), aString.getString(), 0);
sal_uInt32 nIndex = 0;
bool bNumber = pFormatter->IsNumberFormat(
rItem.maString.getString(), nIndex, rItem.mfVal);
rItem.meType = bNumber ? ScQueryEntry::ByValue : ScQueryEntry::ByString;
if (rItem.meType == ScQueryEntry::ByString)
rParam.bRegExp = MayBeRegExp(rItem.maString.getString(), pDok);
}
ScAddress aAdr;
aAdr.SetTab( nTab1 );
rParam.nCol1 = nCol1;
rParam.nCol2 = nCol2;
rEntry.nField = nCol1;
SCsCOL nColDiff = -nCol1;
SCsROW nRowDiff = -nRow1;
if (pQueryMatrix)
{
// Never case-sensitive.
sc::CompareOptions aOptions( pDok, rEntry, rParam.bRegExp);
ScMatrixRef pResultMatrix = QueryMat( pQueryMatrix, aOptions);
if (nGlobalError || !pResultMatrix)
{
SetError( errIllegalParameter);
}
for (SCCOL nCol = nCol1; nCol <= nCol2; ++nCol)
{
for (SCROW nRow = nRow1; nRow <= nRow2; ++nRow)
{
if (pResultMatrix->IsValue( nCol, nRow) &&
pResultMatrix->GetDouble( nCol, nRow))
{
SCSIZE nC = nCol + nColDiff;
SCSIZE nR = nRow + nRowDiff;
pResMat->PutDouble(pResMat->GetDouble(nC, nR)+1.0, nC, nR);
}
}
}
}
else
{
ScQueryCellIterator aCellIter(pDok, nTab1, rParam, false);
// Increment Entry.nField in iterator when switching to next column.
aCellIter.SetAdvanceQueryParamEntryField( true );
if ( aCellIter.GetFirst() )
{
do
{
SCSIZE nC = aCellIter.GetCol() + nColDiff;
SCSIZE nR = aCellIter.GetRow() + nRowDiff;
pResMat->PutDouble(pResMat->GetDouble(nC, nR)+1.0, nC, nR);
} while ( aCellIter.GetNext() );
}
}
}
nParamCount -= 2;
}
if (nGlobalError)
return 0; // bail out
// main range - only for AVERAGEIFS and SUMIFS
if (nParamCount == 1)
{
nParam = 1;
nRefInList = 0;
bool bNull = true;
SCCOL nMainCol1 = 0;
SCROW nMainRow1 = 0;
SCTAB nMainTab1 = 0;
SCCOL nMainCol2 = 0;
SCROW nMainRow2 = 0;
SCTAB nMainTab2 = 0;
ScMatrixRef pMainMatrix;
switch ( GetStackType() )
{
case svRefList :
{
ScRange aRange;
PopDoubleRef( aRange, nParam, nRefInList);
aRange.GetVars( nMainCol1, nMainRow1, nMainTab1, nMainCol2, nMainRow2, nMainTab2);
}
break;
case svDoubleRef :
PopDoubleRef( nMainCol1, nMainRow1, nMainTab1, nMainCol2, nMainRow2, nMainTab2 );
break;
case svSingleRef :
PopSingleRef( nMainCol1, nMainRow1, nMainTab1 );
nMainCol2 = nMainCol1;
nMainRow2 = nMainRow1;
nMainTab2 = nMainTab1;
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
pMainMatrix = PopMatrix();
if (!pMainMatrix)
{
SetError( errIllegalParameter);
}
nMainCol1 = 0;
nMainRow1 = 0;
nMainTab1 = 0;
SCSIZE nC, nR;
pMainMatrix->GetDimensions( nC, nR);
nMainCol2 = static_cast<SCCOL>(nC - 1);
nMainRow2 = static_cast<SCROW>(nR - 1);
nMainTab2 = 0;
}
break;
default:
SetError( errIllegalParameter);
}
if ( nMainTab1 != nMainTab2 )
SetError( errIllegalArgument);
// All reference ranges must be of same dimension and size.
if ((nDimensionCols != (nMainCol2 - nMainCol1 + 1)) || (nDimensionRows != (nMainRow2 - nMainRow1 + 1)))
SetError ( errIllegalArgument);
if (nGlobalError)
return 0; // bail out
// end-result calculation
ScAddress aAdr;
aAdr.SetTab( nMainTab1 );
if (pMainMatrix)
{
SCSIZE nC, nR;
pResMat->GetDimensions(nC, nR);
for (SCSIZE nCol = 0; nCol < nC; ++nCol)
{
for (SCSIZE nRow = 0; nRow < nR; ++nRow)
{
if (pResMat->GetDouble( nCol, nRow) == nQueryCount)
{
if (pMainMatrix->IsValue( nCol, nRow))
{
fVal = pMainMatrix->GetDouble( nCol, nRow);
++fCount;
if ( bNull && fVal != 0.0 )
{
bNull = false;
fMem = fVal;
}
else
fSum += fVal;
}
}
}
}
}
else
{
SCSIZE nC, nR;
pResMat->GetDimensions(nC, nR);
for (SCSIZE nCol = 0; nCol < nC; ++nCol)
{
for (SCSIZE nRow = 0; nRow < nR; ++nRow)
{
if (pResMat->GetDouble( nCol, nRow) == nQueryCount)
{
aAdr.SetCol( static_cast<SCCOL>(nCol) + nMainCol1);
aAdr.SetRow( static_cast<SCROW>(nRow) + nMainRow1);
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
fVal = GetCellValue(aAdr, aCell);
++fCount;
if ( bNull && fVal != 0.0 )
{
bNull = false;
fMem = fVal;
}
else
fSum += fVal;
}
}
}
}
}
}
else
{
SCSIZE nC, nR;
pResMat->GetDimensions(nC, nR);
for (SCSIZE nCol = 0; nCol < nC; ++nCol)
{
for (SCSIZE nRow = 0; nRow < nR; ++nRow)
if (pResMat->GetDouble( nCol, nRow) == nQueryCount)
++fCount;
}
}
switch( eFunc )
{
case ifSUMIFS: fRes = ::rtl::math::approxAdd( fSum, fMem ); break;
case ifAVERAGEIFS: fRes = div( ::rtl::math::approxAdd( fSum, fMem ), fCount); break;
case ifCOUNTIFS: fRes = fCount; break;
default: ; // nothing
}
return fRes;
}
return 0;
}
void ScInterpreter::ScSumIfs()
{
PushDouble( IterateParametersIfs( ifSUMIFS));
}
void ScInterpreter::ScAverageIfs()
{
PushDouble( IterateParametersIfs( ifAVERAGEIFS));
}
void ScInterpreter::ScCountIfs()
{
PushDouble( IterateParametersIfs( ifCOUNTIFS));
}
void ScInterpreter::ScLookup()
{
sal_uInt8 nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
return ;
ScMatrixRef pDataMat = NULL, pResMat = NULL;
SCCOL nCol1 = 0, nCol2 = 0, nResCol1 = 0, nResCol2 = 0;
SCROW nRow1 = 0, nRow2 = 0, nResRow1 = 0, nResRow2 = 0;
SCTAB nTab1 = 0, nResTab = 0;
SCSIZE nLenMajor = 0; // length of major direction
bool bVertical = true; // whether to lookup vertically or horizontally
// The third parameter, result array, for double, string and single reference.
double fResVal = 0.0;
svl::SharedString aResStr;
ScAddress aResAdr;
StackVar eResArrayType = svUnknown;
if (nParamCount == 3)
{
eResArrayType = GetStackType();
switch (eResArrayType)
{
case svDoubleRef:
{
SCTAB nTabJunk;
PopDoubleRef(nResCol1, nResRow1, nResTab,
nResCol2, nResRow2, nTabJunk);
if (nResTab != nTabJunk ||
((nResRow2 - nResRow1) > 0 && (nResCol2 - nResCol1) > 0))
{
// The result array must be a vector.
PushIllegalParameter();
return;
}
}
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
pResMat = GetMatrix();
if (!pResMat)
{
PushIllegalParameter();
return;
}
SCSIZE nC, nR;
pResMat->GetDimensions(nC, nR);
if (nC != 1 && nR != 1)
{
// Result matrix must be a vector.
PushIllegalParameter();
return;
}
}
break;
case svDouble:
fResVal = GetDouble();
break;
case svString:
aResStr = GetString();
break;
case svSingleRef:
PopSingleRef( aResAdr );
break;
default:
PushIllegalParameter();
return;
}
}
// For double, string and single reference.
double fDataVal = 0.0;
svl::SharedString aDataStr;
ScAddress aDataAdr;
bool bValueData = false;
// Get the data-result range and also determine whether this is vertical
// lookup or horizontal lookup.
StackVar eDataArrayType = GetStackType();
switch (eDataArrayType)
{
case svDoubleRef:
{
SCTAB nTabJunk;
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTabJunk);
if (nTab1 != nTabJunk)
{
PushIllegalParameter();
return;
}
bVertical = (nRow2 - nRow1) >= (nCol2 - nCol1);
nLenMajor = bVertical ? nRow2 - nRow1 + 1 : nCol2 - nCol1 + 1;
}
break;
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
pDataMat = GetMatrix();
if (!pDataMat)
{
PushIllegalParameter();
return;
}
SCSIZE nC, nR;
pDataMat->GetDimensions(nC, nR);
bVertical = (nR >= nC);
nLenMajor = bVertical ? nR : nC;
}
break;
case svDouble:
{
fDataVal = GetDouble();
bValueData = true;
}
break;
case svString:
{
aDataStr = GetString();
}
break;
case svSingleRef:
{
PopSingleRef( aDataAdr );
ScRefCellValue aCell;
aCell.assign(*pDok, aDataAdr);
if (aCell.hasEmptyValue())
{
// Empty cells aren't found anywhere, bail out early.
SetError( NOTAVAILABLE);
}
else if (aCell.hasNumeric())
{
fDataVal = GetCellValue(aDataAdr, aCell);
bValueData = true;
}
else
GetCellString(aDataStr, aCell);
}
break;
default:
SetError( errIllegalParameter);
}
if (nGlobalError)
{
PushError( nGlobalError);
return;
}
// Get the lookup value.
ScQueryParam aParam;
ScQueryEntry& rEntry = aParam.GetEntry(0);
if ( !FillEntry(rEntry) )
return;
if ( eDataArrayType == svDouble || eDataArrayType == svString ||
eDataArrayType == svSingleRef )
{
// Delta position for a single value is always 0.
// Found if data <= query, but not if query is string and found data is
// numeric or vice versa. This is how Excel does it but doesn't
// document it.
bool bFound = false;
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
if ( bValueData )
{
if (rItem.meType == ScQueryEntry::ByString)
bFound = false;
else
bFound = (fDataVal <= rItem.mfVal);
}
else
{
if (rItem.meType != ScQueryEntry::ByString)
bFound = false;
else
bFound = (ScGlobal::GetCollator()->compareString(aDataStr.getString(), rItem.maString.getString()) <= 0);
}
if (!bFound)
{
PushNA();
return;
}
if (pResMat)
{
if (pResMat->IsValue( 0, 0 ))
PushDouble(pResMat->GetDouble( 0, 0 ));
else
PushString(pResMat->GetString(0, 0));
}
else if (nParamCount == 3)
{
switch (eResArrayType)
{
case svDouble:
PushDouble( fResVal );
break;
case svString:
PushString( aResStr );
break;
case svDoubleRef:
aResAdr.Set( nResCol1, nResRow1, nResTab);
// fallthru
case svSingleRef:
PushCellResultToken( true, aResAdr, NULL, NULL);
break;
default:
OSL_FAIL( "ScInterpreter::ScLookup: unhandled eResArrayType, single value data");
}
}
else
{
switch (eDataArrayType)
{
case svDouble:
PushDouble( fDataVal );
break;
case svString:
PushString( aDataStr );
break;
case svSingleRef:
PushCellResultToken( true, aDataAdr, NULL, NULL);
break;
default:
OSL_FAIL( "ScInterpreter::ScLookup: unhandled eDataArrayType, single value data");
}
}
return;
}
// Now, perform the search to compute the delta position (nDelta).
if (pDataMat)
{
// Data array is given as a matrix.
rEntry.bDoQuery = true;
rEntry.eOp = SC_LESS_EQUAL;
bool bFound = false;
SCSIZE nC, nR;
pDataMat->GetDimensions(nC, nR);
// In case of non-vector matrix, only search the first row or column.
ScMatrixRef pDataMat2;
if (bVertical)
{
ScMatrixRef pTempMat(new ScMatrix(1, nR, 0.0));
for (SCSIZE i = 0; i < nR; ++i)
if (pDataMat->IsValue(0, i))
pTempMat->PutDouble(pDataMat->GetDouble(0, i), 0, i);
else
pTempMat->PutString(pDataMat->GetString(0, i), 0, i);
pDataMat2 = pTempMat;
}
else
{
ScMatrixRef pTempMat(new ScMatrix(nC, 1, 0.0));
for (SCSIZE i = 0; i < nC; ++i)
if (pDataMat->IsValue(i, 0))
pTempMat->PutDouble(pDataMat->GetDouble(i, 0), i, 0);
else
pTempMat->PutString(pDataMat->GetString(i, 0), i, 0);
pDataMat2 = pTempMat;
}
VectorMatrixAccessor aMatAcc2(*pDataMat2, bVertical);
// binary search for non-equality mode (the source data is
// assumed to be sorted in ascending order).
SCCOLROW nDelta = -1;
SCSIZE nFirst = 0, nLast = nLenMajor-1; //, nHitIndex = 0;
for (SCSIZE nLen = nLast-nFirst; nLen > 0; nLen = nLast-nFirst)
{
SCSIZE nMid = nFirst + nLen/2;
sal_Int32 nCmp = lcl_CompareMatrix2Query( nMid, aMatAcc2, rEntry);
if (nCmp == 0)
{
// exact match. find the last item with the same value.
lcl_GetLastMatch( nMid, aMatAcc2, nLenMajor, false);
nDelta = nMid;
bFound = true;
break;
}
if (nLen == 1) // first and last items are next to each other.
{
nDelta = nCmp < 0 ? nLast - 1 : nFirst - 1;
// If already the 1st item is greater there's nothing found.
bFound = (nDelta >= 0);
break;
}
if (nCmp < 0)
nFirst = nMid;
else
nLast = nMid;
}
if (nDelta == static_cast<SCCOLROW>(nLenMajor-2)) // last item
{
sal_Int32 nCmp = lcl_CompareMatrix2Query(nDelta+1, aMatAcc2, rEntry);
if (nCmp <= 0)
{
// either the last item is an exact match or the real
// hit is beyond the last item.
nDelta += 1;
bFound = true;
}
}
else if (nDelta > 0) // valid hit must be 2nd item or higher
{
// non-exact match
bFound = true;
}
// With 0-9 < A-Z, if query is numeric and data found is string, or
// vice versa, the (yet another undocumented) Excel behavior is to
// return #N/A instead.
if (bFound)
{
VectorMatrixAccessor aMatAcc(*pDataMat, bVertical);
SCCOLROW i = nDelta;
SCSIZE n = aMatAcc.GetElementCount();
if (static_cast<SCSIZE>(i) >= n)
i = static_cast<SCCOLROW>(n);
bool bByString = rEntry.GetQueryItem().meType == ScQueryEntry::ByString;
if (bByString == aMatAcc.IsValue(i))
bFound = false;
}
if (!bFound)
{
PushNA();
return;
}
// Now that we've found the delta, push the result back to the cell.
if (pResMat)
{
VectorMatrixAccessor aResMatAcc(*pResMat, bVertical);
// result array is matrix.
if (static_cast<SCSIZE>(nDelta) >= aResMatAcc.GetElementCount())
{
PushNA();
return;
}
if (aResMatAcc.IsValue(nDelta))
PushDouble(aResMatAcc.GetDouble(nDelta));
else
PushString(aResMatAcc.GetString(nDelta));
}
else if (nParamCount == 3)
{
// result array is cell range.
ScAddress aAdr;
aAdr.SetTab(nResTab);
bool bResVertical = (nResRow2 - nResRow1) > 0;
if (bResVertical)
{
SCROW nTempRow = static_cast<SCROW>(nResRow1 + nDelta);
if (nTempRow > MAXROW)
{
PushDouble(0);
return;
}
aAdr.SetCol(nResCol1);
aAdr.SetRow(nTempRow);
}
else
{
SCCOL nTempCol = static_cast<SCCOL>(nResCol1 + nDelta);
if (nTempCol > MAXCOL)
{
PushDouble(0);
return;
}
aAdr.SetCol(nTempCol);
aAdr.SetRow(nResRow1);
}
PushCellResultToken(true, aAdr, NULL, NULL);
}
else
{
// no result array. Use the data array to get the final value from.
if (bVertical)
{
if (pDataMat->IsValue(nC-1, nDelta))
PushDouble(pDataMat->GetDouble(nC-1, nDelta));
else
PushString(pDataMat->GetString(nC-1, nDelta));
}
else
{
if (pDataMat->IsValue(nDelta, nR-1))
PushDouble(pDataMat->GetDouble(nDelta, nR-1));
else
PushString(pDataMat->GetString(nDelta, nR-1));
}
}
return;
}
// Perform cell range search.
aParam.nCol1 = nCol1;
aParam.nRow1 = nRow1;
aParam.nCol2 = bVertical ? nCol1 : nCol2;
aParam.nRow2 = bVertical ? nRow2 : nRow1;
aParam.bByRow = bVertical;
rEntry.bDoQuery = true;
rEntry.eOp = SC_LESS_EQUAL;
rEntry.nField = nCol1;
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
if (rItem.meType == ScQueryEntry::ByString)
aParam.bRegExp = MayBeRegExp(rItem.maString.getString(), pDok);
ScQueryCellIterator aCellIter(pDok, nTab1, aParam, false);
SCCOL nC;
SCROW nR;
// Advance Entry.nField in iterator upon switching columns if
// lookup in row.
aCellIter.SetAdvanceQueryParamEntryField(!bVertical);
if ( !aCellIter.FindEqualOrSortedLastInRange(nC, nR) )
{
PushNA();
return;
}
SCCOLROW nDelta = bVertical ? static_cast<SCSIZE>(nR-nRow1) : static_cast<SCSIZE>(nC-nCol1);
if (pResMat)
{
VectorMatrixAccessor aResMatAcc(*pResMat, bVertical);
// Use the matrix result array.
if (aResMatAcc.IsValue(nDelta))
PushDouble(aResMatAcc.GetDouble(nDelta));
else
PushString(aResMatAcc.GetString(nDelta));
}
else if (nParamCount == 3)
{
switch (eResArrayType)
{
case svDoubleRef:
{
// Use the result array vector. Note that the result array is assumed
// to be a vector (i.e. 1-dimensinoal array).
ScAddress aAdr;
aAdr.SetTab(nResTab);
bool bResVertical = (nResRow2 - nResRow1) > 0;
if (bResVertical)
{
SCROW nTempRow = static_cast<SCROW>(nResRow1 + nDelta);
if (nTempRow > MAXROW)
{
PushDouble(0);
return;
}
aAdr.SetCol(nResCol1);
aAdr.SetRow(nTempRow);
}
else
{
SCCOL nTempCol = static_cast<SCCOL>(nResCol1 + nDelta);
if (nTempCol > MAXCOL)
{
PushDouble(0);
return;
}
aAdr.SetCol(nTempCol);
aAdr.SetRow(nResRow1);
}
PushCellResultToken( true, aAdr, NULL, NULL);
}
break;
case svDouble:
case svString:
case svSingleRef:
{
if (nDelta != 0)
PushNA();
else
{
switch (eResArrayType)
{
case svDouble:
PushDouble( fResVal );
break;
case svString:
PushString( aResStr );
break;
case svSingleRef:
PushCellResultToken( true, aResAdr, NULL, NULL);
break;
default:
; // nothing
}
}
}
break;
default:
OSL_FAIL( "ScInterpreter::ScLookup: unhandled eResArrayType, range search");
}
}
else
{
// Regardless of whether or not the result array exists, the last
// array is always used as the "result" array.
ScAddress aAdr;
aAdr.SetTab(nTab1);
if (bVertical)
{
SCROW nTempRow = static_cast<SCROW>(nRow1 + nDelta);
if (nTempRow > MAXROW)
{
PushDouble(0);
return;
}
aAdr.SetCol(nCol2);
aAdr.SetRow(nTempRow);
}
else
{
SCCOL nTempCol = static_cast<SCCOL>(nCol1 + nDelta);
if (nTempCol > MAXCOL)
{
PushDouble(0);
return;
}
aAdr.SetCol(nTempCol);
aAdr.SetRow(nRow2);
}
PushCellResultToken(true, aAdr, NULL, NULL);
}
}
void ScInterpreter::ScHLookup()
{
CalculateLookup(true);
}
void ScInterpreter::CalculateLookup(bool bHLookup)
{
sal_uInt8 nParamCount = GetByte();
if (!MustHaveParamCount(nParamCount, 3, 4))
return;
// Optional 4th argument to declare whether or not the range is sorted.
bool bSorted = true;
if (nParamCount == 4)
bSorted = GetBool();
// Index of column to search.
double fIndex = ::rtl::math::approxFloor( GetDouble() ) - 1.0;
ScMatrixRef pMat = NULL;
SCSIZE nC = 0, nR = 0;
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
SCCOL nCol2 = 0;
SCROW nRow2 = 0;
SCTAB nTab2;
StackVar eType = GetStackType();
if (eType == svDoubleRef)
{
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
if (nTab1 != nTab2)
{
PushIllegalParameter();
return;
}
}
else if (eType == svSingleRef)
{
PopSingleRef(nCol1, nRow1, nTab1);
nCol2 = nCol1;
nRow2 = nRow1;
}
else if (eType == svMatrix || eType == svExternalDoubleRef || eType == svExternalSingleRef)
{
pMat = GetMatrix();
if (pMat)
pMat->GetDimensions(nC, nR);
else
{
PushIllegalParameter();
return;
}
}
else
{
PushIllegalParameter();
return;
}
if ( fIndex < 0.0 || (bHLookup ? (pMat ? (fIndex >= nR) : (fIndex+nRow1 > nRow2)) : (pMat ? (fIndex >= nC) : (fIndex+nCol1 > nCol2)) ) )
{
PushIllegalArgument();
return;
}
SCROW nZIndex = static_cast<SCROW>(fIndex);
SCCOL nSpIndex = static_cast<SCCOL>(fIndex);
if (!pMat)
{
nZIndex += nRow1; // Wertzeile
nSpIndex = sal::static_int_cast<SCCOL>( nSpIndex + nCol1 ); // value column
}
if (nGlobalError)
{
PushIllegalParameter();
return;
}
ScQueryParam aParam;
aParam.nCol1 = nCol1;
aParam.nRow1 = nRow1;
if ( bHLookup )
{
aParam.nCol2 = nCol2;
aParam.nRow2 = nRow1; // nur in der ersten Zeile suchen
aParam.bByRow = false;
}
else
{
aParam.nCol2 = nCol1; // nur in der ersten Spalte suchen
aParam.nRow2 = nRow2;
aParam.nTab = nTab1;
}
ScQueryEntry& rEntry = aParam.GetEntry(0);
rEntry.bDoQuery = true;
if ( bSorted )
rEntry.eOp = SC_LESS_EQUAL;
if ( !FillEntry(rEntry) )
return;
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
if (rItem.meType == ScQueryEntry::ByString)
aParam.bRegExp = MayBeRegExp(rItem.maString.getString(), pDok);
if (pMat)
{
SCSIZE nMatCount = bHLookup ? nC : nR;
SCSIZE nDelta = SCSIZE_MAX;
if (rItem.meType == ScQueryEntry::ByString)
{
//!!!!!!!
//! TODO: enable regex on matrix strings
//!!!!!!!
svl::SharedString aParamStr = rItem.maString;
if ( bSorted )
{
static CollatorWrapper* pCollator = ScGlobal::GetCollator();
for (SCSIZE i = 0; i < nMatCount; i++)
{
if (bHLookup ? pMat->IsString(i, 0) : pMat->IsString(0, i))
{
sal_Int32 nRes =
pCollator->compareString(
bHLookup ? pMat->GetString(i,0).getString() : pMat->GetString(0,i).getString(), aParamStr.getString());
if (nRes <= 0)
nDelta = i;
else if (i>0) // #i2168# ignore first mismatch
i = nMatCount+1;
}
else
nDelta = i;
}
}
else
{
if (bHLookup)
{
for (SCSIZE i = 0; i < nMatCount; i++)
{
if (pMat->IsString(i, 0))
{
if (pMat->GetString(i,0).getDataIgnoreCase() == aParamStr.getDataIgnoreCase())
{
nDelta = i;
i = nMatCount + 1;
}
}
}
}
else
{
nDelta = pMat->MatchStringInColumns(aParamStr, 0, 0);
}
}
}
else
{
if ( bSorted )
{
// #i2168# ignore strings
for (SCSIZE i = 0; i < nMatCount; i++)
{
if (!(bHLookup ? pMat->IsString(i, 0) : pMat->IsString(0, i)))
{
if ((bHLookup ? pMat->GetDouble(i,0) : pMat->GetDouble(0,i)) <= rItem.mfVal)
nDelta = i;
else
i = nMatCount+1;
}
}
}
else
{
if (bHLookup)
{
for (SCSIZE i = 0; i < nMatCount; i++)
{
if (! pMat->IsString(i, 0) )
{
if ( pMat->GetDouble(i,0) == rItem.mfVal)
{
nDelta = i;
i = nMatCount + 1;
}
}
}
}
else
{
nDelta = pMat->MatchDoubleInColumns(rItem.mfVal, 0, 0);
}
}
}
if ( nDelta != SCSIZE_MAX )
{
SCSIZE nX = static_cast<SCSIZE>(nSpIndex);
SCSIZE nY = nDelta;
if ( bHLookup )
{
nX = nDelta;
nY = static_cast<SCSIZE>(nZIndex);
}
if ( pMat->IsString( nX, nY) )
PushString(pMat->GetString( nX,nY).getString());
else
PushDouble(pMat->GetDouble( nX,nY));
}
else
PushNA();
}
else
{
rEntry.nField = nCol1;
bool bFound = false;
SCCOL nCol = 0;
SCROW nRow = 0;
if ( bSorted )
rEntry.eOp = SC_LESS_EQUAL;
if ( bHLookup )
{
ScQueryCellIterator aCellIter(pDok, nTab1, aParam, false);
// advance Entry.nField in Iterator upon switching columns
aCellIter.SetAdvanceQueryParamEntryField( true );
if ( bSorted )
{
SCROW nRow1_temp;
bFound = aCellIter.FindEqualOrSortedLastInRange( nCol, nRow1_temp );
}
else if ( aCellIter.GetFirst() )
{
bFound = true;
nCol = aCellIter.GetCol();
}
nRow = nZIndex;
}
else
{
ScAddress aResultPos( nCol1, nRow1, nTab1);
bFound = LookupQueryWithCache( aResultPos, aParam);
nRow = aResultPos.Row();
nCol = nSpIndex;
}
if ( bFound )
{
ScAddress aAdr( nCol, nRow, nTab1 );
PushCellResultToken( true, aAdr, NULL, NULL);
}
else
PushNA();
}
}
bool ScInterpreter::FillEntry(ScQueryEntry& rEntry)
{
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
switch ( GetStackType() )
{
case svDouble:
{
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = GetDouble();
}
break;
case svString:
{
rItem.meType = ScQueryEntry::ByString;
rItem.maString = GetString();
}
break;
case svDoubleRef :
case svSingleRef :
{
ScAddress aAdr;
if ( !PopDoubleRefOrSingleRef( aAdr ) )
{
PushInt(0);
return false;
}
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
{
rItem.meType = ScQueryEntry::ByValue;
rItem.mfVal = GetCellValue(aAdr, aCell);
}
else
{
GetCellString(rItem.maString, aCell);
rItem.meType = ScQueryEntry::ByString;
}
}
break;
case svMatrix :
{
svl::SharedString aStr;
const ScMatValType nType = GetDoubleOrStringFromMatrix(rItem.mfVal, aStr);
rItem.maString = aStr;
rItem.meType = ScMatrix::IsNonValueType(nType) ?
ScQueryEntry::ByString : ScQueryEntry::ByValue;
}
break;
default:
{
PushIllegalParameter();
return false;
}
} // switch ( GetStackType() )
return true;
}
void ScInterpreter::ScVLookup()
{
CalculateLookup(false);
}
void ScInterpreter::ScSubTotal()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCountMin( nParamCount, 2 ) )
{
// We must fish the 1st parameter deep from the stack! And push it on top.
const FormulaToken* p = pStack[ sp - nParamCount ];
PushTempToken( *p );
int nFunc = (int) ::rtl::math::approxFloor( GetDouble() );
bool bIncludeHidden = true;
if (nFunc > 100)
{
// For opcodes 101 through 111, we need to skip hidden cells.
// Other than that these opcodes are identical to 1 through 11.
bIncludeHidden = false;
nFunc -= 100;
}
if (nFunc < 1 || nFunc > 11 || !bIncludeHidden)
PushIllegalArgument(); // simulate return on stack, not SetError(...)
else
{
// TODO: Make use of bIncludeHidden flag. Then it's false, we do need to skip hidden cells.
cPar = nParamCount - 1;
glSubTotal = true;
switch( nFunc )
{
case SUBTOTAL_FUNC_AVE : ScAverage(); break;
case SUBTOTAL_FUNC_CNT : ScCount(); break;
case SUBTOTAL_FUNC_CNT2 : ScCount2(); break;
case SUBTOTAL_FUNC_MAX : ScMax(); break;
case SUBTOTAL_FUNC_MIN : ScMin(); break;
case SUBTOTAL_FUNC_PROD : ScProduct(); break;
case SUBTOTAL_FUNC_STD : ScStDev(); break;
case SUBTOTAL_FUNC_STDP : ScStDevP(); break;
case SUBTOTAL_FUNC_SUM : ScSum(); break;
case SUBTOTAL_FUNC_VAR : ScVar(); break;
case SUBTOTAL_FUNC_VARP : ScVarP(); break;
default : PushIllegalArgument(); break;
}
glSubTotal = false;
}
// Get rid of the 1st (fished) parameter.
double nVal = GetDouble();
Pop();
PushDouble( nVal );
}
}
ScDBQueryParamBase* ScInterpreter::GetDBParams( bool& rMissingField )
{
bool bAllowMissingField = false;
if ( rMissingField )
{
bAllowMissingField = true;
rMissingField = false;
}
if ( GetByte() == 3 )
{
// First, get the query criteria range.
SAL_WNODEPRECATED_DECLARATIONS_PUSH
::std::auto_ptr<ScDBRangeBase> pQueryRef( PopDBDoubleRef() );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (!pQueryRef.get())
return NULL;
bool bByVal = true;
double nVal = 0.0;
svl::SharedString aStr;
ScRange aMissingRange;
bool bRangeFake = false;
switch (GetStackType())
{
case svDouble :
nVal = ::rtl::math::approxFloor( GetDouble() );
if ( bAllowMissingField && nVal == 0.0 )
rMissingField = true; // fake missing parameter
break;
case svString :
bByVal = false;
aStr = GetString();
break;
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
ScRefCellValue aCell;
aCell.assign(*pDok, aAdr);
if (aCell.hasNumeric())
nVal = GetCellValue(aAdr, aCell);
else
{
bByVal = false;
GetCellString(aStr, aCell);
}
}
break;
case svDoubleRef :
if ( bAllowMissingField )
{ // fake missing parameter for old SO compatibility
bRangeFake = true;
PopDoubleRef( aMissingRange );
}
else
{
PopError();
SetError( errIllegalParameter );
}
break;
case svMissing :
PopError();
if ( bAllowMissingField )
rMissingField = true;
else
SetError( errIllegalParameter );
break;
default:
PopError();
SetError( errIllegalParameter );
}
if (nGlobalError)
return NULL;
SAL_WNODEPRECATED_DECLARATIONS_PUSH
auto_ptr<ScDBRangeBase> pDBRef( PopDBDoubleRef() );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (nGlobalError || !pDBRef.get())
return NULL;
if ( bRangeFake )
{
// range parameter must match entire database range
if (pDBRef->isRangeEqual(aMissingRange))
rMissingField = true;
else
SetError( errIllegalParameter );
}
if (nGlobalError)
return NULL;
SCCOL nField = pDBRef->getFirstFieldColumn();
if (rMissingField)
; // special case
else if (bByVal)
nField = pDBRef->findFieldColumn(static_cast<SCCOL>(nVal));
else
{
sal_uInt16 nErr = 0;
nField = pDBRef->findFieldColumn(aStr.getString(), &nErr);
SetError(nErr);
}
if (!ValidCol(nField))
return NULL;
SAL_WNODEPRECATED_DECLARATIONS_PUSH
auto_ptr<ScDBQueryParamBase> pParam( pDBRef->createQueryParam(pQueryRef.get()) );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (pParam.get())
{
// An allowed missing field parameter sets the result field
// to any of the query fields, just to be able to return
// some cell from the iterator.
if ( rMissingField )
nField = static_cast<SCCOL>(pParam->GetEntry(0).nField);
pParam->mnField = nField;
SCSIZE nCount = pParam->GetEntryCount();
for ( SCSIZE i=0; i < nCount; i++ )
{
ScQueryEntry& rEntry = pParam->GetEntry(i);
if (!rEntry.bDoQuery)
break;
ScQueryEntry::Item& rItem = rEntry.GetQueryItem();
sal_uInt32 nIndex = 0;
OUString aQueryStr = rItem.maString.getString();
bool bNumber = pFormatter->IsNumberFormat(
aQueryStr, nIndex, rItem.mfVal);
rItem.meType = bNumber ? ScQueryEntry::ByValue : ScQueryEntry::ByString;
if (!bNumber && !pParam->bRegExp)
pParam->bRegExp = MayBeRegExp(aQueryStr, pDok);
}
return pParam.release();
}
}
return NULL;
}
void ScInterpreter::DBIterator( ScIterFunc eFunc )
{
double nErg = 0.0;
double fMem = 0.0;
bool bNull = true;
sal_uLong nCount = 0;
bool bMissingField = false;
SAL_WNODEPRECATED_DECLARATIONS_PUSH
auto_ptr<ScDBQueryParamBase> pQueryParam( GetDBParams(bMissingField) );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (pQueryParam.get())
{
if (!pQueryParam->IsValidFieldIndex())
{
SetError(errNoValue);
return;
}
ScDBQueryDataIterator aValIter(pDok, pQueryParam.release());
ScDBQueryDataIterator::Value aValue;
if ( aValIter.GetFirst(aValue) && !aValue.mnError )
{
switch( eFunc )
{
case ifPRODUCT: nErg = 1; break;
case ifMAX: nErg = -MAXDOUBLE; break;
case ifMIN: nErg = MAXDOUBLE; break;
default: ; // nothing
}
do
{
nCount++;
switch( eFunc )
{
case ifAVERAGE:
case ifSUM:
if ( bNull && aValue.mfValue != 0.0 )
{
bNull = false;
fMem = aValue.mfValue;
}
else
nErg += aValue.mfValue;
break;
case ifSUMSQ: nErg += aValue.mfValue * aValue.mfValue; break;
case ifPRODUCT: nErg *= aValue.mfValue; break;
case ifMAX: if( aValue.mfValue > nErg ) nErg = aValue.mfValue; break;
case ifMIN: if( aValue.mfValue < nErg ) nErg = aValue.mfValue; break;
default: ; // nothing
}
}
while ( aValIter.GetNext(aValue) && !aValue.mnError );
}
SetError(aValue.mnError);
}
else
SetError( errIllegalParameter);
switch( eFunc )
{
case ifCOUNT: nErg = nCount; break;
case ifSUM: nErg = ::rtl::math::approxAdd( nErg, fMem ); break;
case ifAVERAGE: nErg = ::rtl::math::approxAdd( nErg, fMem ) / nCount; break;
default: ; // nothing
}
PushDouble( nErg );
}
void ScInterpreter::ScDBSum()
{
DBIterator( ifSUM );
}
void ScInterpreter::ScDBCount()
{
bool bMissingField = true;
SAL_WNODEPRECATED_DECLARATIONS_PUSH
auto_ptr<ScDBQueryParamBase> pQueryParam( GetDBParams(bMissingField) );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (pQueryParam.get())
{
sal_uLong nCount = 0;
if ( bMissingField && pQueryParam->GetType() == ScDBQueryParamBase::INTERNAL )
{ // count all matching records
// TODO: currently the QueryIterators only return cell pointers of
// existing cells, so if a query matches an empty cell there's
// nothing returned, and therefor not counted!
// Since this has ever been the case and this code here only came
// into existance to fix #i6899 and it never worked before we'll
// have to live with it until we reimplement the iterators to also
// return empty cells, which would mean to adapt all callers of
// iterators.
ScDBQueryParamInternal* p = static_cast<ScDBQueryParamInternal*>(pQueryParam.get());
p->nCol2 = p->nCol1; // Don't forget to select only one column.
SCTAB nTab = p->nTab;
// ScQueryCellIterator doesn't make use of ScDBQueryParamBase::mnField,
// so the source range has to be restricted, like before the introduction
// of ScDBQueryParamBase.
p->nCol1 = p->nCol2 = p->mnField;
ScQueryCellIterator aCellIter( pDok, nTab, *p);
if ( aCellIter.GetFirst() )
{
do
{
nCount++;
} while ( aCellIter.GetNext() );
}
}
else
{ // count only matching records with a value in the "result" field
if (!pQueryParam->IsValidFieldIndex())
{
SetError(errNoValue);
return;
}
ScDBQueryDataIterator aValIter( pDok, pQueryParam.release());
ScDBQueryDataIterator::Value aValue;
if ( aValIter.GetFirst(aValue) && !aValue.mnError )
{
do
{
nCount++;
}
while ( aValIter.GetNext(aValue) && !aValue.mnError );
}
SetError(aValue.mnError);
}
PushDouble( nCount );
}
else
PushIllegalParameter();
}
void ScInterpreter::ScDBCount2()
{
bool bMissingField = true;
SAL_WNODEPRECATED_DECLARATIONS_PUSH
auto_ptr<ScDBQueryParamBase> pQueryParam( GetDBParams(bMissingField) );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (pQueryParam.get())
{
if (!pQueryParam->IsValidFieldIndex())
{
SetError(errNoValue);
return;
}
sal_uLong nCount = 0;
pQueryParam->mbSkipString = false;
ScDBQueryDataIterator aValIter( pDok, pQueryParam.release());
ScDBQueryDataIterator::Value aValue;
if ( aValIter.GetFirst(aValue) && !aValue.mnError )
{
do
{
nCount++;
}
while ( aValIter.GetNext(aValue) && !aValue.mnError );
}
SetError(aValue.mnError);
PushDouble( nCount );
}
else
PushIllegalParameter();
}
void ScInterpreter::ScDBAverage()
{
DBIterator( ifAVERAGE );
}
void ScInterpreter::ScDBMax()
{
DBIterator( ifMAX );
}
void ScInterpreter::ScDBMin()
{
DBIterator( ifMIN );
}
void ScInterpreter::ScDBProduct()
{
DBIterator( ifPRODUCT );
}
void ScInterpreter::GetDBStVarParams( double& rVal, double& rValCount )
{
std::vector<double> values;
double vSum = 0.0;
double vMean = 0.0;
rValCount = 0.0;
double fSum = 0.0;
bool bMissingField = false;
SAL_WNODEPRECATED_DECLARATIONS_PUSH
auto_ptr<ScDBQueryParamBase> pQueryParam( GetDBParams(bMissingField) );
SAL_WNODEPRECATED_DECLARATIONS_POP
if (pQueryParam.get())
{
if (!pQueryParam->IsValidFieldIndex())
{
SetError(errNoValue);
return;
}
ScDBQueryDataIterator aValIter(pDok, pQueryParam.release());
ScDBQueryDataIterator::Value aValue;
if (aValIter.GetFirst(aValue) && !aValue.mnError)
{
do
{
rValCount++;
values.push_back(aValue.mfValue);
fSum += aValue.mfValue;
}
while ((aValue.mnError == 0) && aValIter.GetNext(aValue));
}
SetError(aValue.mnError);
}
else
SetError( errIllegalParameter);
vMean = fSum / values.size();
for (size_t i = 0; i < values.size(); i++)
vSum += (values[i] - vMean) * (values[i] - vMean);
rVal = vSum;
}
void ScInterpreter::ScDBStdDev()
{
double fVal, fCount;
GetDBStVarParams( fVal, fCount );
PushDouble( sqrt(fVal/(fCount-1)));
}
void ScInterpreter::ScDBStdDevP()
{
double fVal, fCount;
GetDBStVarParams( fVal, fCount );
PushDouble( sqrt(fVal/fCount));
}
void ScInterpreter::ScDBVar()
{
double fVal, fCount;
GetDBStVarParams( fVal, fCount );
PushDouble(fVal/(fCount-1));
}
void ScInterpreter::ScDBVarP()
{
double fVal, fCount;
GetDBStVarParams( fVal, fCount );
PushDouble(fVal/fCount);
}
void ScInterpreter::ScIndirect()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 2 ) )
{
// Reference address syntax for INDIRECT is configurable.
FormulaGrammar::AddressConvention eConv = GetGlobalConfig().meStringRefAddressSyntax;
if (eConv == FormulaGrammar::CONV_UNSPECIFIED)
// Use the current address syntax if unspecified.
eConv = pDok->GetAddressConvention();
if (nParamCount == 2 && 0.0 == ::rtl::math::approxFloor( GetDouble()))
{
// Overwrite the config and try Excel R1C1.
eConv = FormulaGrammar::CONV_XL_R1C1;
}
const ScAddress::Details aDetails( eConv, aPos );
SCTAB nTab = aPos.Tab();
OUString sRefStr = GetString().getString();
ScRefAddress aRefAd, aRefAd2;
ScAddress::ExternalInfo aExtInfo;
if (ConvertDoubleRef(pDok, sRefStr, nTab, aRefAd, aRefAd2, aDetails, &aExtInfo))
{
if (aExtInfo.mbExternal)
{
PushExternalDoubleRef(
aExtInfo.mnFileId, aExtInfo.maTabName,
aRefAd.Col(), aRefAd.Row(), aRefAd.Tab(),
aRefAd2.Col(), aRefAd2.Row(), aRefAd2.Tab());
}
else
PushDoubleRef( aRefAd.Col(), aRefAd.Row(), aRefAd.Tab(),
aRefAd2.Col(), aRefAd2.Row(), aRefAd2.Tab() );
}
else if (ConvertSingleRef(pDok, sRefStr, nTab, aRefAd, aDetails, &aExtInfo))
{
if (aExtInfo.mbExternal)
{
PushExternalSingleRef(
aExtInfo.mnFileId, aExtInfo.maTabName, aRefAd.Col(), aRefAd.Row(), aRefAd.Tab());
}
else
PushSingleRef( aRefAd.Col(), aRefAd.Row(), aRefAd.Tab() );
}
else
{
do
{
ScRangeData* pData = ScRangeStringConverter::GetRangeDataFromString(sRefStr, nTab, pDok);
if (!pData)
break;
// We need this in order to obtain a good range.
pData->ValidateTabRefs();
ScRange aRange;
// This is the usual way to treat named ranges containing
// relative references.
if (!pData->IsReference( aRange, aPos))
break;
if (aRange.aStart == aRange.aEnd)
PushSingleRef( aRange.aStart.Col(), aRange.aStart.Row(),
aRange.aStart.Tab());
else
PushDoubleRef( aRange.aStart.Col(), aRange.aStart.Row(),
aRange.aStart.Tab(), aRange.aEnd.Col(),
aRange.aEnd.Row(), aRange.aEnd.Tab());
// success!
return;
}
while (false);
PushError( errNoRef);
}
}
}
void ScInterpreter::ScAddressFunc()
{
OUString sTabStr;
sal_uInt8 nParamCount = GetByte();
if( !MustHaveParamCount( nParamCount, 2, 5 ) )
return;
if( nParamCount >= 5 )
sTabStr = GetString().getString();
FormulaGrammar::AddressConvention eConv = FormulaGrammar::CONV_OOO; // default
if( nParamCount >= 4 && 0.0 == ::rtl::math::approxFloor( GetDoubleWithDefault( 1.0)))
eConv = FormulaGrammar::CONV_XL_R1C1;
sal_uInt16 nFlags = SCA_COL_ABSOLUTE | SCA_ROW_ABSOLUTE; // default
if( nParamCount >= 3 )
{
sal_uInt16 n = (sal_uInt16) ::rtl::math::approxFloor( GetDoubleWithDefault( 1.0));
switch ( n )
{
default :
PushNoValue();
return;
case 5:
case 1 : break; // default
case 6:
case 2 : nFlags = SCA_ROW_ABSOLUTE; break;
case 7:
case 3 : nFlags = SCA_COL_ABSOLUTE; break;
case 8:
case 4 : nFlags = 0; break; // both relative
}
}
nFlags |= SCA_VALID | SCA_VALID_ROW | SCA_VALID_COL;
SCCOL nCol = (SCCOL) ::rtl::math::approxFloor(GetDouble());
SCROW nRow = (SCROW) ::rtl::math::approxFloor(GetDouble());
if( eConv == FormulaGrammar::CONV_XL_R1C1 )
{
// YUCK! The XL interface actually treats rel R1C1 refs differently
// than A1
if( !(nFlags & SCA_COL_ABSOLUTE) )
nCol += aPos.Col() + 1;
if( !(nFlags & SCA_ROW_ABSOLUTE) )
nRow += aPos.Row() + 1;
}
--nCol;
--nRow;
if(!ValidCol( nCol) || !ValidRow( nRow))
{
PushIllegalArgument();
return;
}
const ScAddress::Details aDetails( eConv, aPos );
const ScAddress aAdr( nCol, nRow, 0);
OUString aRefStr(aAdr.Format(nFlags, pDok, aDetails));
if( nParamCount >= 5 && !sTabStr.isEmpty() )
{
OUString aDoc;
if (eConv == FormulaGrammar::CONV_OOO)
{
// Isolate Tab from 'Doc'#Tab
xub_StrLen nPos = ScCompiler::GetDocTabPos( sTabStr);
if (nPos != STRING_NOTFOUND)
{
if (sTabStr[nPos+1] == '$')
++nPos; // also split 'Doc'#$Tab
aDoc = sTabStr.copy( 0, nPos+1);
sTabStr = sTabStr.copy( nPos+1);
}
}
/* TODO: yet unsupported external reference in CONV_XL_R1C1 syntax may
* need some extra handling to isolate Tab from Doc. */
if (sTabStr[0] != '\'' || sTabStr[sTabStr.getLength()-1] != '\'')
ScCompiler::CheckTabQuotes( sTabStr, eConv);
if (!aDoc.isEmpty())
sTabStr = aDoc + sTabStr;
sTabStr += eConv == FormulaGrammar::CONV_XL_R1C1 ? OUString("!") : OUString(".");
sTabStr += aRefStr;
PushString( sTabStr );
}
else
PushString( aRefStr );
}
void ScInterpreter::ScOffset()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 3, 5 ) )
{
long nColNew = -1, nRowNew = -1, nColPlus, nRowPlus;
if (nParamCount == 5)
nColNew = (long) ::rtl::math::approxFloor(GetDouble());
if (nParamCount >= 4)
nRowNew = (long) ::rtl::math::approxFloor(GetDoubleWithDefault( -1.0 ));
nColPlus = (long) ::rtl::math::approxFloor(GetDouble());
nRowPlus = (long) ::rtl::math::approxFloor(GetDouble());
SCCOL nCol1(0);
SCROW nRow1(0);
SCTAB nTab1(0);
SCCOL nCol2(0);
SCROW nRow2(0);
SCTAB nTab2(0);
if (nColNew == 0 || nRowNew == 0)
{
PushIllegalArgument();
return;
}
switch (GetStackType())
{
case svSingleRef:
{
PopSingleRef(nCol1, nRow1, nTab1);
if (nParamCount == 3 || (nColNew < 0 && nRowNew < 0))
{
nCol1 = (SCCOL)((long) nCol1 + nColPlus);
nRow1 = (SCROW)((long) nRow1 + nRowPlus);
if (!ValidCol(nCol1) || !ValidRow(nRow1))
PushIllegalArgument();
else
PushSingleRef(nCol1, nRow1, nTab1);
}
else
{
if (nColNew < 0)
nColNew = 1;
if (nRowNew < 0)
nRowNew = 1;
nCol1 = (SCCOL)((long)nCol1+nColPlus);
nRow1 = (SCROW)((long)nRow1+nRowPlus);
nCol2 = (SCCOL)((long)nCol1+nColNew-1);
nRow2 = (SCROW)((long)nRow1+nRowNew-1);
if (!ValidCol(nCol1) || !ValidRow(nRow1) ||
!ValidCol(nCol2) || !ValidRow(nRow2))
PushIllegalArgument();
else
PushDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab1);
}
break;
}
case svExternalSingleRef:
{
sal_uInt16 nFileId;
OUString aTabName;
ScSingleRefData aRef;
PopExternalSingleRef(nFileId, aTabName, aRef);
ScAddress aAbsRef = aRef.toAbs(aPos);
nCol1 = aAbsRef.Col();
nRow1 = aAbsRef.Row();
nTab1 = aAbsRef.Tab();
if (nParamCount == 3 || (nColNew < 0 && nRowNew < 0))
{
nCol1 = (SCCOL)((long) nCol1 + nColPlus);
nRow1 = (SCROW)((long) nRow1 + nRowPlus);
if (!ValidCol(nCol1) || !ValidRow(nRow1))
PushIllegalArgument();
else
PushExternalSingleRef(nFileId, aTabName, nCol1, nRow1, nTab1);
}
else
{
if (nColNew < 0)
nColNew = 1;
if (nRowNew < 0)
nRowNew = 1;
nCol1 = (SCCOL)((long)nCol1+nColPlus);
nRow1 = (SCROW)((long)nRow1+nRowPlus);
nCol2 = (SCCOL)((long)nCol1+nColNew-1);
nRow2 = (SCROW)((long)nRow1+nRowNew-1);
nTab2 = nTab1;
if (!ValidCol(nCol1) || !ValidRow(nRow1) ||
!ValidCol(nCol2) || !ValidRow(nRow2))
PushIllegalArgument();
else
PushExternalDoubleRef(nFileId, aTabName, nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
}
break;
}
case svDoubleRef:
{
PopDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
if (nColNew < 0)
nColNew = nCol2 - nCol1 + 1;
if (nRowNew < 0)
nRowNew = nRow2 - nRow1 + 1;
nCol1 = (SCCOL)((long)nCol1+nColPlus);
nRow1 = (SCROW)((long)nRow1+nRowPlus);
nCol2 = (SCCOL)((long)nCol1+nColNew-1);
nRow2 = (SCROW)((long)nRow1+nRowNew-1);
if (!ValidCol(nCol1) || !ValidRow(nRow1) ||
!ValidCol(nCol2) || !ValidRow(nRow2) || nTab1 != nTab2)
PushIllegalArgument();
else
PushDoubleRef(nCol1, nRow1, nTab1, nCol2, nRow2, nTab1);
break;
}
case svExternalDoubleRef:
{
sal_uInt16 nFileId;
OUString aTabName;
ScComplexRefData aRef;
PopExternalDoubleRef(nFileId, aTabName, aRef);
ScRange aAbs = aRef.toAbs(aPos);
nCol1 = aAbs.aStart.Col();
nRow1 = aAbs.aStart.Row();
nTab1 = aAbs.aStart.Tab();
nCol2 = aAbs.aEnd.Col();
nRow2 = aAbs.aEnd.Row();
nTab2 = aAbs.aEnd.Tab();
if (nColNew < 0)
nColNew = nCol2 - nCol1 + 1;
if (nRowNew < 0)
nRowNew = nRow2 - nRow1 + 1;
nCol1 = (SCCOL)((long)nCol1+nColPlus);
nRow1 = (SCROW)((long)nRow1+nRowPlus);
nCol2 = (SCCOL)((long)nCol1+nColNew-1);
nRow2 = (SCROW)((long)nRow1+nRowNew-1);
if (!ValidCol(nCol1) || !ValidRow(nRow1) ||
!ValidCol(nCol2) || !ValidRow(nRow2) || nTab1 != nTab2)
PushIllegalArgument();
else
PushExternalDoubleRef(nFileId, aTabName, nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
break;
}
default:
PushIllegalParameter();
break;
} // end switch
}
}
void ScInterpreter::ScIndex()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 4 ) )
{
long nArea;
size_t nAreaCount;
SCCOL nCol;
SCROW nRow;
if (nParamCount == 4)
nArea = (long) ::rtl::math::approxFloor(GetDouble());
else
nArea = 1;
if (nParamCount >= 3)
nCol = (SCCOL) ::rtl::math::approxFloor(GetDouble());
else
nCol = 0;
if (nParamCount >= 2)
nRow = (SCROW) ::rtl::math::approxFloor(GetDouble());
else
nRow = 0;
if (GetStackType() == svRefList)
nAreaCount = (sp ? static_cast<ScToken*>(pStack[sp-1])->GetRefList()->size() : 0);
else
nAreaCount = 1; // one reference or array or whatever
if (nAreaCount == 0 || (size_t)nArea > nAreaCount)
{
PushError( errNoRef);
return;
}
else if (nArea < 1 || nCol < 0 || nRow < 0)
{
PushIllegalArgument();
return;
}
switch (GetStackType())
{
case svMatrix:
case svExternalSingleRef:
case svExternalDoubleRef:
{
if (nArea != 1)
SetError(errIllegalArgument);
sal_uInt16 nOldSp = sp;
ScMatrixRef pMat = GetMatrix();
if (pMat)
{
SCSIZE nC, nR;
pMat->GetDimensions(nC, nR);
// Access one element of a vector independent of col/row
// orientation?
bool bVector = ((nCol == 0 || nRow == 0) && (nC == 1 || nR == 1));
SCSIZE nElement = ::std::max( static_cast<SCSIZE>(nCol),
static_cast<SCSIZE>(nRow));
if (nC == 0 || nR == 0 ||
(!bVector && (static_cast<SCSIZE>(nCol) > nC ||
static_cast<SCSIZE>(nRow) > nR)) ||
(bVector && nElement > nC * nR))
PushIllegalArgument();
else if (nCol == 0 && nRow == 0)
sp = nOldSp;
else if (bVector)
{
--nElement;
if (pMat->IsString( nElement))
PushString( pMat->GetString(nElement).getString());
else
PushDouble( pMat->GetDouble( nElement));
}
else if (nCol == 0)
{
ScMatrixRef pResMat = GetNewMat(nC, 1);
if (pResMat)
{
SCSIZE nRowMinus1 = static_cast<SCSIZE>(nRow - 1);
for (SCSIZE i = 0; i < nC; i++)
if (!pMat->IsString(i, nRowMinus1))
pResMat->PutDouble(pMat->GetDouble(i,
nRowMinus1), i, 0);
else
pResMat->PutString(pMat->GetString(i, nRowMinus1), i, 0);
PushMatrix(pResMat);
}
else
PushIllegalArgument();
}
else if (nRow == 0)
{
ScMatrixRef pResMat = GetNewMat(1, nR);
if (pResMat)
{
SCSIZE nColMinus1 = static_cast<SCSIZE>(nCol - 1);
for (SCSIZE i = 0; i < nR; i++)
if (!pMat->IsString(nColMinus1, i))
pResMat->PutDouble(pMat->GetDouble(nColMinus1,
i), i);
else
pResMat->PutString(pMat->GetString(nColMinus1, i), i);
PushMatrix(pResMat);
}
else
PushIllegalArgument();
}
else
{
if (!pMat->IsString( static_cast<SCSIZE>(nCol-1),
static_cast<SCSIZE>(nRow-1)))
PushDouble( pMat->GetDouble(
static_cast<SCSIZE>(nCol-1),
static_cast<SCSIZE>(nRow-1)));
else
PushString( pMat->GetString(
static_cast<SCSIZE>(nCol-1),
static_cast<SCSIZE>(nRow-1)).getString());
}
}
}
break;
case svSingleRef:
{
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
PopSingleRef( nCol1, nRow1, nTab1);
if (nCol > 1 || nRow > 1)
PushIllegalArgument();
else
PushSingleRef( nCol1, nRow1, nTab1);
}
break;
case svDoubleRef:
case svRefList:
{
SCCOL nCol1 = 0;
SCROW nRow1 = 0;
SCTAB nTab1 = 0;
SCCOL nCol2 = 0;
SCROW nRow2 = 0;
SCTAB nTab2 = 0;
bool bRowArray = false;
if (GetStackType() == svRefList)
{
FormulaTokenRef xRef = PopToken();
if (nGlobalError || !xRef)
{
PushIllegalParameter();
return;
}
ScRange aRange( ScAddress::UNINITIALIZED);
DoubleRefToRange( (*(static_cast<ScToken*>(xRef.get())->GetRefList()))[nArea-1], aRange);
aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
if ( nParamCount == 2 && nRow1 == nRow2 )
bRowArray = true;
}
else
{
PopDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2);
if ( nParamCount == 2 && nRow1 == nRow2 )
bRowArray = true;
}
if ( nTab1 != nTab2 ||
(nCol > 0 && nCol1+nCol-1 > nCol2) ||
(nRow > 0 && nRow1+nRow-1 > nRow2 && !bRowArray ) ||
( nRow > nCol2 - nCol1 + 1 && bRowArray ))
PushIllegalArgument();
else if (nCol == 0 && nRow == 0)
{
if ( nCol1 == nCol2 && nRow1 == nRow2 )
PushSingleRef( nCol1, nRow1, nTab1 );
else
PushDoubleRef( nCol1, nRow1, nTab1, nCol2, nRow2, nTab1 );
}
else if (nRow == 0)
{
if ( nRow1 == nRow2 )
PushSingleRef( nCol1+nCol-1, nRow1, nTab1 );
else
PushDoubleRef( nCol1+nCol-1, nRow1, nTab1,
nCol1+nCol-1, nRow2, nTab1 );
}
else if (nCol == 0)
{
if ( nCol1 == nCol2 )
PushSingleRef( nCol1, nRow1+nRow-1, nTab1 );
else if ( bRowArray )
{
nCol =(SCCOL) nRow;
nRow = 1;
PushSingleRef( nCol1+nCol-1, nRow1+nRow-1, nTab1);
}
else
PushDoubleRef( nCol1, nRow1+nRow-1, nTab1,
nCol2, nRow1+nRow-1, nTab1);
}
else
PushSingleRef( nCol1+nCol-1, nRow1+nRow-1, nTab1);
}
break;
default:
PushIllegalParameter();
}
}
}
void ScInterpreter::ScMultiArea()
{
// Legacy support, convert to RefList
sal_uInt8 nParamCount = GetByte();
if (MustHaveParamCountMin( nParamCount, 1))
{
while (!nGlobalError && nParamCount-- > 1)
{
ScUnionFunc();
}
}
}
void ScInterpreter::ScAreas()
{
sal_uInt8 nParamCount = GetByte();
if (MustHaveParamCount( nParamCount, 1))
{
size_t nCount = 0;
switch (GetStackType())
{
case svSingleRef:
{
FormulaTokenRef xT = PopToken();
ValidateRef( static_cast<ScToken*>(xT.get())->GetSingleRef());
++nCount;
}
break;
case svDoubleRef:
{
FormulaTokenRef xT = PopToken();
ValidateRef( static_cast<ScToken*>(xT.get())->GetDoubleRef());
++nCount;
}
break;
case svRefList:
{
FormulaTokenRef xT = PopToken();
ValidateRef( *(static_cast<ScToken*>(xT.get())->GetRefList()));
nCount += static_cast<ScToken*>(xT.get())->GetRefList()->size();
}
break;
default:
SetError( errIllegalParameter);
}
PushDouble( double(nCount));
}
}
void ScInterpreter::ScCurrency()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 2 ) )
{
OUString aStr;
double fDec;
if (nParamCount == 2)
{
fDec = ::rtl::math::approxFloor(GetDouble());
if (fDec < -15.0 || fDec > 15.0)
{
PushIllegalArgument();
return;
}
}
else
fDec = 2.0;
double fVal = GetDouble();
double fFac;
if ( fDec != 0.0 )
fFac = pow( (double)10, fDec );
else
fFac = 1.0;
if (fVal < 0.0)
fVal = ceil(fVal*fFac-0.5)/fFac;
else
fVal = floor(fVal*fFac+0.5)/fFac;
Color* pColor = NULL;
if ( fDec < 0.0 )
fDec = 0.0;
sal_uLong nIndex = pFormatter->GetStandardFormat(
NUMBERFORMAT_CURRENCY,
ScGlobal::eLnge);
if ( (sal_uInt16) fDec != pFormatter->GetFormatPrecision( nIndex ) )
{
OUString sFormatString = pFormatter->GenerateFormat(
nIndex,
ScGlobal::eLnge,
true, // mit Tausenderpunkt
false, // nicht rot
(sal_uInt16) fDec,// Nachkommastellen
1); // 1 Vorkommanull
if (!pFormatter->GetPreviewString(sFormatString,
fVal,
aStr,
&pColor,
ScGlobal::eLnge))
SetError(errIllegalArgument);
}
else
{
pFormatter->GetOutputString(fVal, nIndex, aStr, &pColor);
}
PushString(aStr);
}
}
void ScInterpreter::ScReplace()
{
if ( MustHaveParamCount( GetByte(), 4 ) )
{
OUString aNewStr = GetString().getString();
double fCount = ::rtl::math::approxFloor( GetDouble());
double fPos = ::rtl::math::approxFloor( GetDouble());
OUString aOldStr = GetString().getString();
if (fPos < 1.0 || fPos > static_cast<double>(STRING_MAXLEN)
|| fCount < 0.0 || fCount > static_cast<double>(STRING_MAXLEN))
PushIllegalArgument();
else
{
xub_StrLen nCount = static_cast<xub_StrLen>(fCount);
xub_StrLen nPos = static_cast<xub_StrLen>(fPos);
xub_StrLen nLen = aOldStr.getLength();
if (nPos > nLen + 1)
nPos = nLen + 1;
if (nCount > nLen - nPos + 1)
nCount = nLen - nPos + 1;
aOldStr = aOldStr.replaceAt( nPos-1, nCount, "" );
if ( CheckStringResultLen( aOldStr, aNewStr ) )
aOldStr = aOldStr.replaceAt( nPos-1, 0, aNewStr );
PushString( aOldStr );
}
}
}
void ScInterpreter::ScFixed()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 3 ) )
{
OUString aStr;
double fDec;
bool bThousand;
if (nParamCount == 3)
bThousand = !GetBool(); // Param TRUE: keine Tausenderpunkte
else
bThousand = true;
if (nParamCount >= 2)
{
fDec = ::rtl::math::approxFloor(GetDoubleWithDefault( 2.0 ));
if (fDec < -15.0 || fDec > 15.0)
{
PushIllegalArgument();
return;
}
}
else
fDec = 2.0;
double fVal = GetDouble();
double fFac;
if ( fDec != 0.0 )
fFac = pow( (double)10, fDec );
else
fFac = 1.0;
if (fVal < 0.0)
fVal = ceil(fVal*fFac-0.5)/fFac;
else
fVal = floor(fVal*fFac+0.5)/fFac;
Color* pColor = NULL;
if (fDec < 0.0)
fDec = 0.0;
sal_uLong nIndex = pFormatter->GetStandardFormat(
NUMBERFORMAT_NUMBER,
ScGlobal::eLnge);
OUString sFormatString = pFormatter->GenerateFormat(
nIndex,
ScGlobal::eLnge,
bThousand, // mit Tausenderpunkt
false, // nicht rot
(sal_uInt16) fDec,// Nachkommastellen
1); // 1 Vorkommanull
if (!pFormatter->GetPreviewString(sFormatString,
fVal,
aStr,
&pColor,
ScGlobal::eLnge))
PushIllegalArgument();
else
PushString(aStr);
}
}
void ScInterpreter::ScFind()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 2, 3 ) )
{
double fAnz;
if (nParamCount == 3)
fAnz = GetDouble();
else
fAnz = 1.0;
OUString sStr = GetString().getString();
if( fAnz < 1.0 || fAnz > (double) sStr.getLength() )
PushNoValue();
else
{
sal_Int32 nPos = sStr.indexOf(GetString().getString(), static_cast<sal_Int32>(fAnz - 1));
if (nPos == -1)
PushNoValue();
else
PushDouble((double)(nPos + 1));
}
}
}
void ScInterpreter::ScExact()
{
nFuncFmtType = NUMBERFORMAT_LOGICAL;
if ( MustHaveParamCount( GetByte(), 2 ) )
{
svl::SharedString s1 = GetString();
svl::SharedString s2 = GetString();
PushInt( s1.getData() == s2.getData() );
}
}
void ScInterpreter::ScLeft()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 2 ) )
{
xub_StrLen n;
if (nParamCount == 2)
{
double nVal = ::rtl::math::approxFloor(GetDouble());
if ( nVal < 0.0 || nVal > STRING_MAXLEN )
{
PushIllegalArgument();
return ;
}
else
n = (xub_StrLen) nVal;
}
else
n = 1;
OUString aStr = GetString().getString();
aStr = aStr.copy( 0, n );
PushString( aStr );
}
}
typedef struct {
UBlockCode from;
UBlockCode to;
} UBlockScript;
static const UBlockScript scriptList[] = {
{UBLOCK_HANGUL_JAMO, UBLOCK_HANGUL_JAMO},
{UBLOCK_CJK_RADICALS_SUPPLEMENT, UBLOCK_HANGUL_SYLLABLES},
{UBLOCK_CJK_COMPATIBILITY_IDEOGRAPHS,UBLOCK_CJK_RADICALS_SUPPLEMENT },
{UBLOCK_IDEOGRAPHIC_DESCRIPTION_CHARACTERS,UBLOCK_CJK_COMPATIBILITY_IDEOGRAPHS},
{UBLOCK_CJK_COMPATIBILITY_FORMS, UBLOCK_CJK_COMPATIBILITY_FORMS},
{UBLOCK_HALFWIDTH_AND_FULLWIDTH_FORMS, UBLOCK_HALFWIDTH_AND_FULLWIDTH_FORMS},
{UBLOCK_CJK_UNIFIED_IDEOGRAPHS_EXTENSION_B, UBLOCK_CJK_COMPATIBILITY_IDEOGRAPHS_SUPPLEMENT},
{UBLOCK_CJK_STROKES, UBLOCK_CJK_STROKES}
};
#define scriptListCount sizeof (scriptList) / sizeof (UBlockScript)
bool SAL_CALL lcl_getScriptClass(sal_uInt32 currentChar)
{
// for the locale of ja-JP, character U+0x005c and U+0x20ac should be ScriptType::Asian
if( (currentChar == 0x005c || currentChar == 0x20ac) &&
(MsLangId::getSystemLanguage() == LANGUAGE_JAPANESE) )
return true;
sal_uInt16 i;
static sal_Int16 nRet = 0;
UBlockCode block = (UBlockCode)ublock_getCode((sal_uInt32)currentChar);
for ( i = 0; i < scriptListCount; i++) {
if (block <= scriptList[i].to) break;
}
nRet = (i < scriptListCount && block >= scriptList[i].from);
return nRet;
}
bool IsDBCS(sal_Unicode ch)
{
return lcl_getScriptClass(ch);
}
sal_Int32 getLengthB(const OUString &str)
{
if(str.isEmpty())
return 0;
sal_Int32 index = 0;
sal_Int32 length = 0;
while(index < str.getLength()){
if(IsDBCS(str[index]))
length += 2;
else
length++;
index++;
}
return length;
}
void ScInterpreter::ScLenB()
{
PushDouble( getLengthB(GetString().getString()) );
}
OUString lcl_RightB(const OUString &rStr, sal_Int32 n)
{
if( n < getLengthB(rStr) )
{
OUStringBuffer aBuf(rStr);
sal_Int32 index = aBuf.getLength();
while(index-- >= 0)
{
if(0 == n)
{
aBuf.remove( 0, index + 1);
break;
}
if(-1 == n)
{
aBuf.remove( 0, index + 2 );
aBuf.insert( 0, " ");
break;
}
if(IsDBCS(aBuf[index]))
n -= 2;
else
n--;
}
return aBuf.makeStringAndClear();
}
return rStr;
}
void ScInterpreter::ScRightB()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 2 ) )
{
sal_Int32 n;
if (nParamCount == 2)
{
double nVal = ::rtl::math::approxFloor(GetDouble());
if ( nVal < 0.0 || nVal > STRING_MAXLEN )
{
PushIllegalArgument();
return ;
}
else
n = (xub_StrLen) nVal;
}
else
n = 1;
OUString aStr(lcl_RightB(GetString().getString(), n));
PushString( aStr );
}
}
OUString lcl_LeftB(const OUString &rStr, sal_Int32 n)
{
if( n < getLengthB(rStr) )
{
OUStringBuffer aBuf(rStr);
sal_Int32 index = -1;
while(index++ < aBuf.getLength())
{
if(0 == n)
{
aBuf.truncate(index);
break;
}
if(-1 == n)
{
aBuf.truncate( index - 1 );
aBuf.append(" ");
break;
}
if(IsDBCS(aBuf[index]))
n -= 2;
else
n--;
}
return aBuf.makeStringAndClear();
}
return rStr;
}
void ScInterpreter::ScLeftB()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 2 ) )
{
sal_Int32 n;
if (nParamCount == 2)
{
double nVal = ::rtl::math::approxFloor(GetDouble());
if ( nVal < 0.0 || nVal > STRING_MAXLEN )
{
PushIllegalArgument();
return ;
}
else
n = (xub_StrLen) nVal;
}
else
n = 1;
OUString aStr(lcl_LeftB(GetString().getString(), n));
PushString( aStr );
}
}
void ScInterpreter::ScMidB()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double fAnz = ::rtl::math::approxFloor(GetDouble());
double fAnfang = ::rtl::math::approxFloor(GetDouble());
OUString aStr = GetString().getString();
if (fAnfang < 1.0 || fAnz < 0.0 || fAnfang > double(STRING_MAXLEN) || fAnz > double(STRING_MAXLEN))
PushIllegalArgument();
else
{
aStr = lcl_LeftB(aStr, (xub_StrLen)fAnfang + (xub_StrLen)fAnz - 1);
sal_Int32 nCnt = getLengthB(aStr) - (xub_StrLen)fAnfang + 1;
aStr = lcl_RightB(aStr, nCnt>0 ? nCnt:0);
PushString(aStr);
}
}
}
void ScInterpreter::ScRight()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 1, 2 ) )
{
xub_StrLen n;
if (nParamCount == 2)
{
double nVal = ::rtl::math::approxFloor(GetDouble());
if ( nVal < 0.0 || nVal > STRING_MAXLEN )
{
PushIllegalArgument();
return ;
}
else
n = (xub_StrLen) nVal;
}
else
n = 1;
OUString aStr = GetString().getString();
if( n < aStr.getLength() )
aStr = aStr.copy( aStr.getLength() - n );
PushString( aStr );
}
}
void ScInterpreter::ScSearch()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 2, 3 ) )
{
double fAnz;
if (nParamCount == 3)
{
fAnz = ::rtl::math::approxFloor(GetDouble());
if (fAnz > double(STRING_MAXLEN))
{
PushIllegalArgument();
return;
}
}
else
fAnz = 1.0;
OUString sStr = GetString().getString();
OUString SearchStr = GetString().getString();
sal_Int32 nPos = fAnz - 1;
sal_Int32 nEndPos = sStr.getLength();
if( nPos >= nEndPos )
PushNoValue();
else
{
utl::SearchParam::SearchType eSearchType =
(MayBeRegExp( SearchStr, pDok ) ?
utl::SearchParam::SRCH_REGEXP : utl::SearchParam::SRCH_NORMAL);
utl::SearchParam sPar(SearchStr, eSearchType, false, false, false);
utl::TextSearch sT( sPar, *ScGlobal::pCharClass );
int nBool = sT.SearchForward(sStr, &nPos, &nEndPos);
if (!nBool)
PushNoValue();
else
PushDouble((double)(nPos) + 1);
}
}
}
void ScInterpreter::ScMid()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double fAnz = ::rtl::math::approxFloor(GetDouble());
double fAnfang = ::rtl::math::approxFloor(GetDouble());
OUString aStr = GetString().getString();
if (fAnfang < 1.0 || fAnz < 0.0 || fAnfang > double(STRING_MAXLEN) || fAnz > double(STRING_MAXLEN))
PushIllegalArgument();
else
PushString(aStr.copy(static_cast<sal_Int32>(fAnfang-1), static_cast<sal_Int32>(fAnz)));
}
}
void ScInterpreter::ScText()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
OUString sFormatString = GetString().getString();
svl::SharedString aStr;
bool bString = false;
double fVal = 0.0;
switch (GetStackType())
{
case svError:
PopError();
break;
case svDouble:
fVal = PopDouble();
break;
default:
{
FormulaTokenRef xTok( PopToken());
if (!nGlobalError)
{
PushTempToken( xTok.get());
// Temporarily override the ConvertStringToValue()
// error for GetCellValue() / GetCellValueOrZero()
sal_uInt16 nSErr = mnStringNoValueError;
mnStringNoValueError = errNotNumericString;
fVal = GetDouble();
mnStringNoValueError = nSErr;
if (nGlobalError == errNotNumericString)
{
// Not numeric.
nGlobalError = 0;
PushTempToken( xTok.get());
aStr = GetString();
bString = true;
}
}
}
}
if (nGlobalError)
PushError( nGlobalError);
else
{
OUString aResult;
Color* pColor = NULL;
LanguageType eCellLang;
const ScPatternAttr* pPattern = pDok->GetPattern(
aPos.Col(), aPos.Row(), aPos.Tab() );
if ( pPattern )
eCellLang = ((const SvxLanguageItem&)
pPattern->GetItem( ATTR_LANGUAGE_FORMAT )).GetValue();
else
eCellLang = ScGlobal::eLnge;
if (bString)
{
if (!pFormatter->GetPreviewString( sFormatString, aStr.getString(),
aResult, &pColor, eCellLang))
PushIllegalArgument();
else
PushString( aResult);
}
else
{
if (!pFormatter->GetPreviewStringGuess( sFormatString, fVal,
aResult, &pColor, eCellLang))
PushIllegalArgument();
else
PushString( aResult);
}
}
}
}
void ScInterpreter::ScSubstitute()
{
sal_uInt8 nParamCount = GetByte();
if ( MustHaveParamCount( nParamCount, 3, 4 ) )
{
xub_StrLen nAnz;
if (nParamCount == 4)
{
double fAnz = ::rtl::math::approxFloor(GetDouble());
if( fAnz < 1 || fAnz > STRING_MAXLEN )
{
PushIllegalArgument();
return;
}
else
nAnz = (xub_StrLen) fAnz;
}
else
nAnz = 0;
OUString sNewStr = GetString().getString();
OUString sOldStr = GetString().getString();
OUString sStr = GetString().getString();
sal_Int32 nPos = 0;
xub_StrLen nCount = 0;
xub_StrLen nNewLen = sNewStr.getLength();
xub_StrLen nOldLen = sOldStr.getLength();
while( true )
{
nPos = sStr.indexOf( sOldStr, nPos );
if (nPos != -1)
{
nCount++;
if( !nAnz || nCount == nAnz )
{
sStr = sStr.replaceAt(nPos,nOldLen, "");
if ( CheckStringResultLen( sStr, sNewStr ) )
{
sStr = sStr.replaceAt(nPos, 0, sNewStr);
nPos = sal::static_int_cast<xub_StrLen>( nPos + nNewLen );
}
else
break;
}
else
nPos++;
}
else
break;
}
PushString( sStr );
}
}
void ScInterpreter::ScRept()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
double fAnz = ::rtl::math::approxFloor(GetDouble());
OUString aStr = GetString().getString();
if ( fAnz < 0.0 )
PushIllegalArgument();
else if ( fAnz * aStr.getLength() > STRING_MAXLEN )
{
PushError( errStringOverflow );
}
else if ( fAnz == 0.0 )
PushString( EMPTY_OUSTRING );
else
{
const xub_StrLen nLen = aStr.getLength();
xub_StrLen n = (xub_StrLen) fAnz;
OUStringBuffer aRes(n*nLen);
while( n-- )
aRes.append(aStr);
PushString( aRes.makeStringAndClear() );
}
}
}
void ScInterpreter::ScConcat()
{
sal_uInt8 nParamCount = GetByte();
OUString aRes;
while( nParamCount-- > 0)
{
OUString aStr = GetString().getString();
aRes = aStr + aRes;
}
PushString( aRes );
}
void ScInterpreter::ScErrorType()
{
sal_uInt16 nErr;
sal_uInt16 nOldError = nGlobalError;
nGlobalError = 0;
switch ( GetStackType() )
{
case svRefList :
{
FormulaTokenRef x = PopToken();
if (nGlobalError)
nErr = nGlobalError;
else
{
const ScRefList* pRefList = static_cast<ScToken*>(x.get())->GetRefList();
size_t n = pRefList->size();
if (!n)
nErr = errNoRef;
else if (n > 1)
nErr = errNoValue;
else
{
ScRange aRange;
DoubleRefToRange( (*pRefList)[0], aRange);
if (nGlobalError)
nErr = nGlobalError;
else
{
ScAddress aAdr;
if ( DoubleRefToPosSingleRef( aRange, aAdr ) )
nErr = pDok->GetErrCode( aAdr );
else
nErr = nGlobalError;
}
}
}
}
break;
case svDoubleRef :
{
ScRange aRange;
PopDoubleRef( aRange );
if ( nGlobalError )
nErr = nGlobalError;
else
{
ScAddress aAdr;
if ( DoubleRefToPosSingleRef( aRange, aAdr ) )
nErr = pDok->GetErrCode( aAdr );
else
nErr = nGlobalError;
}
}
break;
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
if ( nGlobalError )
nErr = nGlobalError;
else
nErr = pDok->GetErrCode( aAdr );
}
break;
default:
PopError();
nErr = nGlobalError;
}
if ( nErr )
{
nGlobalError = 0;
PushDouble( nErr );
}
else
{
nGlobalError = nOldError;
PushNA();
}
}
bool ScInterpreter::MayBeRegExp( const OUString& rStr, const ScDocument* pDoc )
{
if ( pDoc && !pDoc->GetDocOptions().IsFormulaRegexEnabled() )
return false;
if ( rStr.isEmpty() || (rStr.getLength() == 1 && rStr[0] != '.') )
return false; // single meta characters can not be a regexp
static const sal_Unicode cre[] = { '.','*','+','?','[',']','^','$','\\','<','>','(',')','|', 0 };
const sal_Unicode* p1 = rStr.getStr();
sal_Unicode c1;
while ( ( c1 = *p1++ ) != 0 )
{
const sal_Unicode* p2 = cre;
while ( *p2 )
{
if ( c1 == *p2++ )
return true;
}
}
return false;
}
static bool lcl_LookupQuery( ScAddress & o_rResultPos, ScDocument * pDoc,
const ScQueryParam & rParam, const ScQueryEntry & rEntry )
{
bool bFound = false;
ScQueryCellIterator aCellIter( pDoc, rParam.nTab, rParam, false);
if (rEntry.eOp != SC_EQUAL)
{
// range lookup <= or >=
SCCOL nCol;
SCROW nRow;
bFound = aCellIter.FindEqualOrSortedLastInRange( nCol, nRow);
if (bFound)
{
o_rResultPos.SetCol( nCol);
o_rResultPos.SetRow( nRow);
}
}
else if (aCellIter.GetFirst())
{
// EQUAL
bFound = true;
o_rResultPos.SetCol( aCellIter.GetCol());
o_rResultPos.SetRow( aCellIter.GetRow());
}
return bFound;
}
bool ScInterpreter::LookupQueryWithCache( ScAddress & o_rResultPos,
const ScQueryParam & rParam ) const
{
bool bFound = false;
const ScQueryEntry& rEntry = rParam.GetEntry(0);
bool bColumnsMatch = (rParam.nCol1 == rEntry.nField);
OSL_ENSURE( bColumnsMatch, "ScInterpreter::LookupQueryWithCache: columns don't match");
if (!bColumnsMatch)
bFound = lcl_LookupQuery( o_rResultPos, pDok, rParam, rEntry);
else
{
ScRange aLookupRange( rParam.nCol1, rParam.nRow1, rParam.nTab,
rParam.nCol2, rParam.nRow2, rParam.nTab);
ScLookupCache& rCache = pDok->GetLookupCache( aLookupRange);
ScLookupCache::QueryCriteria aCriteria( rEntry);
ScLookupCache::Result eCacheResult = rCache.lookup( o_rResultPos,
aCriteria, aPos);
switch (eCacheResult)
{
case ScLookupCache::NOT_CACHED :
case ScLookupCache::CRITERIA_DIFFERENT :
bFound = lcl_LookupQuery( o_rResultPos, pDok, rParam, rEntry);
if (eCacheResult == ScLookupCache::NOT_CACHED)
rCache.insert( o_rResultPos, aCriteria, aPos, bFound);
break;
case ScLookupCache::FOUND :
bFound = true;
break;
case ScLookupCache::NOT_AVAILABLE :
; // nothing, bFound remains FALSE
break;
}
}
return bFound;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */