Files
libreoffice/vcl/source/glyphs/graphite_layout.cxx
László Németh 58e1112a6a fdo#52540 fix Graphite hyphenation (ligat. + combining diac.)
Change-Id: Idc3d9c40793f6f1c1b7883ca47f04ced36cabc48
2013-09-06 15:46:58 +02:00

1374 lines
49 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
// Description: An implementation of the SalLayout interface that uses the
// Graphite engine.
// Enable lots of debug info
#if OSL_DEBUG_LEVEL > 1
#include <cstdio>
#define GRLAYOUT_DEBUG 1
#undef NDEBUG
#endif
// #define GRLAYOUT_DEBUG 1
// Header files
//
// Standard Library
#include <algorithm>
#include <cassert>
#include <functional>
#include <limits>
#include <numeric>
#include <deque>
// Platform
#include <svsys.h>
#include <salgdi.hxx>
#include <unicode/uchar.h>
#include <unicode/ubidi.h>
#include <unicode/uscript.h>
// Graphite Libraries (must be after vcl headers on windows)
#include <graphite2/Segment.h>
#include <graphite_layout.hxx>
#include <graphite_features.hxx>
// Module private type definitions and forward declarations.
//
// Module private names.
//
#ifdef GRLAYOUT_DEBUG
static FILE * grLog()
{
#ifdef WNT
static FILE * grLogFile = NULL;
if (grLogFile == NULL)
{
std::string logFileName(getenv("TEMP"));
logFileName.append("/graphitelayout.log");
grLogFile = fopen(logFileName.c_str(),"w");
}
else
fflush(grLogFile);
return grLogFile;
#else
fflush(stdout);
return stdout;
#endif
}
#endif
namespace
{
inline long round(const float n) {
return long(n + (n < 0 ? -0.5 : 0.5));
}
template<typename T>
inline bool in_range(const T i, const T b, const T e) {
return !(b > i) && i < e;
}
template<typename T>
inline bool is_subrange(const T sb, const T se, const T b, const T e) {
return !(b > sb || se > e);
}
template<typename T>
inline bool is_subrange(const std::pair<T, T> &s, const T b, const T e) {
return is_subrange(s.first, s.second, b, e);
}
int findSameDirLimit(const sal_Unicode* buffer, int charCount, bool rtl)
{
UErrorCode status = U_ZERO_ERROR;
UBiDi *ubidi = ubidi_openSized(charCount, 0, &status);
int limit = 0;
ubidi_setPara(ubidi, reinterpret_cast<const UChar *>(buffer), charCount,
(rtl)?UBIDI_DEFAULT_RTL:UBIDI_DEFAULT_LTR, NULL, &status);
UBiDiLevel level = 0;
ubidi_getLogicalRun(ubidi, 0, &limit, &level);
ubidi_close(ubidi);
if ((rtl && !(level & 1)) || (!rtl && (level & 1)))
{
limit = 0;
}
return limit;
}
template <typename T>
T maximum(T a, T b)
{
return (a > b)? a : b;
}
template <typename T>
T minimum(T a, T b)
{
return (a < b)? a : b;
}
} // namespace
// Impementation of the GraphiteLayout::Glyphs container class.
// This is an extended vector class with methods added to enable
// o Correctly filling with glyphs.
// o Querying clustering relationships.
// o manipulations that affect neighouring glyphs.
const int GraphiteLayout::EXTRA_CONTEXT_LENGTH = 10;
// find first slot of cluster and first slot of subsequent cluster
static void findFirstClusterSlot(const gr_slot* base, gr_slot const** first, gr_slot const** after, int * firstChar, int * lastChar, bool bRtl)
{
if (gr_slot_attached_to(base) == NULL)
{
*first = base;
*after = (bRtl)? gr_slot_prev_in_segment(base) :
gr_slot_next_in_segment(base);
*firstChar = gr_slot_before(base);
*lastChar = gr_slot_after(base);
}
const gr_slot * attachment = gr_slot_first_attachment(base);
while (attachment)
{
if (gr_slot_origin_X(*first) > gr_slot_origin_X(attachment))
*first = attachment;
const gr_slot* attachmentNext = (bRtl)?
gr_slot_prev_in_segment(attachment) : gr_slot_next_in_segment(attachment);
if (attachmentNext)
{
if (*after && (gr_slot_origin_X(*after) < gr_slot_origin_X(attachmentNext)))
*after = attachmentNext;
}
else
{
*after = NULL;
}
if (gr_slot_before(attachment) < *firstChar)
*firstChar = gr_slot_before(attachment);
if (gr_slot_after(attachment) > *lastChar)
*lastChar = gr_slot_after(attachment);
if (gr_slot_first_attachment(attachment))
findFirstClusterSlot(attachment, first, after, firstChar, lastChar, bRtl);
attachment = gr_slot_next_sibling_attachment(attachment);
}
}
// The Graphite glyph stream is really a sequence of glyph attachment trees
// each rooted at a non-attached base glyph. fill_from walks the glyph stream,
// finds each non-attached base glyph and calls append to record them as a
// sequence of clusters.
void
GraphiteLayout::fillFrom(gr_segment * pSegment, ImplLayoutArgs &rArgs, float fScaling)
{
bool bRtl = (rArgs.mnFlags & SAL_LAYOUT_BIDI_RTL);
int nCharRequested = rArgs.mnEndCharPos - rArgs.mnMinCharPos;
int nChar = gr_seg_n_cinfo(pSegment);
float fMinX = gr_seg_advance_X(pSegment);
float fMaxX = 0.0f;
long nDxOffset = 0; // from dropped glyphs
int nFirstCharInCluster = 0;
int nLastCharInCluster = 0;
unsigned int nGlyphs = gr_seg_n_slots(pSegment);
mvGlyph2Char.assign(nGlyphs, -1);
mvGlyphs.reserve(nGlyphs);
if (bRtl)
{
const gr_slot* baseSlot = gr_seg_last_slot(pSegment);
// find first base
while (baseSlot && (gr_slot_attached_to(baseSlot) != NULL))
baseSlot = gr_slot_prev_in_segment(baseSlot);
int iChar = nChar - 1;
int iNextChar = nChar - 1;
bool reordered = false;
int nBaseGlyphIndex = 0;
// now loop over bases
while (baseSlot)
{
bool bCluster = !reordered;
const gr_slot * clusterFirst = NULL;
const gr_slot * clusterAfter = NULL;
int firstChar = -1;
int lastChar = -1;
findFirstClusterSlot(baseSlot, &clusterFirst, &clusterAfter, &firstChar, &lastChar, bRtl);
iNextChar = minimum<int>(firstChar, iNextChar);
if (bCluster)
{
nBaseGlyphIndex = mvGlyphs.size();
mvGlyph2Char[nBaseGlyphIndex] = iChar + mnSegCharOffset;
nFirstCharInCluster = firstChar;
nLastCharInCluster = lastChar;
}
else
{
mvGlyph2Char[mvGlyphs.size()] = firstChar + mnSegCharOffset;
nFirstCharInCluster = minimum<int>(firstChar, nFirstCharInCluster);
nLastCharInCluster = maximum<int>(firstChar, nLastCharInCluster);
}
float leftBoundary = gr_slot_origin_X(clusterFirst);
float rightBoundary = (clusterAfter)?
gr_slot_origin_X(clusterAfter) : gr_seg_advance_X(pSegment);
if (
lastChar < iChar &&
(gr_cinfo_after(gr_seg_cinfo(pSegment, iChar)) >
static_cast<int>(gr_slot_index(clusterAfter)))
)
{
reordered = true;
}
else
{
reordered = false;
iChar = iNextChar - 1;
}
if (mnSegCharOffset + nFirstCharInCluster >= mnMinCharPos &&
mnSegCharOffset + nFirstCharInCluster < mnEndCharPos)
{
fMinX = minimum<float>(fMinX, leftBoundary);
fMaxX = maximum<float>(fMaxX, rightBoundary);
if (!reordered)
{
for (int i = nFirstCharInCluster; i <= nLastCharInCluster; i++)
{
if (mnSegCharOffset + i >= mnEndCharPos)
break;
// from the point of view of the dx array, the xpos is
// the origin of the first glyph of the cluster rtl
mvCharDxs[mnSegCharOffset + i - mnMinCharPos] =
static_cast<int>(leftBoundary * fScaling) + nDxOffset;
mvCharBreaks[mnSegCharOffset + i - mnMinCharPos] = gr_cinfo_break_weight(gr_seg_cinfo(pSegment, i));
}
mvChar2BaseGlyph[mnSegCharOffset + nFirstCharInCluster - mnMinCharPos] = nBaseGlyphIndex;
}
append(pSegment, rArgs, baseSlot, gr_slot_origin_X(baseSlot), rightBoundary, fScaling,
nDxOffset, bCluster, mnSegCharOffset + firstChar);
}
if (mnSegCharOffset + nLastCharInCluster < mnMinCharPos)
break;
baseSlot = gr_slot_next_sibling_attachment(baseSlot);
}
}
else
{
const gr_slot* baseSlot = gr_seg_first_slot(pSegment);
// find first base
while (baseSlot && (gr_slot_attached_to(baseSlot) != NULL))
baseSlot = gr_slot_next_in_segment(baseSlot);
int iChar = 0; // relative to segment
int iNextChar = 0;
bool reordered = false;
int nBaseGlyphIndex = 0;
// now loop over bases
while (baseSlot)
{
bool bCluster = !reordered;
const gr_slot * clusterFirst = NULL;
const gr_slot * clusterAfter = NULL;
int firstChar = -1;
int lastChar = -1;
findFirstClusterSlot(baseSlot, &clusterFirst, &clusterAfter, &firstChar, &lastChar, bRtl);
iNextChar = maximum<int>(lastChar, iNextChar);
if (bCluster)
{
nBaseGlyphIndex = mvGlyphs.size();
mvGlyph2Char[nBaseGlyphIndex] = iChar + mnSegCharOffset;
nFirstCharInCluster = firstChar;
nLastCharInCluster = lastChar;
}
else
{
mvGlyph2Char[mvGlyphs.size()] = firstChar + mnSegCharOffset;
nFirstCharInCluster = minimum<int>(firstChar, nFirstCharInCluster);
nLastCharInCluster = maximum<int>(lastChar, nLastCharInCluster);
}
if (
firstChar > iChar &&
(gr_cinfo_before(gr_seg_cinfo(pSegment, iChar)) >
static_cast<int>(gr_slot_index(clusterFirst)))
)
{
reordered = true;
}
else
{
reordered = false;
iChar = iNextChar + 1;
}
float leftBoundary = gr_slot_origin_X(clusterFirst);
float rightBoundary = (clusterAfter)?
gr_slot_origin_X(clusterAfter) : gr_seg_advance_X(pSegment);
int bFirstChar = gr_cinfo_base(gr_seg_cinfo(pSegment, nFirstCharInCluster));
if (mnSegCharOffset + bFirstChar >= mnMinCharPos &&
mnSegCharOffset + bFirstChar < mnEndCharPos)
{
fMinX = minimum<float>(fMinX, leftBoundary);
fMaxX = maximum<float>(fMaxX, rightBoundary);
if (!reordered)
{
for (int i = nFirstCharInCluster; i <= nLastCharInCluster; i++)
{
int ibase = gr_cinfo_base(gr_seg_cinfo(pSegment, i));
if (mnSegCharOffset + ibase >= mnEndCharPos)
break;
// from the point of view of the dx array, the xpos is
// the origin of the first glyph of the next cluster ltr
mvCharDxs[mnSegCharOffset + ibase - mnMinCharPos] =
static_cast<int>(rightBoundary * fScaling) + nDxOffset;
mvCharBreaks[mnSegCharOffset + ibase - mnMinCharPos] = gr_cinfo_break_weight(gr_seg_cinfo(pSegment, i));
}
// only set mvChar2BaseGlyph for first character of cluster
mvChar2BaseGlyph[mnSegCharOffset + bFirstChar - mnMinCharPos] = nBaseGlyphIndex;
}
append(pSegment, rArgs, baseSlot, gr_slot_origin_X(baseSlot), rightBoundary, fScaling,
nDxOffset, true, mnSegCharOffset + firstChar);
}
if (mnSegCharOffset + bFirstChar >= mnEndCharPos)
break;
baseSlot = gr_slot_next_sibling_attachment(baseSlot);
}
}
long nXOffset = round(fMinX * fScaling);
mnWidth = round(fMaxX * fScaling) - nXOffset + nDxOffset;
if (mnWidth < 0)
{
// This can happen when there was no base inside the range
mnWidth = 0;
}
// fill up non-base char dx with cluster widths from previous base glyph
if (bRtl)
{
if (mvCharDxs[nCharRequested-1] == -1)
mvCharDxs[nCharRequested-1] = 0;
else
mvCharDxs[nCharRequested-1] -= nXOffset;
for (int i = nCharRequested - 2; i >= 0; i--)
{
if (mvCharDxs[i] == -1) mvCharDxs[i] = mvCharDxs[i+1];
else mvCharDxs[i] -= nXOffset;
}
}
else
{
if (mvCharDxs[0] == -1)
mvCharDxs[0] = 0;
else
mvCharDxs[0] -= nXOffset;
for (int i = 1; i < nCharRequested; i++)
{
if (mvCharDxs[i] == -1) mvCharDxs[i] = mvCharDxs[i-1];
else mvCharDxs[i] -= nXOffset;
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"%d,%d ", (int)i, (int)mvCharDxs[i]);
#endif
}
}
// remove offset due to context if there is one
if (nXOffset != 0)
{
for (size_t i = 0; i < mvGlyphs.size(); i++)
mvGlyphs[i].maLinearPos.X() -= nXOffset;
}
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(), "fillFrom %" SAL_PRI_SIZET "u glyphs offset %ld width %ld\n", mvGlyphs.size(), nXOffset, mnWidth);
#endif
}
// append walks an attachment tree, flattening it, and converting it into a
// sequence of GlyphItem objects which we can later manipulate.
float
GraphiteLayout::append(gr_segment *pSeg, ImplLayoutArgs &rArgs,
const gr_slot * gi, float gOrigin, float nextGlyphOrigin, float scaling, long & rDXOffset,
bool bIsBase, int baseChar)
{
bool bRtl = (rArgs.mnFlags & SAL_LAYOUT_BIDI_RTL);
float nextOrigin;
assert(gi);
assert(gr_slot_before(gi) <= gr_slot_after(gi));
int firstChar = gr_slot_before(gi) + mnSegCharOffset;
assert(mvGlyphs.size() < mvGlyph2Char.size());
if (!bIsBase) mvGlyph2Char[mvGlyphs.size()] = baseChar;//firstChar;
// is the next glyph attached or in the next cluster?
//glyph_set_range_t iAttached = gi.attachedClusterGlyphs();
const gr_slot * pFirstAttached = gr_slot_first_attachment(gi);
const gr_slot * pNextSibling = gr_slot_next_sibling_attachment(gi);
if (pFirstAttached)
nextOrigin = gr_slot_origin_X(pFirstAttached);
else if (!bIsBase && pNextSibling)
nextOrigin = gr_slot_origin_X(pNextSibling);
else
nextOrigin = nextGlyphOrigin;
long glyphId = gr_slot_gid(gi);
long deltaOffset = 0;
int scaledGlyphPos = round(gr_slot_origin_X(gi) * scaling);
int glyphWidth = round((nextOrigin - gOrigin) * scaling);
// if (glyphWidth < 0)
// {
// nextOrigin = gOrigin;
// glyphWidth = 0;
// }
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"c%d g%ld,X%d W%d nX%f ", firstChar, glyphId,
(int)(gr_slot_origin_X(gi) * scaling), glyphWidth, nextOrigin * scaling);
#endif
if (glyphId == 0)
{
rArgs.NeedFallback(firstChar, bRtl);
if( (SAL_LAYOUT_FOR_FALLBACK & rArgs.mnFlags ))
{
glyphId = GF_DROPPED;
deltaOffset -= glyphWidth;
glyphWidth = 0;
}
}
else if(rArgs.mnFlags & SAL_LAYOUT_FOR_FALLBACK)
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"fallback c%d %x in run %d\n", firstChar, rArgs.mpStr[firstChar],
rArgs.maRuns.PosIsInAnyRun(firstChar));
#endif
// glyphs that aren't requested for fallback will be taken from base
// layout, so mark them as dropped (should this wait until Simplify(false) is called?)
if (!rArgs.maRuns.PosIsInAnyRun(firstChar) &&
in_range(firstChar, rArgs.mnMinCharPos, rArgs.mnEndCharPos))
{
glyphId = GF_DROPPED;
deltaOffset -= glyphWidth;
glyphWidth = 0;
}
}
// append this glyph. Set the cluster flag if this glyph is attached to another
long nGlyphFlags = bIsBase ? 0 : GlyphItem::IS_IN_CLUSTER;
nGlyphFlags |= (bRtl)? GlyphItem::IS_RTL_GLYPH : 0;
GlyphItem aGlyphItem(mvGlyphs.size(),
glyphId,
Point(scaledGlyphPos + rDXOffset,
round((-gr_slot_origin_Y(gi) * scaling))),
nGlyphFlags,
glyphWidth);
if (glyphId != static_cast<long>(GF_DROPPED))
aGlyphItem.mnOrigWidth = round(gr_slot_advance_X(gi, mpFace, mpFont) * scaling);
mvGlyphs.push_back(aGlyphItem);
// update the offset if this glyph was dropped
rDXOffset += deltaOffset;
// Recursively append all the attached glyphs.
float cOrigin = nextOrigin;
for (const gr_slot * agi = gr_slot_first_attachment(gi); agi != NULL; agi = gr_slot_next_sibling_attachment(agi))
cOrigin = append(pSeg, rArgs, agi, cOrigin, nextGlyphOrigin, scaling, rDXOffset, false, baseChar);
return cOrigin;
}
//
// An implementation of the SalLayout interface to enable Graphite enabled fonts to be used.
//
GraphiteLayout::GraphiteLayout(const gr_face * face, gr_font * font,
const grutils::GrFeatureParser * pFeatures) throw()
: mpFace(face),
mpFont(font),
mnWidth(0),
mfScaling(1.0),
mpFeatures(pFeatures)
{
}
GraphiteLayout::~GraphiteLayout() throw()
{
clear();
// the features and font are owned by the platform layers
mpFeatures = NULL;
mpFont = NULL;
}
void GraphiteLayout::clear()
{
// Destroy the segment and text source from any previous invocation of
// LayoutText
mvGlyphs.clear();
mvCharDxs.clear();
mvChar2BaseGlyph.clear();
mvGlyph2Char.clear();
// Reset the state to the empty state.
mnWidth = 0;
// Don't reset the scaling, because it is set before LayoutText
}
// This method shouldn't be called on windows, since it needs the dc reset
bool GraphiteLayout::LayoutText(ImplLayoutArgs & rArgs)
{
bool success = true;
if (rArgs.mnMinCharPos < rArgs.mnEndCharPos)
{
gr_segment * pSegment = CreateSegment(rArgs);
if (!pSegment)
return false;
success = LayoutGlyphs(rArgs, pSegment);
if (pSegment)
{
gr_seg_destroy(pSegment);
pSegment = NULL;
}
}
else
{
clear();
}
return success;
}
gr_segment * GraphiteLayout::CreateSegment(ImplLayoutArgs& rArgs)
{
assert(rArgs.mnLength >= 0);
gr_segment * pSegment = NULL;
// Set the SalLayouts values to be the initial ones.
SalLayout::AdjustLayout(rArgs);
// TODO check if this is needed
if (mnUnitsPerPixel > 1)
mfScaling = 1.0f / mnUnitsPerPixel;
// Clear out any previous buffers
clear();
bool bRtl = mnLayoutFlags & SAL_LAYOUT_BIDI_RTL;
try
{
// Don't set RTL if font doesn't support it otherwise it forces rtl on
// everything
//if (bRtl && (mrFont.getSupportedScriptDirections() & gr::kfsdcHorizRtl))
// maLayout.setRightToLeft(bRtl);
// Context is often needed beyond the specified end, however, we don't
// want it if there has been a direction change, since it is hard
// to tell between reordering within one direction and multi-directional
// text. Extra context, can also cause problems with ligatures stradling
// a hyphenation point, so disable if CTL is disabled.
mnSegCharOffset = rArgs.mnMinCharPos;
int limit = rArgs.mnEndCharPos;
if (!(SAL_LAYOUT_COMPLEX_DISABLED & rArgs.mnFlags))
{
const int nSegCharMin = maximum<int>(0, mnMinCharPos - EXTRA_CONTEXT_LENGTH);
const int nSegCharLimit = minimum(rArgs.mnLength, mnEndCharPos + EXTRA_CONTEXT_LENGTH);
if (nSegCharMin < mnSegCharOffset)
{
int sameDirEnd = findSameDirLimit(rArgs.mpStr + nSegCharMin,
rArgs.mnEndCharPos - nSegCharMin, bRtl);
if (sameDirEnd == rArgs.mnEndCharPos)
mnSegCharOffset = nSegCharMin;
}
if (nSegCharLimit > limit)
{
limit += findSameDirLimit(rArgs.mpStr + rArgs.mnEndCharPos,
nSegCharLimit - rArgs.mnEndCharPos, bRtl);
}
}
// int numchars = gr_count_unicode_characters(gr_utf16, rArgs.mpStr + mnSegCharOffset,
// rArgs.mpStr + (rArgs.mnLength > limit + 64 ? limit + 64 : rArgs.mnLength), NULL);
int numchars = rArgs.mnEndCharPos - mnSegCharOffset; // fdo#52540, fdo#68313, FIXME
if (mpFeatures)
pSegment = gr_make_seg(mpFont, mpFace, 0, mpFeatures->values(), gr_utf16,
rArgs.mpStr + mnSegCharOffset, numchars, bRtl);
else
pSegment = gr_make_seg(mpFont, mpFace, 0, NULL, gr_utf16,
rArgs.mpStr + mnSegCharOffset, numchars, bRtl);
//pSegment = new gr::RangeSegment((gr::Font *)&mrFont, mpTextSrc, &maLayout, mnMinCharPos, limit);
if (pSegment != NULL)
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"Gr::LayoutText %d-%d, context %d, len %d, numchars %d, rtl %d scaling %f:", rArgs.mnMinCharPos,
rArgs.mnEndCharPos, limit, rArgs.mnLength, numchars, bRtl, mfScaling);
for (int i = mnSegCharOffset; i < limit; ++i)
fprintf(grLog(), " %04X", rArgs.mpStr[i]);
fprintf(grLog(), "\n");
#endif
}
else
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(), "Gr::LayoutText failed: ");
for (int i = mnMinCharPos; i < limit; i++)
{
fprintf(grLog(), "%04x ", rArgs.mpStr[i]);
}
fprintf(grLog(), "\n");
#endif
clear();
return NULL;
}
}
catch (...)
{
clear(); // destroy the text source and any partially built segments.
return NULL;
}
return pSegment;
}
bool GraphiteLayout::LayoutGlyphs(ImplLayoutArgs& rArgs, gr_segment * pSegment)
{
// Calculate the initial character dxs.
mvCharDxs.assign(mnEndCharPos - mnMinCharPos, -1);
mvChar2BaseGlyph.assign(mnEndCharPos - mnMinCharPos, -1);
mvCharBreaks.assign(mnEndCharPos - mnMinCharPos, 0);
mnWidth = 0;
if (mvCharDxs.size() > 0)
{
// Discover all the clusters.
try
{
bool bRtl = mnLayoutFlags & SAL_LAYOUT_BIDI_RTL;
fillFrom(pSegment, rArgs, mfScaling);
if (bRtl)
{
// not needed for adjacent differences, but for mouse clicks to char
std::transform(mvCharDxs.begin(), mvCharDxs.end(), mvCharDxs.begin(),
std::bind1st(std::minus<long>(), mnWidth));
// fixup last dx to ensure it always equals the width
mvCharDxs[mvCharDxs.size() - 1] = mnWidth;
}
}
catch (const std::exception &e)
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"LayoutGlyphs failed %s\n", e.what());
#else
(void)e;
#endif
return false;
}
catch (...)
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"LayoutGlyphs failed with exception");
#endif
return false;
}
}
else
{
mnWidth = 0;
}
return true;
}
int GraphiteLayout::GetTextBreak(long maxmnWidth, long char_extra, int factor) const
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"Gr::GetTextBreak c[%d-%d) maxWidth %ld char extra %ld factor %d\n",
mnMinCharPos, mnEndCharPos, maxmnWidth, char_extra, factor);
#endif
// return quickly if this segment is narrower than the target width
if (maxmnWidth > mnWidth * factor + char_extra * (mnEndCharPos - mnMinCharPos - 1))
return STRING_LEN;
long nWidth = mvCharDxs[0] * factor;
long wLastBreak = 0;
int nLastBreak = -1;
int nEmergency = -1;
for (size_t i = 1; i < mvCharDxs.size(); i++)
{
nWidth += char_extra;
if (nWidth > maxmnWidth) break;
if (mvChar2BaseGlyph[i] != -1)
{
if (
(mvCharBreaks[i] > -35 || (mvCharBreaks[i-1] > 0 && mvCharBreaks[i-1] < 35)) &&
(mvCharBreaks[i-1] < 35 || (mvCharBreaks[i] < 0 && mvCharBreaks[i] > -35))
)
{
nLastBreak = static_cast<int>(i);
wLastBreak = nWidth;
}
nEmergency = static_cast<int>(i);
}
nWidth += (mvCharDxs[i] - mvCharDxs[i-1]) * factor;
}
int nBreak = mnMinCharPos;
if (wLastBreak > 9 * maxmnWidth / 10)
nBreak += nLastBreak;
else
if (nEmergency > -1)
nBreak += nEmergency;
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(), "Gr::GetTextBreak break after %d, weights(%d, %d)\n", nBreak - mnMinCharPos, mvCharBreaks[nBreak - mnMinCharPos], mvCharBreaks[nBreak - mnMinCharPos - 1]);
#endif
if (nBreak > mnEndCharPos) nBreak = STRING_LEN;
else if (nBreak < mnMinCharPos) nBreak = mnMinCharPos;
return nBreak;
}
long GraphiteLayout::FillDXArray( sal_Int32* pDXArray ) const
{
if (mnEndCharPos == mnMinCharPos)
// Then we must be zero width!
return 0;
if (pDXArray)
{
for (size_t i = 0; i < mvCharDxs.size(); i++)
{
assert( (mvChar2BaseGlyph[i] == -1) ||
((signed)(mvChar2BaseGlyph[i]) < (signed)mvGlyphs.size()));
if (mvChar2BaseGlyph[i] != -1 &&
mvGlyphs[mvChar2BaseGlyph[i]].mnGlyphIndex == GF_DROPPED)
{
// when used in MultiSalLayout::GetTextBreak dropped glyphs
// must have zero width
pDXArray[i] = 0;
}
else
{
pDXArray[i] = mvCharDxs[i];
if (i > 0) pDXArray[i] -= mvCharDxs[i-1];
}
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"%d,%d,%d ", (int)i, (int)mvCharDxs[i], pDXArray[i]);
#endif
}
//std::adjacent_difference(mvCharDxs.begin(), mvCharDxs.end(), pDXArray);
//for (size_t i = 0; i < mvCharDxs.size(); i++)
// fprintf(grLog(),"%d,%d,%d ", (int)i, (int)mvCharDxs[i], pDXArray[i]);
//fprintf(grLog(),"FillDX %ld,%d\n", mnWidth, std::accumulate(pDXArray, pDXArray + mvCharDxs.size(), 0));
}
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"FillDXArray %d-%d=%ld\n", mnMinCharPos, mnEndCharPos, mnWidth);
#endif
return mnWidth;
}
void GraphiteLayout::AdjustLayout(ImplLayoutArgs& rArgs)
{
SalLayout::AdjustLayout(rArgs);
if(rArgs.mpDXArray)
{
std::vector<int> vDeltaWidths(mvGlyphs.size(), 0);
ApplyDXArray(rArgs, vDeltaWidths);
if( (mnLayoutFlags & SAL_LAYOUT_BIDI_RTL) &&
!(rArgs.mnFlags & SAL_LAYOUT_FOR_FALLBACK) )
{
// check if this is a kashida script
bool bKashidaScript = false;
for (int i = rArgs.mnMinCharPos; i < rArgs.mnEndCharPos; i++)
{
UErrorCode aStatus = U_ZERO_ERROR;
UScriptCode scriptCode = uscript_getScript(rArgs.mpStr[i], &aStatus);
if (scriptCode == USCRIPT_ARABIC || scriptCode == USCRIPT_SYRIAC)
{
bKashidaScript = true;
break;
}
}
int nKashidaWidth = 0;
int nKashidaIndex = getKashidaGlyph(nKashidaWidth);
if( nKashidaIndex != 0 && bKashidaScript)
{
kashidaJustify( vDeltaWidths, nKashidaIndex, nKashidaWidth );
}
}
}
else if (rArgs.mnLayoutWidth > 0)
{
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(), "AdjustLayout width %ld=>%ld\n", mnWidth, rArgs.mnLayoutWidth);
#endif
expandOrCondense(rArgs);
}
}
void GraphiteLayout::expandOrCondense(ImplLayoutArgs &rArgs)
{
int nDeltaWidth = rArgs.mnLayoutWidth - mnWidth;
if (nDeltaWidth > 0) // expand, just expand between clusters
{
// NOTE: for expansion we can use base glyphs (which have IsClusterStart set)
// even though they may have been reordered in which case they will have
// been placed in a bigger cluster for other purposes.
int nClusterCount = 0;
for (size_t j = 0; j < mvGlyphs.size(); j++)
{
if (mvGlyphs[j].IsClusterStart())
{
++nClusterCount;
}
}
if (nClusterCount > 1)
{
float fExtraPerCluster = static_cast<float>(nDeltaWidth) / static_cast<float>(nClusterCount - 1);
int nCluster = 0;
int nOffset = 0;
for (size_t i = 0; i < mvGlyphs.size(); i++)
{
if (mvGlyphs[i].IsClusterStart())
{
nOffset = static_cast<int>(fExtraPerCluster * nCluster);
int nCharIndex = mvGlyph2Char[i];
assert(nCharIndex > -1);
if (nCharIndex < mnMinCharPos ||
static_cast<size_t>(nCharIndex-mnMinCharPos)
>= mvCharDxs.size())
{
continue;
}
mvCharDxs[nCharIndex-mnMinCharPos] += nOffset;
// adjust char dxs for rest of characters in cluster
while (++nCharIndex - mnMinCharPos < static_cast<int>(mvChar2BaseGlyph.size()))
{
int nChar2Base = mvChar2BaseGlyph[nCharIndex-mnMinCharPos];
if (nChar2Base == -1 || nChar2Base == static_cast<int>(i))
mvCharDxs[nCharIndex-mnMinCharPos] += nOffset;
else
break;
}
++nCluster;
}
mvGlyphs[i].maLinearPos.X() += nOffset;
}
}
}
else if (nDeltaWidth < 0)// condense - apply a factor to all glyph positions
{
if (mvGlyphs.empty()) return;
Glyphs::iterator iLastGlyph = mvGlyphs.begin() + (mvGlyphs.size() - 1);
// position last glyph using original width
float fXFactor = static_cast<float>(rArgs.mnLayoutWidth - iLastGlyph->mnOrigWidth) / static_cast<float>(iLastGlyph->maLinearPos.X());
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(), "Condense by factor %f last x%ld\n", fXFactor, iLastGlyph->maLinearPos.X());
#endif
if (fXFactor < 0)
return; // probably a bad mnOrigWidth value
iLastGlyph->maLinearPos.X() = rArgs.mnLayoutWidth - iLastGlyph->mnOrigWidth;
Glyphs::iterator iGlyph = mvGlyphs.begin();
while (iGlyph != iLastGlyph)
{
iGlyph->maLinearPos.X() = static_cast<int>(static_cast<float>(iGlyph->maLinearPos.X()) * fXFactor);
++iGlyph;
}
for (size_t i = 0; i < mvCharDxs.size(); i++)
{
mvCharDxs[i] = static_cast<int>(fXFactor * static_cast<float>(mvCharDxs[i]));
}
}
mnWidth = rArgs.mnLayoutWidth;
}
void GraphiteLayout::ApplyDXArray(ImplLayoutArgs &args, std::vector<int> & rDeltaWidth)
{
const size_t nChars = args.mnEndCharPos - args.mnMinCharPos;
if (nChars == 0) return;
#ifdef GRLAYOUT_DEBUG
for (size_t iDx = 0; iDx < mvCharDxs.size(); iDx++)
fprintf(grLog(),"%d,%d,%d ", (int)iDx, (int)mvCharDxs[iDx], args.mpDXArray[iDx]);
fprintf(grLog(),"ApplyDx\n");
#endif
bool bRtl = mnLayoutFlags & SAL_LAYOUT_BIDI_RTL;
int nXOffset = 0;
if (bRtl)
{
nXOffset = args.mpDXArray[nChars - 1] - mvCharDxs[nChars - 1];
}
int nPrevClusterGlyph = (bRtl)? (signed)mvGlyphs.size() : -1;
int nPrevClusterLastChar = -1;
for (size_t i = 0; i < nChars; i++)
{
int nChar2Base = mvChar2BaseGlyph[i];
if ((nChar2Base > -1) && (nChar2Base != nPrevClusterGlyph))
{
assert((nChar2Base > -1) && (nChar2Base < (signed)mvGlyphs.size()));
GlyphItem & gi = mvGlyphs[nChar2Base];
if (!gi.IsClusterStart())
continue;
// find last glyph of this cluster
size_t j = i + 1;
int nLastChar = i;
int nLastGlyph = nChar2Base;
int nChar2BaseJ = -1;
for (; j < nChars; j++)
{
nChar2BaseJ = mvChar2BaseGlyph[j];
assert((nChar2BaseJ >= -1) && (nChar2BaseJ < (signed)mvGlyphs.size()));
if (nChar2BaseJ != -1 )
{
nLastGlyph = nChar2BaseJ + ((bRtl)? +1 : -1);
nLastChar = j - 1;
break;
}
}
if (nLastGlyph < 0)
{
nLastGlyph = nChar2Base;
}
// Its harder to find the last glyph rtl, since the first of
// cluster is still on the left so we need to search towards
// the previous cluster to the right
if (bRtl)
{
nLastGlyph = nChar2Base;
while (nLastGlyph + 1 < (signed)mvGlyphs.size() &&
!mvGlyphs[nLastGlyph+1].IsClusterStart())
{
++nLastGlyph;
}
}
if (j == nChars)
{
nLastChar = nChars - 1;
if (!bRtl) nLastGlyph = mvGlyphs.size() - 1;
}
int nBaseCount = 0;
// count bases within cluster - may be more than 1 with reordering
for (int k = nChar2Base; k <= nLastGlyph; k++)
{
if (mvGlyphs[k].IsClusterStart()) ++nBaseCount;
}
assert((nLastChar > -1) && (nLastChar < (signed)nChars));
long nNewClusterWidth = args.mpDXArray[nLastChar];
long nOrigClusterWidth = mvCharDxs[nLastChar];
long nDGlyphOrigin = 0;
if (nPrevClusterLastChar > - 1)
{
assert(nPrevClusterLastChar < (signed)nChars);
nNewClusterWidth -= args.mpDXArray[nPrevClusterLastChar];
nOrigClusterWidth -= mvCharDxs[nPrevClusterLastChar];
nDGlyphOrigin = args.mpDXArray[nPrevClusterLastChar] - mvCharDxs[nPrevClusterLastChar];
}
long nDWidth = nNewClusterWidth - nOrigClusterWidth;
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(), "c%lu last glyph %d/%lu\n", i, nLastGlyph, mvGlyphs.size());
#endif
assert((nLastGlyph > -1) && (nLastGlyph < (signed)mvGlyphs.size()));
mvGlyphs[nLastGlyph].mnNewWidth += nDWidth;
if (gi.mnGlyphIndex != GF_DROPPED)
mvGlyphs[nLastGlyph].mnNewWidth += nDWidth;
else
nDGlyphOrigin += nDWidth;
long nDOriginPerBase = (nBaseCount > 0)? nDWidth / nBaseCount : 0;
nBaseCount = -1;
// update glyph positions
if (bRtl)
{
for (int n = nChar2Base; n <= nLastGlyph; n++)
{
if (mvGlyphs[n].IsClusterStart()) ++nBaseCount;
assert((n > - 1) && (n < (signed)mvGlyphs.size()));
mvGlyphs[n].maLinearPos.X() += -(nDGlyphOrigin + nDOriginPerBase * nBaseCount) + nXOffset;
}
}
else
{
for (int n = nChar2Base; n <= nLastGlyph; n++)
{
if (mvGlyphs[n].IsClusterStart()) ++nBaseCount;
assert((n > - 1) && (n < (signed)mvGlyphs.size()));
mvGlyphs[n].maLinearPos.X() += nDGlyphOrigin + (nDOriginPerBase * nBaseCount) + nXOffset;
}
}
rDeltaWidth[nChar2Base] = nDWidth;
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"c%d g%d-%d dW%ld-%ld=%ld dX%ld x%ld\t", (int)i, nChar2Base, nLastGlyph, nNewClusterWidth, nOrigClusterWidth, nDWidth, nDGlyphOrigin, mvGlyphs[nChar2Base].maLinearPos.X());
#endif
nPrevClusterGlyph = nChar2Base;
nPrevClusterLastChar = nLastChar;
i = nLastChar;
}
}
// Update the dx vector with the new values.
std::copy(args.mpDXArray, args.mpDXArray + nChars,
mvCharDxs.begin() + (args.mnMinCharPos - mnMinCharPos));
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"ApplyDx %d(%ld)\n", args.mpDXArray[nChars - 1], mnWidth);
#endif
mnWidth = args.mpDXArray[nChars - 1];
}
void GraphiteLayout::kashidaJustify(std::vector<int>& rDeltaWidths, sal_GlyphId nKashidaIndex, int nKashidaWidth)
{
// skip if the kashida glyph in the font looks suspicious
if( nKashidaWidth <= 0 )
return;
// calculate max number of needed kashidas
Glyphs::iterator i = mvGlyphs.begin();
int nKashidaCount = 0;
int nOrigGlyphIndex = -1;
int nGlyphIndex = -1;
while (i != mvGlyphs.end())
{
nOrigGlyphIndex++;
nGlyphIndex++;
// only inject kashidas in RTL contexts
if( !(*i).IsRTLGlyph() )
{
++i;
continue;
}
// no kashida-injection for blank justified expansion either
if( IsSpacingGlyph( (*i).mnGlyphIndex ) )
{
++i;
continue;
}
// calculate gap, ignore if too small
int nGapWidth = rDeltaWidths[nOrigGlyphIndex];
// worst case is one kashida even for mini-gaps
if( 3 * nGapWidth < nKashidaWidth )
{
++i;
continue;
}
nKashidaCount = 1 + (nGapWidth / nKashidaWidth);
#ifdef GRLAYOUT_DEBUG
printf("inserting %d kashidas at %u\n", nKashidaCount, (*i).mnGlyphIndex);
#endif
GlyphItem glyphItem = *i;
Point aPos(0, 0);
aPos.X() = (*i).maLinearPos.X();
GlyphItem newGi(glyphItem.mnCharPos, nKashidaIndex, aPos,
GlyphItem::IS_IN_CLUSTER|GlyphItem::IS_RTL_GLYPH, nKashidaWidth);
mvGlyphs.reserve(mvGlyphs.size() + nKashidaCount);
i = mvGlyphs.begin() + nGlyphIndex;
mvGlyphs.insert(i, nKashidaCount, newGi);
i = mvGlyphs.begin() + nGlyphIndex;
nGlyphIndex += nKashidaCount;
// now fix up the kashida positions
for (int j = 0; j < nKashidaCount; j++)
{
(*(i)).maLinearPos.X() -= nGapWidth;
nGapWidth -= nKashidaWidth;
++i;
}
// fixup rightmost kashida for gap remainder
if( nGapWidth < 0 )
{
if( nKashidaCount <= 1 )
nGapWidth /= 2; // for small gap move kashida to middle
(*(i-1)).mnNewWidth += nGapWidth; // adjust kashida width to gap width
(*(i-1)).maLinearPos.X() += nGapWidth;
}
(*i).mnNewWidth = (*i).mnOrigWidth;
++i;
}
}
void GraphiteLayout::GetCaretPositions( int nArraySize, sal_Int32* pCaretXArray ) const
{
// For each character except the last discover the caret positions
// immediately before and after that character.
// This is used for underlines in the GUI amongst other things.
// It may be used from MultiSalLayout, in which case it must take into account
// glyphs that have been moved.
std::fill(pCaretXArray, pCaretXArray + nArraySize, -1);
// the layout method doesn't modify the layout even though it isn't
// const in the interface
bool bRtl = (mnLayoutFlags & SAL_LAYOUT_BIDI_RTL);//const_cast<GraphiteLayout*>(this)->maLayout.rightToLeft();
int prevBase = -1;
long prevClusterWidth = 0;
for (int i = 0, nCharSlot = 0; i < nArraySize && nCharSlot < static_cast<int>(mvCharDxs.size()); ++nCharSlot, i+=2)
{
if (mvChar2BaseGlyph[nCharSlot] != -1)
{
int nChar2Base = mvChar2BaseGlyph[nCharSlot];
assert((nChar2Base > -1) && (nChar2Base < (signed)mvGlyphs.size()));
GlyphItem gi = mvGlyphs[nChar2Base];
if (gi.mnGlyphIndex == GF_DROPPED)
{
continue;
}
int nCluster = nChar2Base;
long origClusterWidth = gi.mnNewWidth;
long nMin = gi.maLinearPos.X();
long nMax = gi.maLinearPos.X() + gi.mnNewWidth;
// attached glyphs are always stored after their base rtl or ltr
while (++nCluster < static_cast<int>(mvGlyphs.size()) &&
!mvGlyphs[nCluster].IsClusterStart())
{
origClusterWidth += mvGlyphs[nCluster].mnNewWidth;
if (mvGlyph2Char[nCluster] == nCharSlot)
{
nMin = minimum(nMin, mvGlyphs[nCluster].maLinearPos.X());
nMax = maximum(nMax, mvGlyphs[nCluster].maLinearPos.X() + mvGlyphs[nCluster].mnNewWidth);
}
}
if (bRtl)
{
pCaretXArray[i+1] = nMin;
pCaretXArray[i] = nMax;
}
else
{
pCaretXArray[i] = nMin;
pCaretXArray[i+1] = nMax;
}
prevBase = nChar2Base;
prevClusterWidth = origClusterWidth;
}
else if (prevBase > -1)
{
// this could probably be improved
assert((prevBase > -1) && (prevBase < (signed)mvGlyphs.size()));
GlyphItem gi = mvGlyphs[prevBase];
int nGlyph = prevBase + 1;
// try to find a better match, otherwise default to complete cluster
for (; nGlyph < static_cast<int>(mvGlyphs.size()) &&
!mvGlyphs[nGlyph].IsClusterStart(); nGlyph++)
{
if (mvGlyph2Char[nGlyph] == nCharSlot)
{
gi = mvGlyphs[nGlyph];
break;
}
}
// if no match position at end of cluster
if (nGlyph == static_cast<int>(mvGlyphs.size()) ||
mvGlyphs[nGlyph].IsClusterStart())
{
if (bRtl)
{
pCaretXArray[i+1] = gi.maLinearPos.X();
pCaretXArray[i] = gi.maLinearPos.X();
}
else
{
pCaretXArray[i] = gi.maLinearPos.X() + prevClusterWidth;
pCaretXArray[i+1] = gi.maLinearPos.X() + prevClusterWidth;
}
}
else
{
if (bRtl)
{
pCaretXArray[i+1] = gi.maLinearPos.X();
pCaretXArray[i] = gi.maLinearPos.X() + gi.mnNewWidth;
}
else
{
pCaretXArray[i] = gi.maLinearPos.X();
pCaretXArray[i+1] = gi.maLinearPos.X() + gi.mnNewWidth;
}
}
}
else
{
pCaretXArray[i] = pCaretXArray[i+1] = 0;
}
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"%d,%d-%d\t", nCharSlot, pCaretXArray[i], pCaretXArray[i+1]);
#endif
}
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"\n");
#endif
}
// GetNextGlyphs returns a contiguous sequence of glyphs that can be
// rendered together. It should never return a dropped glyph.
// The glyph_slot returned should be the index of the next visible
// glyph after the last glyph returned by this call.
// The char_index array should be filled with the characters corresponding
// to each glyph returned.
// glyph_adv array should be a virtual width such that if successive
// glyphs returned by this method are added one after the other they
// have the correct spacing.
// The logic in this method must match that expected in MultiSalLayout which
// is used when glyph fallback is in operation.
int GraphiteLayout::GetNextGlyphs( int length, sal_GlyphId * glyph_out,
::Point & aPosOut, int &glyph_slot, sal_Int32 * glyph_adv, int *char_index,
const PhysicalFontFace** /*pFallbackFonts*/ ) const
{
// Sanity check on the slot index.
if (glyph_slot >= signed(mvGlyphs.size()))
{
glyph_slot = mvGlyphs.size();
return 0;
}
assert(glyph_slot >= 0);
// Find the first glyph in the substring.
for (; glyph_slot < signed(mvGlyphs.size()) &&
((mvGlyphs.begin() + glyph_slot)->mnGlyphIndex == GF_DROPPED);
++glyph_slot) {};
// Update the length
const int nGlyphSlotEnd = minimum(size_t(glyph_slot + length), mvGlyphs.size());
// We're all out of glyphs here.
if (glyph_slot == nGlyphSlotEnd)
{
return 0;
}
// Find as many glyphs as we can which can be drawn in one go.
Glyphs::const_iterator glyph_itr = mvGlyphs.begin() + glyph_slot;
const int glyph_slot_begin = glyph_slot;
const int initial_y_pos = glyph_itr->maLinearPos.Y();
// Set the position to the position of the start glyph.
::Point aStartPos = glyph_itr->maLinearPos;
//aPosOut = glyph_itr->maLinearPos;
aPosOut = GetDrawPosition(aStartPos);
for (;;) // Forever
{
// last index of the range from glyph_to_chars does not include this glyph
if (char_index)
{
if (glyph_slot >= (signed)mvGlyph2Char.size())
{
*char_index++ = mnMinCharPos + mvCharDxs.size();
}
else
{
assert(glyph_slot > -1);
if (mvGlyph2Char[glyph_slot] == -1)
*char_index++ = mnMinCharPos + mvCharDxs.size();
else
*char_index++ = mvGlyph2Char[glyph_slot];
}
}
// Copy out this glyphs data.
++glyph_slot;
*glyph_out++ = glyph_itr->mnGlyphIndex;
// Find the actual advance - this must be correct if called from
// MultiSalLayout::AdjustLayout which requests one glyph at a time.
const long nGlyphAdvance = (glyph_slot == static_cast<int>(mvGlyphs.size()))?
glyph_itr->mnNewWidth :
((glyph_itr+1)->maLinearPos.X() - glyph_itr->maLinearPos.X());
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"GetNextGlyphs g%d gid%d c%d x%ld,%ld adv%ld, pos %ld,%ld\n",
glyph_slot - 1, glyph_itr->mnGlyphIndex,
mvGlyph2Char[glyph_slot-1], glyph_itr->maLinearPos.X(), glyph_itr->maLinearPos.Y(), nGlyphAdvance,
aPosOut.X(), aPosOut.Y());
#endif
if (glyph_adv) // If we are returning advance store it.
*glyph_adv++ = nGlyphAdvance;
else // Stop when next advance is unexpected.
if (glyph_itr->mnOrigWidth != nGlyphAdvance) break;
// Have fetched all the glyphs we need to
if (glyph_slot == nGlyphSlotEnd)
break;
++glyph_itr;
// Stop when next y position is unexpected.
if (initial_y_pos != glyph_itr->maLinearPos.Y())
break;
// Stop if glyph dropped
if (glyph_itr->mnGlyphIndex == GF_DROPPED)
break;
}
int numGlyphs = glyph_slot - glyph_slot_begin;
// move the next glyph_slot to a glyph that hasn't been dropped
while (glyph_slot < static_cast<int>(mvGlyphs.size()) &&
(mvGlyphs.begin() + glyph_slot)->mnGlyphIndex == GF_DROPPED)
++glyph_slot;
return numGlyphs;
}
void GraphiteLayout::MoveGlyph( int nGlyphIndex, long nNewPos )
{
// TODO it might be better to actualy implement simplify properly, but this
// needs to be done carefully so the glyph/char maps are maintained
// If a glyph has been dropped then it wasn't returned by GetNextGlyphs, so
// the index here may be wrong
while ((mvGlyphs[nGlyphIndex].mnGlyphIndex == GF_DROPPED) &&
(nGlyphIndex < (signed)mvGlyphs.size()))
{
nGlyphIndex++;
}
const long dx = nNewPos - mvGlyphs[nGlyphIndex].maLinearPos.X();
if (dx == 0) return;
// GenericSalLayout only changes maLinearPos, mvCharDxs doesn't change
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"Move %d (%ld,%ld) c%d by %ld\n", nGlyphIndex, mvGlyphs[nGlyphIndex].maLinearPos.X(), nNewPos, mvGlyph2Char[nGlyphIndex], dx);
#endif
for (size_t gi = nGlyphIndex; gi < mvGlyphs.size(); gi++)
{
mvGlyphs[gi].maLinearPos.X() += dx;
}
// width does need to be updated for correct fallback
mnWidth += dx;
}
void GraphiteLayout::DropGlyph( int nGlyphIndex )
{
if(nGlyphIndex >= signed(mvGlyphs.size()))
return;
GlyphItem & glyph = mvGlyphs[nGlyphIndex];
glyph.mnGlyphIndex = GF_DROPPED;
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"Dropped %d\n", nGlyphIndex);
#endif
}
void GraphiteLayout::Simplify( bool isBaseLayout )
{
const sal_GlyphId dropMarker = isBaseLayout ? GF_DROPPED : 0;
Glyphs::iterator gi = mvGlyphs.begin();
// TODO check whether we need to adjust positions here
// MultiSalLayout seems to move the glyphs itself, so it may not be needed.
long deltaX = 0;
while (gi != mvGlyphs.end())
{
if (gi->mnGlyphIndex == dropMarker)
{
deltaX += gi->mnNewWidth;
gi->mnNewWidth = 0;
}
else
{
deltaX = 0;
}
++gi;
}
#ifdef GRLAYOUT_DEBUG
fprintf(grLog(),"Simplify base%d dx=%ld newW=%ld\n", isBaseLayout, deltaX, mnWidth - deltaX);
#endif
// discard width from trailing dropped glyphs, but not those in the middle
mnWidth -= deltaX;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */