Files
libreoffice/vcl/source/gdi/bitmapex.cxx
Noel Grandin 7fb43031b7 loplugin:constantparam
Change-Id: Ibfe70492683ff3ec208cee95d8a11155ec54f690
Reviewed-on: https://gerrit.libreoffice.org/81314
Tested-by: Jenkins
Reviewed-by: Noel Grandin <noel.grandin@collabora.co.uk>
2019-10-22 14:14:48 +02:00

1749 lines
56 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/log.hxx>
#include <o3tl/underlyingenumvalue.hxx>
#include <osl/diagnose.h>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/color/bcolormodifier.hxx>
#include <vcl/ImageTree.hxx>
#include <vcl/outdev.hxx>
#include <vcl/alpha.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/svapp.hxx>
#include <vcl/bitmapaccess.hxx>
#include <vcl/virdev.hxx>
#include <vcl/settings.hxx>
#include <vcl/BitmapMonochromeFilter.hxx>
// BitmapEx::Create
#include <salbmp.hxx>
#include <salinst.hxx>
#include <svdata.hxx>
#include <bitmapwriteaccess.hxx>
#include <o3tl/any.hxx>
#include <com/sun/star/beans/XFastPropertySet.hpp>
#include <memory>
using namespace ::com::sun::star;
BitmapEx::BitmapEx()
: meTransparent(TransparentType::NONE)
, mbAlpha(false)
{
}
BitmapEx::BitmapEx( const BitmapEx& ) = default;
BitmapEx::BitmapEx( const BitmapEx& rBitmapEx, Point aSrc, Size aSize )
: meTransparent(TransparentType::NONE)
, mbAlpha(false)
{
if( rBitmapEx.IsEmpty() )
return;
maBitmap = Bitmap( aSize, rBitmapEx.maBitmap.GetBitCount() );
SetSizePixel(aSize);
if( rBitmapEx.IsAlpha() )
{
mbAlpha = true;
maMask = AlphaMask( aSize ).ImplGetBitmap();
}
else if( rBitmapEx.IsTransparent() )
maMask = Bitmap( aSize, rBitmapEx.maMask.GetBitCount() );
tools::Rectangle aDestRect( Point( 0, 0 ), aSize );
tools::Rectangle aSrcRect( aSrc, aSize );
CopyPixel( aDestRect, aSrcRect, &rBitmapEx );
}
BitmapEx::BitmapEx( Size aSize, sal_uInt16 nBitCount )
: meTransparent(TransparentType::NONE)
, mbAlpha(false)
{
maBitmap = Bitmap( aSize, nBitCount );
SetSizePixel(aSize);
}
BitmapEx::BitmapEx( const OUString& rIconName )
: meTransparent(TransparentType::NONE)
, mbAlpha(false)
{
loadFromIconTheme( rIconName );
}
void BitmapEx::loadFromIconTheme( const OUString& rIconName )
{
bool bSuccess;
OUString aIconTheme;
try
{
aIconTheme = Application::GetSettings().GetStyleSettings().DetermineIconTheme();
bSuccess = ImageTree::get().loadImage(rIconName, aIconTheme, *this, true);
}
catch (...)
{
bSuccess = false;
}
SAL_WARN_IF( !bSuccess, "vcl", "BitmapEx::BitmapEx(): could not load image " << rIconName << " via icon theme " << aIconTheme);
}
BitmapEx::BitmapEx( const Bitmap& rBmp ) :
maBitmap ( rBmp ),
maBitmapSize ( maBitmap.GetSizePixel() ),
meTransparent( TransparentType::NONE ),
mbAlpha ( false )
{
}
BitmapEx::BitmapEx( const Bitmap& rBmp, const Bitmap& rMask ) :
maBitmap ( rBmp ),
maMask ( rMask ),
maBitmapSize ( maBitmap.GetSizePixel() ),
meTransparent ( !rMask ? TransparentType::NONE : TransparentType::Bitmap ),
mbAlpha ( false )
{
// Ensure a mask is exactly one bit deep
if( !!maMask && maMask.GetBitCount() != 1 )
{
SAL_WARN( "vcl", "BitmapEx: forced mask to monochrome");
BitmapEx aMaskEx(maMask);
BitmapFilter::Filter(aMaskEx, BitmapMonochromeFilter(255));
maMask = aMaskEx.GetBitmap();
}
if (!!maBitmap && !!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel())
{
OSL_ENSURE(false, "Mask size differs from Bitmap size, corrected Mask (!)");
maMask.Scale(maBitmap.GetSizePixel());
}
}
BitmapEx::BitmapEx( const Bitmap& rBmp, const AlphaMask& rAlphaMask ) :
maBitmap ( rBmp ),
maMask ( rAlphaMask.ImplGetBitmap() ),
maBitmapSize ( maBitmap.GetSizePixel() ),
meTransparent ( !rAlphaMask ? TransparentType::NONE : TransparentType::Bitmap ),
mbAlpha ( !rAlphaMask.IsEmpty() )
{
if (!!maBitmap && !!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel())
{
OSL_ENSURE(false, "Alpha size differs from Bitmap size, corrected Mask (!)");
maMask.Scale(rBmp.GetSizePixel());
}
// #i75531# the workaround below can go when
// X11SalGraphics::drawAlphaBitmap()'s render acceleration
// can handle the bitmap depth mismatch directly
if( maBitmap.GetBitCount() < maMask.GetBitCount() )
maBitmap.Convert( BmpConversion::N24Bit );
}
BitmapEx::BitmapEx( const Bitmap& rBmp, const Color& rTransparentColor ) :
maBitmap ( rBmp ),
maBitmapSize ( maBitmap.GetSizePixel() ),
maTransparentColor ( rTransparentColor ),
meTransparent ( TransparentType::Bitmap ),
mbAlpha ( false )
{
maMask = maBitmap.CreateMask( maTransparentColor );
SAL_WARN_IF(rBmp.GetSizePixel() != maMask.GetSizePixel(), "vcl",
"BitmapEx::BitmapEx(): size mismatch for bitmap and alpha mask.");
}
BitmapEx& BitmapEx::operator=( const BitmapEx& ) = default;
bool BitmapEx::operator==( const BitmapEx& rBitmapEx ) const
{
if (meTransparent != rBitmapEx.meTransparent)
return false;
if (GetSizePixel() != rBitmapEx.GetSizePixel())
return false;
if (meTransparent != rBitmapEx.meTransparent)
return false;
if (meTransparent == TransparentType::Color
&& maTransparentColor != rBitmapEx.maTransparentColor)
return false;
if (mbAlpha != rBitmapEx.mbAlpha)
return false;
if (maBitmap != rBitmapEx.maBitmap)
return false;
return maMask == rBitmapEx.maMask;
}
bool BitmapEx::IsEmpty() const
{
return( maBitmap.IsEmpty() && maMask.IsEmpty() );
}
void BitmapEx::SetEmpty()
{
maBitmap.SetEmpty();
maMask.SetEmpty();
meTransparent = TransparentType::NONE;
mbAlpha = false;
}
void BitmapEx::Clear()
{
SetEmpty();
}
bool BitmapEx::IsTransparent() const
{
return( meTransparent != TransparentType::NONE );
}
bool BitmapEx::IsAlpha() const
{
return( IsTransparent() && mbAlpha );
}
const Bitmap& BitmapEx::GetBitmapRef() const
{
return maBitmap;
}
Bitmap BitmapEx::GetBitmap( const Color* pTransReplaceColor ) const
{
Bitmap aRetBmp( maBitmap );
if( pTransReplaceColor && ( meTransparent != TransparentType::NONE ) )
{
Bitmap aTempMask;
if( meTransparent == TransparentType::Color )
aTempMask = maBitmap.CreateMask( maTransparentColor );
else
aTempMask = maMask;
if( !IsAlpha() )
aRetBmp.Replace( aTempMask, *pTransReplaceColor );
else
aRetBmp.Replace( GetAlpha(), *pTransReplaceColor );
}
return aRetBmp;
}
Bitmap BitmapEx::GetMask() const
{
if (!IsAlpha())
return maMask;
BitmapEx aMaskEx(maMask);
BitmapFilter::Filter(aMaskEx, BitmapMonochromeFilter(255));
return aMaskEx.GetBitmap();
}
AlphaMask BitmapEx::GetAlpha() const
{
if( IsAlpha() )
{
AlphaMask aAlpha;
aAlpha.ImplSetBitmap( maMask );
return aAlpha;
}
else
{
return AlphaMask(maMask);
}
}
sal_uLong BitmapEx::GetSizeBytes() const
{
sal_uLong nSizeBytes = maBitmap.GetSizeBytes();
if( meTransparent == TransparentType::Bitmap )
nSizeBytes += maMask.GetSizeBytes();
return nSizeBytes;
}
BitmapChecksum BitmapEx::GetChecksum() const
{
BitmapChecksum nCrc = maBitmap.GetChecksum();
SVBT32 aBT32;
BitmapChecksumOctetArray aBCOA;
UInt32ToSVBT32( o3tl::underlyingEnumValue(meTransparent), aBT32 );
nCrc = vcl_get_checksum( nCrc, aBT32, 4 );
UInt32ToSVBT32( sal_uInt32(mbAlpha), aBT32 );
nCrc = vcl_get_checksum( nCrc, aBT32, 4 );
if( ( TransparentType::Bitmap == meTransparent ) && !maMask.IsEmpty() )
{
BCToBCOA( maMask.GetChecksum(), aBCOA );
nCrc = vcl_get_checksum( nCrc, aBCOA, BITMAP_CHECKSUM_SIZE );
}
return nCrc;
}
void BitmapEx::SetSizePixel(const Size& rNewSize)
{
maBitmapSize = rNewSize;
}
bool BitmapEx::Invert()
{
bool bRet = false;
if (!!maBitmap)
{
bRet = maBitmap.Invert();
if (bRet && (meTransparent == TransparentType::Color))
maTransparentColor.Invert();
}
return bRet;
}
bool BitmapEx::Mirror( BmpMirrorFlags nMirrorFlags )
{
bool bRet = false;
if( !!maBitmap )
{
bRet = maBitmap.Mirror( nMirrorFlags );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
maMask.Mirror( nMirrorFlags );
}
return bRet;
}
bool BitmapEx::Scale( const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag )
{
bool bRet = false;
if( !!maBitmap )
{
bRet = maBitmap.Scale( rScaleX, rScaleY, nScaleFlag );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
{
maMask.Scale( rScaleX, rScaleY, nScaleFlag );
}
SetSizePixel(maBitmap.GetSizePixel());
SAL_WARN_IF( !!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl",
"BitmapEx::Scale(): size mismatch for bitmap and alpha mask." );
}
return bRet;
}
bool BitmapEx::Scale( const Size& rNewSize, BmpScaleFlag nScaleFlag )
{
bool bRet;
if (GetSizePixel().Width() && GetSizePixel().Height()
&& (rNewSize.Width() != GetSizePixel().Width()
|| rNewSize.Height() != GetSizePixel().Height() ) )
{
bRet = Scale( static_cast<double>(rNewSize.Width()) / GetSizePixel().Width(),
static_cast<double>(rNewSize.Height()) / GetSizePixel().Height(),
nScaleFlag );
}
else
{
bRet = true;
}
return bRet;
}
bool BitmapEx::Rotate( long nAngle10, const Color& rFillColor )
{
bool bRet = false;
if( !!maBitmap )
{
const bool bTransRotate = ( COL_TRANSPARENT == rFillColor );
if( bTransRotate )
{
if( meTransparent == TransparentType::Color )
bRet = maBitmap.Rotate( nAngle10, maTransparentColor );
else
{
bRet = maBitmap.Rotate( nAngle10, COL_BLACK );
if( meTransparent == TransparentType::NONE )
{
maMask = Bitmap(GetSizePixel(), 1);
maMask.Erase( COL_BLACK );
meTransparent = TransparentType::Bitmap;
}
if( bRet && !!maMask )
maMask.Rotate( nAngle10, COL_WHITE );
}
}
else
{
bRet = maBitmap.Rotate( nAngle10, rFillColor );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
maMask.Rotate( nAngle10, COL_WHITE );
}
SetSizePixel(maBitmap.GetSizePixel());
SAL_WARN_IF(!!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl",
"BitmapEx::Rotate(): size mismatch for bitmap and alpha mask.");
}
return bRet;
}
bool BitmapEx::Crop( const tools::Rectangle& rRectPixel )
{
bool bRet = false;
if( !!maBitmap )
{
bRet = maBitmap.Crop( rRectPixel );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
maMask.Crop( rRectPixel );
SetSizePixel(maBitmap.GetSizePixel());
SAL_WARN_IF(!!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl",
"BitmapEx::Crop(): size mismatch for bitmap and alpha mask.");
}
return bRet;
}
bool BitmapEx::Convert( BmpConversion eConversion )
{
return !!maBitmap && maBitmap.Convert( eConversion );
}
void BitmapEx::Expand( sal_uLong nDX, sal_uLong nDY, bool bExpandTransparent )
{
bool bRet = false;
if( !!maBitmap )
{
bRet = maBitmap.Expand( nDX, nDY );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
{
Color aColor( bExpandTransparent ? COL_WHITE : COL_BLACK );
maMask.Expand( nDX, nDY, &aColor );
}
SetSizePixel(maBitmap.GetSizePixel());
SAL_WARN_IF(!!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl",
"BitmapEx::Expand(): size mismatch for bitmap and alpha mask.");
}
}
bool BitmapEx::CopyPixel( const tools::Rectangle& rRectDst, const tools::Rectangle& rRectSrc,
const BitmapEx* pBmpExSrc )
{
bool bRet = false;
if( !pBmpExSrc || pBmpExSrc->IsEmpty() )
{
if( !maBitmap.IsEmpty() )
{
bRet = maBitmap.CopyPixel( rRectDst, rRectSrc );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
maMask.CopyPixel( rRectDst, rRectSrc );
}
}
else
{
if( !maBitmap.IsEmpty() )
{
bRet = maBitmap.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maBitmap );
if( bRet )
{
if( pBmpExSrc->IsAlpha() )
{
if( IsAlpha() )
// cast to use the optimized AlphaMask::CopyPixel
maMask.CopyPixel_AlphaOptimized( rRectDst, rRectSrc, &pBmpExSrc->maMask );
else if( IsTransparent() )
{
std::unique_ptr<AlphaMask> pAlpha(new AlphaMask( maMask ));
maMask = pAlpha->ImplGetBitmap();
pAlpha.reset();
mbAlpha = true;
maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask );
}
else
{
sal_uInt8 cBlack = 0;
std::unique_ptr<AlphaMask> pAlpha(new AlphaMask(GetSizePixel(), &cBlack));
maMask = pAlpha->ImplGetBitmap();
pAlpha.reset();
meTransparent = TransparentType::Bitmap;
mbAlpha = true;
maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask );
}
}
else if( pBmpExSrc->IsTransparent() )
{
if (IsAlpha())
{
AlphaMask aAlpha( pBmpExSrc->maMask );
maMask.CopyPixel( rRectDst, rRectSrc, &aAlpha.ImplGetBitmap() );
}
else if (IsTransparent())
{
maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask );
}
else
{
maMask = Bitmap(GetSizePixel(), 1);
maMask.Erase(COL_BLACK);
meTransparent = TransparentType::Bitmap;
maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask );
}
}
else if (IsAlpha())
{
sal_uInt8 cBlack = 0;
const AlphaMask aAlphaSrc(pBmpExSrc->GetSizePixel(), &cBlack);
maMask.CopyPixel( rRectDst, rRectSrc, &aAlphaSrc.ImplGetBitmap() );
}
else if (IsTransparent())
{
Bitmap aMaskSrc(pBmpExSrc->GetSizePixel(), 1);
aMaskSrc.Erase( COL_BLACK );
maMask.CopyPixel( rRectDst, rRectSrc, &aMaskSrc );
}
}
}
}
return bRet;
}
bool BitmapEx::Erase( const Color& rFillColor )
{
bool bRet = false;
if( !!maBitmap )
{
bRet = maBitmap.Erase( rFillColor );
if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask )
{
// Respect transparency on fill color
if( rFillColor.GetTransparency() )
{
const Color aFill( rFillColor.GetTransparency(), rFillColor.GetTransparency(), rFillColor.GetTransparency() );
maMask.Erase( aFill );
}
else
{
const Color aBlack( COL_BLACK );
maMask.Erase( aBlack );
}
}
}
return bRet;
}
void BitmapEx::Replace( const Color& rSearchColor, const Color& rReplaceColor )
{
if (!!maBitmap)
maBitmap.Replace( rSearchColor, rReplaceColor );
}
void BitmapEx::Replace( const Color* pSearchColors, const Color* pReplaceColors, sal_uLong nColorCount )
{
if (!!maBitmap)
maBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, /*pTols*/nullptr );
}
bool BitmapEx::Adjust( short nLuminancePercent, short nContrastPercent,
short nChannelRPercent, short nChannelGPercent, short nChannelBPercent,
double fGamma, bool bInvert, bool msoBrightness )
{
return !!maBitmap && maBitmap.Adjust( nLuminancePercent, nContrastPercent,
nChannelRPercent, nChannelGPercent, nChannelBPercent,
fGamma, bInvert, msoBrightness );
}
void BitmapEx::Draw( OutputDevice* pOutDev, const Point& rDestPt ) const
{
pOutDev->DrawBitmapEx( rDestPt, *this );
}
void BitmapEx::Draw( OutputDevice* pOutDev,
const Point& rDestPt, const Size& rDestSize ) const
{
pOutDev->DrawBitmapEx( rDestPt, rDestSize, *this );
}
BitmapEx BitmapEx:: AutoScaleBitmap(BitmapEx const & aBitmap, const long aStandardSize)
{
Point aEmptyPoint(0,0);
double imgposX = 0;
double imgposY = 0;
BitmapEx aRet = aBitmap;
double imgOldWidth = aRet.GetSizePixel().Width();
double imgOldHeight = aRet.GetSizePixel().Height();
Size aScaledSize;
if (imgOldWidth >= aStandardSize || imgOldHeight >= aStandardSize)
{
sal_Int32 imgNewWidth = 0;
sal_Int32 imgNewHeight = 0;
if (imgOldWidth >= imgOldHeight)
{
imgNewWidth = aStandardSize;
imgNewHeight = sal_Int32(imgOldHeight / (imgOldWidth / aStandardSize) + 0.5);
imgposX = 0;
imgposY = (aStandardSize - (imgOldHeight / (imgOldWidth / aStandardSize) + 0.5)) / 2 + 0.5;
}
else
{
imgNewHeight = aStandardSize;
imgNewWidth = sal_Int32(imgOldWidth / (imgOldHeight / aStandardSize) + 0.5);
imgposY = 0;
imgposX = (aStandardSize - (imgOldWidth / (imgOldHeight / aStandardSize) + 0.5)) / 2 + 0.5;
}
aScaledSize = Size( imgNewWidth, imgNewHeight );
aRet.Scale( aScaledSize, BmpScaleFlag::BestQuality );
}
else
{
imgposX = (aStandardSize - imgOldWidth) / 2 + 0.5;
imgposY = (aStandardSize - imgOldHeight) / 2 + 0.5;
}
Size aStdSize( aStandardSize, aStandardSize );
tools::Rectangle aRect(aEmptyPoint, aStdSize );
ScopedVclPtrInstance< VirtualDevice > aVirDevice(*Application::GetDefaultDevice(),
DeviceFormat::DEFAULT, DeviceFormat::BITMASK);
aVirDevice->SetOutputSizePixel( aStdSize );
aVirDevice->SetFillColor( COL_TRANSPARENT );
aVirDevice->SetLineColor( COL_TRANSPARENT );
// Draw a rect into virDevice
aVirDevice->DrawRect( aRect );
Point aPointPixel( static_cast<long>(imgposX), static_cast<long>(imgposY) );
aVirDevice->DrawBitmapEx( aPointPixel, aRet );
aRet = aVirDevice->GetBitmapEx( aEmptyPoint, aStdSize );
return aRet;
}
sal_uInt8 BitmapEx::GetTransparency(sal_Int32 nX, sal_Int32 nY) const
{
sal_uInt8 nTransparency(0xff);
if(!maBitmap.IsEmpty())
{
if (nX >= 0 && nX < GetSizePixel().Width() && nY >= 0 && nY < GetSizePixel().Height())
{
switch(meTransparent)
{
case TransparentType::NONE:
{
// Not transparent, ergo all covered
nTransparency = 0x00;
break;
}
case TransparentType::Color:
{
Bitmap aTestBitmap(maBitmap);
Bitmap::ScopedReadAccess pRead(aTestBitmap);
if(pRead)
{
const BitmapColor aBmpColor = pRead->GetColor(nY, nX);
// If color is not equal to TransparentColor, we are not transparent
if (aBmpColor != maTransparentColor)
nTransparency = 0x00;
}
break;
}
case TransparentType::Bitmap:
{
if(!maMask.IsEmpty())
{
Bitmap aTestBitmap(maMask);
Bitmap::ScopedReadAccess pRead(aTestBitmap);
if(pRead)
{
const BitmapColor aBitmapColor(pRead->GetPixel(nY, nX));
if(mbAlpha)
{
nTransparency = aBitmapColor.GetIndex();
}
else
{
if(0x00 == aBitmapColor.GetIndex())
{
nTransparency = 0x00;
}
}
}
}
break;
}
}
}
}
return nTransparency;
}
Color BitmapEx::GetPixelColor(sal_Int32 nX, sal_Int32 nY) const
{
Bitmap::ScopedReadAccess pReadAccess( const_cast<Bitmap&>(maBitmap) );
assert(pReadAccess);
BitmapColor aColor = pReadAccess->GetColor(nY, nX);
if (IsAlpha())
{
AlphaMask aAlpha = GetAlpha();
AlphaMask::ScopedReadAccess pAlphaReadAccess(aAlpha);
aColor.SetTransparency(pAlphaReadAccess->GetPixel(nY, nX).GetIndex());
}
else if (maBitmap.GetBitCount() != 32)
{
aColor.SetTransparency(0);
}
return aColor;
}
// Shift alpha transparent pixels between cppcanvas/ implementations
// and vcl in a generally grotesque and under-performing fashion
bool BitmapEx::Create( const css::uno::Reference< css::rendering::XBitmapCanvas > &xBitmapCanvas,
const Size &rSize )
{
uno::Reference< beans::XFastPropertySet > xFastPropertySet( xBitmapCanvas, uno::UNO_QUERY );
if( xFastPropertySet.get() )
{
// 0 means get BitmapEx
uno::Any aAny = xFastPropertySet->getFastPropertyValue( 0 );
std::unique_ptr<BitmapEx> xBitmapEx(reinterpret_cast<BitmapEx*>(*o3tl::doAccess<sal_Int64>(aAny)));
if( xBitmapEx )
{
*this = *xBitmapEx;
return true;
}
}
std::shared_ptr<SalBitmap> pSalBmp;
std::shared_ptr<SalBitmap> pSalMask;
pSalBmp = ImplGetSVData()->mpDefInst->CreateSalBitmap();
Size aLocalSize(rSize);
if( pSalBmp->Create( xBitmapCanvas, aLocalSize ) )
{
pSalMask = ImplGetSVData()->mpDefInst->CreateSalBitmap();
if ( pSalMask->Create( xBitmapCanvas, aLocalSize, true ) )
{
*this = BitmapEx(Bitmap(pSalBmp), Bitmap(pSalMask) );
return true;
}
else
{
*this = BitmapEx(Bitmap(pSalBmp));
return true;
}
}
return false;
}
namespace
{
Bitmap impTransformBitmap(
const Bitmap& rSource,
const Size& rDestinationSize,
const basegfx::B2DHomMatrix& rTransform,
bool bSmooth)
{
Bitmap aDestination(rDestinationSize, 24);
BitmapScopedWriteAccess xWrite(aDestination);
if(xWrite)
{
Bitmap::ScopedReadAccess xRead(const_cast< Bitmap& >(rSource));
if (xRead)
{
const Size aDestinationSizePixel(aDestination.GetSizePixel());
const BitmapColor aOutside(BitmapColor(0xff, 0xff, 0xff));
for(long y(0); y < aDestinationSizePixel.getHeight(); y++)
{
Scanline pScanline = xWrite->GetScanline( y );
for(long x(0); x < aDestinationSizePixel.getWidth(); x++)
{
const basegfx::B2DPoint aSourceCoor(rTransform * basegfx::B2DPoint(x, y));
if(bSmooth)
{
xWrite->SetPixelOnData(
pScanline,
x,
xRead->GetInterpolatedColorWithFallback(
aSourceCoor.getY(),
aSourceCoor.getX(),
aOutside));
}
else
{
// this version does the correct <= 0.0 checks, so no need
// to do the static_cast< sal_Int32 > self and make an error
xWrite->SetPixelOnData(
pScanline,
x,
xRead->GetColorWithFallback(
aSourceCoor.getY(),
aSourceCoor.getX(),
aOutside));
}
}
}
}
}
rSource.AdaptBitCount(aDestination);
return aDestination;
}
/// Decides if rTransformation needs smoothing or not (e.g. 180 deg rotation doesn't need it).
bool implTransformNeedsSmooth(const basegfx::B2DHomMatrix& rTransformation)
{
basegfx::B2DVector aScale, aTranslate;
double fRotate, fShearX;
rTransformation.decompose(aScale, aTranslate, fRotate, fShearX);
if (aScale != basegfx::B2DVector(1, 1))
{
return true;
}
fRotate = fmod( fRotate, F_2PI );
if (fRotate < 0)
{
fRotate += F_2PI;
}
if (!rtl::math::approxEqual(fRotate, 0)
&& !rtl::math::approxEqual(fRotate, F_PI2)
&& !rtl::math::approxEqual(fRotate, F_PI)
&& !rtl::math::approxEqual(fRotate, 3 * F_PI2))
{
return true;
}
if (!rtl::math::approxEqual(fShearX, 0))
{
return true;
}
return false;
}
} // end of anonymous namespace
BitmapEx BitmapEx::TransformBitmapEx(
double fWidth,
double fHeight,
const basegfx::B2DHomMatrix& rTransformation) const
{
if(fWidth <= 1 || fHeight <= 1)
return BitmapEx();
// force destination to 24 bit, we want to smooth output
const Size aDestinationSize(basegfx::fround(fWidth), basegfx::fround(fHeight));
bool bSmooth = implTransformNeedsSmooth(rTransformation);
const Bitmap aDestination(impTransformBitmap(GetBitmapRef(), aDestinationSize, rTransformation, bSmooth));
// create mask
if(IsTransparent())
{
if(IsAlpha())
{
const Bitmap aAlpha(impTransformBitmap(GetAlpha().GetBitmap(), aDestinationSize, rTransformation, bSmooth));
return BitmapEx(aDestination, AlphaMask(aAlpha));
}
else
{
const Bitmap aLclMask(impTransformBitmap(GetMask(), aDestinationSize, rTransformation, false));
return BitmapEx(aDestination, aLclMask);
}
}
return BitmapEx(aDestination);
}
BitmapEx BitmapEx::getTransformed(
const basegfx::B2DHomMatrix& rTransformation,
const basegfx::B2DRange& rVisibleRange,
double fMaximumArea) const
{
BitmapEx aRetval;
if(IsEmpty())
return aRetval;
const sal_uInt32 nSourceWidth(GetSizePixel().Width());
const sal_uInt32 nSourceHeight(GetSizePixel().Height());
if(!nSourceWidth || !nSourceHeight)
return aRetval;
// Get aOutlineRange
basegfx::B2DRange aOutlineRange(0.0, 0.0, 1.0, 1.0);
aOutlineRange.transform(rTransformation);
// create visible range from it by moving from relative to absolute
basegfx::B2DRange aVisibleRange(rVisibleRange);
aVisibleRange.transform(
basegfx::utils::createScaleTranslateB2DHomMatrix(
aOutlineRange.getRange(),
aOutlineRange.getMinimum()));
// get target size (which is visible range's size)
double fWidth(aVisibleRange.getWidth());
double fHeight(aVisibleRange.getHeight());
if(fWidth < 1.0 || fHeight < 1.0)
{
return aRetval;
}
// test if discrete size (pixel) maybe too big and limit it
const double fArea(fWidth * fHeight);
const bool bNeedToReduce(basegfx::fTools::more(fArea, fMaximumArea));
double fReduceFactor(1.0);
if(bNeedToReduce)
{
fReduceFactor = sqrt(fMaximumArea / fArea);
fWidth *= fReduceFactor;
fHeight *= fReduceFactor;
}
// Build complete transform from source pixels to target pixels.
// Start by scaling from source pixel size to unit coordinates
basegfx::B2DHomMatrix aTransform(
basegfx::utils::createScaleB2DHomMatrix(
1.0 / nSourceWidth,
1.0 / nSourceHeight));
// multiply with given transform which leads from unit coordinates inside
// aOutlineRange
aTransform = rTransformation * aTransform;
// subtract top-left of absolute VisibleRange
aTransform.translate(
-aVisibleRange.getMinX(),
-aVisibleRange.getMinY());
// scale to target pixels (if needed)
if(bNeedToReduce)
{
aTransform.scale(fReduceFactor, fReduceFactor);
}
// invert to get transformation from target pixel coordinates to source pixels
aTransform.invert();
// create bitmap using source, destination and linear back-transformation
aRetval = TransformBitmapEx(fWidth, fHeight, aTransform);
return aRetval;
}
BitmapEx BitmapEx::ModifyBitmapEx(const basegfx::BColorModifierStack& rBColorModifierStack) const
{
Bitmap aChangedBitmap(GetBitmapRef());
bool bDone(false);
for(sal_uInt32 a(rBColorModifierStack.count()); a && !bDone; )
{
const basegfx::BColorModifierSharedPtr& rModifier = rBColorModifierStack.getBColorModifier(--a);
const basegfx::BColorModifier_replace* pReplace = dynamic_cast< const basegfx::BColorModifier_replace* >(rModifier.get());
if(pReplace)
{
// complete replace
if(IsTransparent())
{
// clear bitmap with dest color
if(aChangedBitmap.GetBitCount() <= 8)
{
// do NOT use erase; for e.g. 8bit Bitmaps, the nearest color to the given
// erase color is determined and used -> this may be different from what is
// wanted here. Better create a new bitmap with the needed color explicitly
Bitmap::ScopedReadAccess xReadAccess(aChangedBitmap);
OSL_ENSURE(xReadAccess, "Got no Bitmap ReadAccess ?!?");
if(xReadAccess)
{
BitmapPalette aNewPalette(xReadAccess->GetPalette());
aNewPalette[0] = BitmapColor(Color(pReplace->getBColor()));
aChangedBitmap = Bitmap(
aChangedBitmap.GetSizePixel(),
aChangedBitmap.GetBitCount(),
&aNewPalette);
}
}
else
{
aChangedBitmap.Erase(Color(pReplace->getBColor()));
}
}
else
{
// erase bitmap, caller will know to paint direct
aChangedBitmap.SetEmpty();
}
bDone = true;
}
else
{
BitmapScopedWriteAccess xContent(aChangedBitmap);
if(xContent)
{
const double fConvertColor(1.0 / 255.0);
if(xContent->HasPalette())
{
const sal_uInt16 nCount(xContent->GetPaletteEntryCount());
for(sal_uInt16 b(0); b < nCount; b++)
{
const BitmapColor& rCol = xContent->GetPaletteColor(b);
const basegfx::BColor aBSource(
rCol.GetRed() * fConvertColor,
rCol.GetGreen() * fConvertColor,
rCol.GetBlue() * fConvertColor);
const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource));
xContent->SetPaletteColor(b, BitmapColor(Color(aBDest)));
}
}
else if(ScanlineFormat::N24BitTcBgr == xContent->GetScanlineFormat())
{
for(sal_uInt32 y(0); y < static_cast<sal_uInt32>(xContent->Height()); y++)
{
Scanline pScan = xContent->GetScanline(y);
for(sal_uInt32 x(0); x < static_cast<sal_uInt32>(xContent->Width()); x++)
{
const basegfx::BColor aBSource(
*(pScan + 2)* fConvertColor,
*(pScan + 1) * fConvertColor,
*pScan * fConvertColor);
const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource));
*pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0);
}
}
}
else if(ScanlineFormat::N24BitTcRgb == xContent->GetScanlineFormat())
{
for(sal_uInt32 y(0); y < static_cast<sal_uInt32>(xContent->Height()); y++)
{
Scanline pScan = xContent->GetScanline(y);
for(sal_uInt32 x(0); x < static_cast<sal_uInt32>(xContent->Width()); x++)
{
const basegfx::BColor aBSource(
*pScan * fConvertColor,
*(pScan + 1) * fConvertColor,
*(pScan + 2) * fConvertColor);
const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource));
*pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0);
*pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0);
}
}
}
else
{
for(sal_uInt32 y(0); y < static_cast<sal_uInt32>(xContent->Height()); y++)
{
Scanline pScanline = xContent->GetScanline( y );
for(sal_uInt32 x(0); x < static_cast<sal_uInt32>(xContent->Width()); x++)
{
const BitmapColor aBMCol(xContent->GetColor(y, x));
const basegfx::BColor aBSource(
static_cast<double>(aBMCol.GetRed()) * fConvertColor,
static_cast<double>(aBMCol.GetGreen()) * fConvertColor,
static_cast<double>(aBMCol.GetBlue()) * fConvertColor);
const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource));
xContent->SetPixelOnData(pScanline, x, BitmapColor(Color(aBDest)));
}
}
}
}
}
}
if(aChangedBitmap.IsEmpty())
{
return BitmapEx();
}
else
{
if(IsTransparent())
{
if(IsAlpha())
{
return BitmapEx(aChangedBitmap, GetAlpha());
}
else
{
return BitmapEx(aChangedBitmap, GetMask());
}
}
else
{
return BitmapEx(aChangedBitmap);
}
}
}
BitmapEx createBlendFrame(
const Size& rSize,
sal_uInt8 nAlpha,
Color aColorTopLeft,
Color aColorBottomRight)
{
const sal_uInt32 nW(rSize.Width());
const sal_uInt32 nH(rSize.Height());
if(nW || nH)
{
Color aColTopRight(aColorTopLeft);
Color aColBottomLeft(aColorTopLeft);
const sal_uInt32 nDE(nW + nH);
aColTopRight.Merge(aColorBottomRight, 255 - sal_uInt8((nW * 255) / nDE));
aColBottomLeft.Merge(aColorBottomRight, 255 - sal_uInt8((nH * 255) / nDE));
return createBlendFrame(rSize, nAlpha, aColorTopLeft, aColTopRight, aColorBottomRight, aColBottomLeft);
}
return BitmapEx();
}
BitmapEx createBlendFrame(
const Size& rSize,
sal_uInt8 nAlpha,
Color aColorTopLeft,
Color aColorTopRight,
Color aColorBottomRight,
Color aColorBottomLeft)
{
BlendFrameCache* pBlendFrameCache = ImplGetBlendFrameCache();
if(pBlendFrameCache->m_aLastSize == rSize
&& pBlendFrameCache->m_nLastAlpha == nAlpha
&& pBlendFrameCache->m_aLastColorTopLeft == aColorTopLeft
&& pBlendFrameCache->m_aLastColorTopRight == aColorTopRight
&& pBlendFrameCache->m_aLastColorBottomRight == aColorBottomRight
&& pBlendFrameCache->m_aLastColorBottomLeft == aColorBottomLeft)
{
return pBlendFrameCache->m_aLastResult;
}
pBlendFrameCache->m_aLastSize = rSize;
pBlendFrameCache->m_nLastAlpha = nAlpha;
pBlendFrameCache->m_aLastColorTopLeft = aColorTopLeft;
pBlendFrameCache->m_aLastColorTopRight = aColorTopRight;
pBlendFrameCache->m_aLastColorBottomRight = aColorBottomRight;
pBlendFrameCache->m_aLastColorBottomLeft = aColorBottomLeft;
pBlendFrameCache->m_aLastResult.Clear();
const long nW(rSize.Width());
const long nH(rSize.Height());
if(nW > 1 && nH > 1)
{
sal_uInt8 aEraseTrans(0xff);
Bitmap aContent(rSize, 24);
AlphaMask aAlpha(rSize, &aEraseTrans);
aContent.Erase(COL_BLACK);
BitmapScopedWriteAccess pContent(aContent);
AlphaScopedWriteAccess pAlpha(aAlpha);
if(pContent && pAlpha)
{
long x(0);
long y(0);
Scanline pScanContent = pContent->GetScanline( 0 );
Scanline pScanAlpha = pContent->GetScanline( 0 );
// x == 0, y == 0, top-left corner
pContent->SetPixelOnData(pScanContent, 0, aColorTopLeft);
pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha));
// y == 0, top line left to right
for(x = 1; x < nW - 1; x++)
{
Color aMix(aColorTopLeft);
aMix.Merge(aColorTopRight, 255 - sal_uInt8((x * 255) / nW));
pContent->SetPixelOnData(pScanContent, x, aMix);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
// x == nW - 1, y == 0, top-right corner
// #i123690# Caution! When nW is 1, x == nW is possible (!)
if(x < nW)
{
pContent->SetPixelOnData(pScanContent, x, aColorTopRight);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
// x == 0 and nW - 1, left and right line top-down
for(y = 1; y < nH - 1; y++)
{
pScanContent = pContent->GetScanline( y );
pScanAlpha = pContent->GetScanline( y );
Color aMixA(aColorTopLeft);
aMixA.Merge(aColorBottomLeft, 255 - sal_uInt8((y * 255) / nH));
pContent->SetPixelOnData(pScanContent, 0, aMixA);
pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha));
// #i123690# Caution! When nW is 1, x == nW is possible (!)
if(x < nW)
{
Color aMixB(aColorTopRight);
aMixB.Merge(aColorBottomRight, 255 - sal_uInt8((y * 255) / nH));
pContent->SetPixelOnData(pScanContent, x, aMixB);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
}
// #i123690# Caution! When nH is 1, y == nH is possible (!)
if(y < nH)
{
// x == 0, y == nH - 1, bottom-left corner
pContent->SetPixelOnData(pScanContent, 0, aColorBottomLeft);
pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha));
// y == nH - 1, bottom line left to right
for(x = 1; x < nW - 1; x++)
{
Color aMix(aColorBottomLeft);
aMix.Merge(aColorBottomRight, 255 - sal_uInt8(((x - 0)* 255) / nW));
pContent->SetPixelOnData(pScanContent, x, aMix);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
// x == nW - 1, y == nH - 1, bottom-right corner
// #i123690# Caution! When nW is 1, x == nW is possible (!)
if(x < nW)
{
pContent->SetPixelOnData(pScanContent, x, aColorBottomRight);
pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha));
}
}
pContent.reset();
pAlpha.reset();
pBlendFrameCache->m_aLastResult = BitmapEx(aContent, aAlpha);
}
}
return pBlendFrameCache->m_aLastResult;
}
void BitmapEx::Replace(const Color& rSearchColor,
const Color& rReplaceColor,
sal_uInt8 nTolerance)
{
maBitmap.Replace(rSearchColor, rReplaceColor, nTolerance);
}
void BitmapEx::Replace( const Color* pSearchColors,
const Color* pReplaceColors,
sal_uLong nColorCount,
sal_uInt8 const * pTols )
{
maBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, pTols );
}
void BitmapEx::ReplaceTransparency(const Color& rColor)
{
if( IsTransparent() )
{
maBitmap.Replace( GetMask(), rColor );
maMask = Bitmap();
maBitmapSize = maBitmap.GetSizePixel();
maTransparentColor = Color();
meTransparent = TransparentType::NONE;
mbAlpha = false;
}
}
static Bitmap DetectEdges( const Bitmap& rBmp )
{
constexpr sal_uInt8 cEdgeDetectThreshold = 128;
const Size aSize( rBmp.GetSizePixel() );
Bitmap aRetBmp;
if( ( aSize.Width() > 2 ) && ( aSize.Height() > 2 ) )
{
Bitmap aWorkBmp( rBmp );
if( aWorkBmp.Convert( BmpConversion::N8BitGreys ) )
{
bool bRet = false;
ScopedVclPtr<VirtualDevice> pVirDev(VclPtr<VirtualDevice>::Create());
pVirDev->SetOutputSizePixel(aSize);
Bitmap::ScopedReadAccess pReadAcc(aWorkBmp);
if( pReadAcc )
{
const long nWidth = aSize.Width();
const long nWidth2 = nWidth - 2;
const long nHeight = aSize.Height();
const long nHeight2 = nHeight - 2;
const long lThres2 = static_cast<long>(cEdgeDetectThreshold) * cEdgeDetectThreshold;
long nSum1;
long nSum2;
long lGray;
// initialize border with white pixels
pVirDev->SetLineColor( COL_WHITE );
pVirDev->DrawLine( Point(), Point( nWidth - 1, 0L ) );
pVirDev->DrawLine( Point( nWidth - 1, 0L ), Point( nWidth - 1, nHeight - 1 ) );
pVirDev->DrawLine( Point( nWidth - 1, nHeight - 1 ), Point( 0L, nHeight - 1 ) );
pVirDev->DrawLine( Point( 0, nHeight - 1 ), Point() );
for( long nY = 0, nY1 = 1, nY2 = 2; nY < nHeight2; nY++, nY1++, nY2++ )
{
Scanline pScanlineRead = pReadAcc->GetScanline( nY );
Scanline pScanlineRead1 = pReadAcc->GetScanline( nY1 );
Scanline pScanlineRead2 = pReadAcc->GetScanline( nY2 );
for( long nX = 0, nXDst = 1, nXTmp; nX < nWidth2; nX++, nXDst++ )
{
nXTmp = nX;
nSum2 = lGray = pReadAcc->GetIndexFromData( pScanlineRead, nXTmp++ );
nSum1 = -nSum2;
nSum2 += static_cast<long>(pReadAcc->GetIndexFromData( pScanlineRead, nXTmp++ )) << 1;
lGray = pReadAcc->GetIndexFromData( pScanlineRead, nXTmp );
nSum1 += lGray;
nSum2 += lGray;
nSum1 += static_cast<long>(pReadAcc->GetIndexFromData( pScanlineRead1, nXTmp )) << 1;
nXTmp -= 2;
nSum1 -= static_cast<long>(pReadAcc->GetIndexFromData( pScanlineRead1, nXTmp )) << 1;
lGray = -static_cast<long>(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp++ ));
nSum1 += lGray;
nSum2 += lGray;
nSum2 -= static_cast<long>(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp++ )) << 1;
lGray = static_cast<long>(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp ));
nSum1 += lGray;
nSum2 -= lGray;
if( ( nSum1 * nSum1 + nSum2 * nSum2 ) < lThres2 )
pVirDev->DrawPixel( Point(nXDst, nY), COL_WHITE );
else
pVirDev->DrawPixel( Point(nXDst, nY), COL_BLACK );
}
}
bRet = true;
}
pReadAcc.reset();
if( bRet )
aRetBmp = pVirDev->GetBitmap(Point(0,0), aSize);
}
}
if( !aRetBmp )
aRetBmp = rBmp;
else
{
aRetBmp.SetPrefMapMode( rBmp.GetPrefMapMode() );
aRetBmp.SetPrefSize( rBmp.GetPrefSize() );
}
return aRetBmp;
}
/** Get contours in image */
tools::Polygon BitmapEx::GetContour( bool bContourEdgeDetect,
const tools::Rectangle* pWorkRectPixel )
{
Bitmap aWorkBmp;
tools::Polygon aRetPoly;
tools::Rectangle aWorkRect( Point(), maBitmap.GetSizePixel() );
if( pWorkRectPixel )
aWorkRect.Intersection( *pWorkRectPixel );
aWorkRect.Justify();
if( ( aWorkRect.GetWidth() > 4 ) && ( aWorkRect.GetHeight() > 4 ) )
{
// if the flag is set, we need to detect edges
if( bContourEdgeDetect )
aWorkBmp = DetectEdges( maBitmap );
else
aWorkBmp = maBitmap;
BitmapReadAccess* pAcc = aWorkBmp.AcquireReadAccess();
const long nWidth = pAcc ? pAcc->Width() : 0;
const long nHeight = pAcc ? pAcc->Height() : 0;
if (pAcc && nWidth && nHeight)
{
const Size& rPrefSize = aWorkBmp.GetPrefSize();
const double fFactorX = static_cast<double>(rPrefSize.Width()) / nWidth;
const double fFactorY = static_cast<double>(rPrefSize.Height()) / nHeight;
const long nStartX1 = aWorkRect.Left() + 1;
const long nEndX1 = aWorkRect.Right();
const long nStartX2 = nEndX1 - 1;
const long nStartY1 = aWorkRect.Top() + 1;
const long nEndY1 = aWorkRect.Bottom();
std::unique_ptr<Point[]> pPoints1;
std::unique_ptr<Point[]> pPoints2;
long nX, nY;
sal_uInt16 nPolyPos = 0;
const BitmapColor aBlack = pAcc->GetBestMatchingColor( COL_BLACK );
pPoints1.reset(new Point[ nHeight ]);
pPoints2.reset(new Point[ nHeight ]);
for ( nY = nStartY1; nY < nEndY1; nY++ )
{
nX = nStartX1;
Scanline pScanline = pAcc->GetScanline( nY );
// scan row from left to right
while( nX < nEndX1 )
{
if( aBlack == pAcc->GetPixelFromData( pScanline, nX ) )
{
pPoints1[ nPolyPos ] = Point( nX, nY );
nX = nStartX2;
// this loop always breaks eventually as there is at least one pixel
while( true )
{
if( aBlack == pAcc->GetPixelFromData( pScanline, nX ) )
{
pPoints2[ nPolyPos ] = Point( nX, nY );
break;
}
nX--;
}
nPolyPos++;
break;
}
nX++;
}
}
const sal_uInt16 nNewSize1 = nPolyPos << 1;
aRetPoly = tools::Polygon( nPolyPos, pPoints1.get() );
aRetPoly.SetSize( nNewSize1 + 1 );
aRetPoly[ nNewSize1 ] = aRetPoly[ 0 ];
for( sal_uInt16 j = nPolyPos; nPolyPos < nNewSize1; )
aRetPoly[ nPolyPos++ ] = pPoints2[ --j ];
if( ( fFactorX != 0. ) && ( fFactorY != 0. ) )
aRetPoly.Scale( fFactorX, fFactorY );
}
Bitmap::ReleaseAccess(pAcc);
}
return aRetPoly;
}
void BitmapEx::setAlphaFrom( sal_uInt8 cIndexFrom, sal_Int8 nAlphaTo )
{
AlphaMask aAlphaMask(GetAlpha());
BitmapScopedWriteAccess pWriteAccess(aAlphaMask);
Bitmap::ScopedReadAccess pReadAccess(maBitmap);
assert( pReadAccess.get() && pWriteAccess.get() );
if ( pReadAccess.get() && pWriteAccess.get() )
{
for ( long nY = 0; nY < pReadAccess->Height(); nY++ )
{
Scanline pScanline = pWriteAccess->GetScanline( nY );
Scanline pScanlineRead = pReadAccess->GetScanline( nY );
for ( long nX = 0; nX < pReadAccess->Width(); nX++ )
{
const sal_uInt8 cIndex = pReadAccess->GetPixelFromData( pScanlineRead, nX ).GetIndex();
if ( cIndex == cIndexFrom )
pWriteAccess->SetPixelOnData( pScanline, nX, BitmapColor(nAlphaTo) );
}
}
}
}
void BitmapEx::AdjustTransparency(sal_uInt8 cTrans)
{
AlphaMask aAlpha;
if (!IsTransparent())
{
aAlpha = AlphaMask(GetSizePixel(), &cTrans);
}
else if( !IsAlpha() )
{
aAlpha = GetMask();
aAlpha.Replace( 0, cTrans );
}
else
{
aAlpha = GetAlpha();
BitmapScopedWriteAccess pA(aAlpha);
assert(pA);
if( !pA )
return;
sal_uLong nTrans = cTrans, nNewTrans;
const long nWidth = pA->Width(), nHeight = pA->Height();
if( pA->GetScanlineFormat() == ScanlineFormat::N8BitPal )
{
for( long nY = 0; nY < nHeight; nY++ )
{
Scanline pAScan = pA->GetScanline( nY );
for( long nX = 0; nX < nWidth; nX++ )
{
nNewTrans = nTrans + *pAScan;
*pAScan++ = static_cast<sal_uInt8>( ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans );
}
}
}
else
{
BitmapColor aAlphaValue( 0 );
for( long nY = 0; nY < nHeight; nY++ )
{
Scanline pScanline = pA->GetScanline( nY );
for( long nX = 0; nX < nWidth; nX++ )
{
nNewTrans = nTrans + pA->GetIndexFromData( pScanline, nX );
aAlphaValue.SetIndex( static_cast<sal_uInt8>( ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans ) );
pA->SetPixelOnData( pScanline, nX, aAlphaValue );
}
}
}
}
*this = BitmapEx( GetBitmapRef(), aAlpha );
}
// AS: Because JPEGs require the alpha channel provided separately (JPEG does not
// natively support alpha channel, but SWF lets you provide it separately), we
// extract the alpha channel into a separate array here.
void BitmapEx::GetSplitData( std::vector<sal_uInt8>& rvColorData, std::vector<sal_uInt8>& rvAlphaData ) const
{
if( IsEmpty() )
return;
Bitmap::ScopedReadAccess pRAcc(const_cast<Bitmap&>(maBitmap));
assert( pRAcc );
AlphaMask aAlpha;
sal_uInt32 nWidth = pRAcc->Width();
sal_uInt32 nHeight = pRAcc->Height();
rvColorData.resize(nWidth*nHeight*4);
rvAlphaData.resize(nWidth*nHeight);
sal_uInt8* p = rvColorData.data(), *pAlpha = rvAlphaData.data();
if (IsAlpha())
{
aAlpha = GetAlpha();
}
else if (IsTransparent())
{
aAlpha = GetMask();
}
else
{
sal_uInt8 cAlphaVal = 0;
aAlpha = AlphaMask(maBitmap.GetSizePixel(), &cAlphaVal);
}
AlphaMask::ScopedReadAccess pAAcc(aAlpha);
assert( pAAcc );
for( sal_uInt32 nY = 0; nY < nHeight; nY++ )
{
Scanline pScanlineAA = pAAcc->GetScanline( nY );
for( sal_uInt32 nX = 0; nX < nWidth; nX++ )
{
const sal_uInt8 nAlpha = pAAcc->GetIndexFromData( pScanlineAA, nX );
const BitmapColor aPixelColor( pRAcc->GetColor( nY, nX ) );
if( nAlpha == 0xff )
{
*p++ = 0;
*p++ = 0;
*p++ = 0;
*p++ = 0;
}
else
{
*p++ = 0xff-nAlpha;
*p++ = aPixelColor.GetRed();
*p++ = aPixelColor.GetGreen();
*p++ = aPixelColor.GetBlue();
}
*pAlpha++ = 0xff - nAlpha;
}
}
}
void BitmapEx::CombineMaskOr(Color maskColor, sal_uInt8 nTol)
{
Bitmap aNewMask = maBitmap.CreateMask( maskColor, nTol );
if ( IsTransparent() )
aNewMask.CombineSimple( maMask, BmpCombine::Or );
maMask = aNewMask;
meTransparent = TransparentType::Bitmap;
}
/**
* Retrieves the color model data we need for the XImageConsumer stuff.
*/
void BitmapEx::GetColorModel(css::uno::Sequence< sal_Int32 >& rRGBPalette,
sal_uInt32& rnRedMask, sal_uInt32& rnGreenMask, sal_uInt32& rnBlueMask, sal_uInt32& rnAlphaMask, sal_uInt32& rnTransparencyIndex,
sal_uInt32& rnWidth, sal_uInt32& rnHeight, sal_uInt8& rnBitCount)
{
Bitmap::ScopedReadAccess pReadAccess( maBitmap );
assert( pReadAccess );
if( pReadAccess->HasPalette() )
{
sal_uInt16 nPalCount = pReadAccess->GetPaletteEntryCount();
if( nPalCount )
{
rRGBPalette = css::uno::Sequence< sal_Int32 >( nPalCount + 1 );
sal_Int32* pTmp = rRGBPalette.getArray();
for( sal_uInt32 i = 0; i < nPalCount; i++, pTmp++ )
{
const BitmapColor& rCol = pReadAccess->GetPaletteColor( static_cast<sal_uInt16>(i) );
*pTmp = static_cast<sal_Int32>(rCol.GetRed()) << sal_Int32(24);
*pTmp |= static_cast<sal_Int32>(rCol.GetGreen()) << sal_Int32(16);
*pTmp |= static_cast<sal_Int32>(rCol.GetBlue()) << sal_Int32(8);
*pTmp |= sal_Int32(0x000000ffL);
}
if( IsTransparent() )
{
// append transparent entry
*pTmp = sal_Int32(0xffffff00L);
rnTransparencyIndex = nPalCount;
nPalCount++;
}
else
rnTransparencyIndex = 0;
}
}
else
{
rnRedMask = 0xff000000UL;
rnGreenMask = 0x00ff0000UL;
rnBlueMask = 0x0000ff00UL;
rnAlphaMask = 0x000000ffUL;
rnTransparencyIndex = 0;
}
rnWidth = pReadAccess->Width();
rnHeight = pReadAccess->Height();
rnBitCount = pReadAccess->GetBitCount();
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */