Files
libreoffice/package/source/zipapi/ZipFile.cxx
Noel Grandin 8c004aa108 cid#982783 Unintentional integer overflow
Change-Id: Ida52d1fbe3d84c9c0070c91ae24cae58dc4aa13f
2014-05-14 09:49:08 +02:00

1124 lines
44 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#include <com/sun/star/ucb/XProgressHandler.hpp>
#include <com/sun/star/packages/zip/ZipConstants.hpp>
#include <com/sun/star/xml/crypto/XCipherContext.hpp>
#include <com/sun/star/xml/crypto/XDigestContext.hpp>
#include <com/sun/star/xml/crypto/XCipherContextSupplier.hpp>
#include <com/sun/star/xml/crypto/XDigestContextSupplier.hpp>
#include <com/sun/star/xml/crypto/CipherID.hpp>
#include <com/sun/star/xml/crypto/DigestID.hpp>
#include <com/sun/star/xml/crypto/NSSInitializer.hpp>
#include <comphelper/storagehelper.hxx>
#include <comphelper/processfactory.hxx>
#include <rtl/digest.h>
#include <vector>
#include "blowfishcontext.hxx"
#include "sha1context.hxx"
#include <ZipFile.hxx>
#include <ZipEnumeration.hxx>
#include <XUnbufferedStream.hxx>
#include <PackageConstants.hxx>
#include <EncryptedDataHeader.hxx>
#include <EncryptionData.hxx>
#include <MemoryByteGrabber.hxx>
#include <CRC32.hxx>
using namespace com::sun::star;
using namespace com::sun::star::io;
using namespace com::sun::star::uno;
using namespace com::sun::star::ucb;
using namespace com::sun::star::lang;
using namespace com::sun::star::packages;
using namespace com::sun::star::packages::zip;
using namespace com::sun::star::packages::zip::ZipConstants;
using ZipUtils::Inflater;
#if OSL_DEBUG_LEVEL > 0
#define THROW_WHERE SAL_WHERE
#else
#define THROW_WHERE ""
#endif
/** This class is used to read entries from a zip file
*/
ZipFile::ZipFile( uno::Reference < XInputStream > &xInput, const uno::Reference < XComponentContext > & rxContext, bool bInitialise )
throw(IOException, ZipException, RuntimeException)
: aGrabber(xInput)
, aInflater( true )
, xStream(xInput)
, xSeek(xInput, UNO_QUERY)
, m_xContext ( rxContext )
, bRecoveryMode( false )
{
if (bInitialise)
{
if ( readCEN() == -1 )
{
aEntries.clear();
throw ZipException( "stream data looks to be broken", uno::Reference < XInterface > () );
}
}
}
ZipFile::ZipFile( uno::Reference < XInputStream > &xInput, const uno::Reference < XComponentContext > & rxContext, bool bInitialise, bool bForceRecovery, uno::Reference < XProgressHandler > xProgress )
throw(IOException, ZipException, RuntimeException)
: aGrabber(xInput)
, aInflater( true )
, xStream(xInput)
, xSeek(xInput, UNO_QUERY)
, m_xContext ( rxContext )
, xProgressHandler( xProgress )
, bRecoveryMode( bForceRecovery )
{
if (bInitialise)
{
if ( bForceRecovery )
{
recover();
}
else if ( readCEN() == -1 )
{
aEntries.clear();
throw ZipException("stream data looks to be broken", uno::Reference < XInterface > () );
}
}
}
ZipFile::~ZipFile()
{
aEntries.clear();
}
void ZipFile::setInputStream ( uno::Reference < XInputStream > xNewStream )
{
::osl::MutexGuard aGuard( m_aMutex );
xStream = xNewStream;
xSeek = uno::Reference < XSeekable > ( xStream, UNO_QUERY );
aGrabber.setInputStream ( xStream );
}
uno::Reference< xml::crypto::XDigestContext > ZipFile::StaticGetDigestContextForChecksum( const uno::Reference< uno::XComponentContext >& xArgContext, const ::rtl::Reference< EncryptionData >& xEncryptionData )
{
uno::Reference< xml::crypto::XDigestContext > xDigestContext;
if ( xEncryptionData->m_nCheckAlg == xml::crypto::DigestID::SHA256_1K )
{
uno::Reference< uno::XComponentContext > xContext = xArgContext;
if ( !xContext.is() )
xContext = comphelper::getProcessComponentContext();
uno::Reference< xml::crypto::XNSSInitializer > xDigestContextSupplier = xml::crypto::NSSInitializer::create( xContext );
xDigestContext.set( xDigestContextSupplier->getDigestContext( xEncryptionData->m_nCheckAlg, uno::Sequence< beans::NamedValue >() ), uno::UNO_SET_THROW );
}
else if ( xEncryptionData->m_nCheckAlg == xml::crypto::DigestID::SHA1_1K )
xDigestContext.set( SHA1DigestContext::Create(), uno::UNO_SET_THROW );
return xDigestContext;
}
uno::Reference< xml::crypto::XCipherContext > ZipFile::StaticGetCipher( const uno::Reference< uno::XComponentContext >& xArgContext, const ::rtl::Reference< EncryptionData >& xEncryptionData, bool bEncrypt )
{
uno::Reference< xml::crypto::XCipherContext > xResult;
try
{
if (xEncryptionData->m_nDerivedKeySize < 0)
{
throw ZipIOException("Invalid derived key length!",
uno::Reference< XInterface >() );
}
uno::Sequence< sal_Int8 > aDerivedKey( xEncryptionData->m_nDerivedKeySize );
if ( rtl_Digest_E_None != rtl_digest_PBKDF2( reinterpret_cast< sal_uInt8* >( aDerivedKey.getArray() ),
aDerivedKey.getLength(),
reinterpret_cast< const sal_uInt8 * > (xEncryptionData->m_aKey.getConstArray() ),
xEncryptionData->m_aKey.getLength(),
reinterpret_cast< const sal_uInt8 * > ( xEncryptionData->m_aSalt.getConstArray() ),
xEncryptionData->m_aSalt.getLength(),
xEncryptionData->m_nIterationCount ) )
{
throw ZipIOException("Can not create derived key!",
uno::Reference< XInterface >() );
}
if ( xEncryptionData->m_nEncAlg == xml::crypto::CipherID::AES_CBC_W3C_PADDING )
{
uno::Reference< uno::XComponentContext > xContext = xArgContext;
if ( !xContext.is() )
xContext = comphelper::getProcessComponentContext();
uno::Reference< xml::crypto::XNSSInitializer > xCipherContextSupplier = xml::crypto::NSSInitializer::create( xContext );
xResult = xCipherContextSupplier->getCipherContext( xEncryptionData->m_nEncAlg, aDerivedKey, xEncryptionData->m_aInitVector, bEncrypt, uno::Sequence< beans::NamedValue >() );
}
else if ( xEncryptionData->m_nEncAlg == xml::crypto::CipherID::BLOWFISH_CFB_8 )
{
xResult = BlowfishCFB8CipherContext::Create( aDerivedKey, xEncryptionData->m_aInitVector, bEncrypt );
}
else
{
throw ZipIOException("Unknown cipher algorithm is requested!",
uno::Reference< XInterface >() );
}
}
catch( ... )
{
OSL_ENSURE( false, "Can not create cipher context!" );
}
return xResult;
}
void ZipFile::StaticFillHeader( const ::rtl::Reference< EncryptionData >& rData,
sal_Int64 nSize,
const OUString& aMediaType,
sal_Int8 * & pHeader )
{
// I think it's safe to restrict vector and salt length to 2 bytes !
sal_Int16 nIVLength = static_cast < sal_Int16 > ( rData->m_aInitVector.getLength() );
sal_Int16 nSaltLength = static_cast < sal_Int16 > ( rData->m_aSalt.getLength() );
sal_Int16 nDigestLength = static_cast < sal_Int16 > ( rData->m_aDigest.getLength() );
sal_Int16 nMediaTypeLength = static_cast < sal_Int16 > ( aMediaType.getLength() * sizeof( sal_Unicode ) );
// First the header
*(pHeader++) = ( n_ConstHeader >> 0 ) & 0xFF;
*(pHeader++) = ( n_ConstHeader >> 8 ) & 0xFF;
*(pHeader++) = ( n_ConstHeader >> 16 ) & 0xFF;
*(pHeader++) = ( n_ConstHeader >> 24 ) & 0xFF;
// Then the version
*(pHeader++) = ( n_ConstCurrentVersion >> 0 ) & 0xFF;
*(pHeader++) = ( n_ConstCurrentVersion >> 8 ) & 0xFF;
// Then the iteration Count
sal_Int32 nIterationCount = rData->m_nIterationCount;
*(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 8 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 16 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nIterationCount >> 24 ) & 0xFF);
// FIXME64: need to handle larger sizes
// Then the size:
*(pHeader++) = static_cast< sal_Int8 >(( nSize >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nSize >> 8 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nSize >> 16 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nSize >> 24 ) & 0xFF);
// Then the encryption algorithm
sal_Int32 nEncAlgID = rData->m_nEncAlg;
*(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 8 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 16 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nEncAlgID >> 24 ) & 0xFF);
// Then the checksum algorithm
sal_Int32 nChecksumAlgID = rData->m_nCheckAlg;
*(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 8 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 16 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nChecksumAlgID >> 24 ) & 0xFF);
// Then the derived key size
sal_Int32 nDerivedKeySize = rData->m_nDerivedKeySize;
*(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 8 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 16 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nDerivedKeySize >> 24 ) & 0xFF);
// Then the start key generation algorithm
sal_Int32 nKeyAlgID = rData->m_nStartKeyGenID;
*(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 8 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 16 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nKeyAlgID >> 24 ) & 0xFF);
// Then the salt length
*(pHeader++) = static_cast< sal_Int8 >(( nSaltLength >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nSaltLength >> 8 ) & 0xFF);
// Then the IV length
*(pHeader++) = static_cast< sal_Int8 >(( nIVLength >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nIVLength >> 8 ) & 0xFF);
// Then the digest length
*(pHeader++) = static_cast< sal_Int8 >(( nDigestLength >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nDigestLength >> 8 ) & 0xFF);
// Then the mediatype length
*(pHeader++) = static_cast< sal_Int8 >(( nMediaTypeLength >> 0 ) & 0xFF);
*(pHeader++) = static_cast< sal_Int8 >(( nMediaTypeLength >> 8 ) & 0xFF);
// Then the salt content
memcpy ( pHeader, rData->m_aSalt.getConstArray(), nSaltLength );
pHeader += nSaltLength;
// Then the IV content
memcpy ( pHeader, rData->m_aInitVector.getConstArray(), nIVLength );
pHeader += nIVLength;
// Then the digest content
memcpy ( pHeader, rData->m_aDigest.getConstArray(), nDigestLength );
pHeader += nDigestLength;
// Then the mediatype itself
memcpy ( pHeader, aMediaType.getStr(), nMediaTypeLength );
pHeader += nMediaTypeLength;
}
bool ZipFile::StaticFillData ( ::rtl::Reference< BaseEncryptionData > & rData,
sal_Int32 &rEncAlg,
sal_Int32 &rChecksumAlg,
sal_Int32 &rDerivedKeySize,
sal_Int32 &rStartKeyGenID,
sal_Int32 &rSize,
OUString& aMediaType,
const uno::Reference< XInputStream >& rStream )
{
bool bOk = false;
const sal_Int32 nHeaderSize = n_ConstHeaderSize - 4;
Sequence < sal_Int8 > aBuffer ( nHeaderSize );
if ( nHeaderSize == rStream->readBytes ( aBuffer, nHeaderSize ) )
{
sal_Int16 nPos = 0;
sal_Int8 *pBuffer = aBuffer.getArray();
sal_Int16 nVersion = pBuffer[nPos++] & 0xFF;
nVersion |= ( pBuffer[nPos++] & 0xFF ) << 8;
if ( nVersion == n_ConstCurrentVersion )
{
sal_Int32 nCount = pBuffer[nPos++] & 0xFF;
nCount |= ( pBuffer[nPos++] & 0xFF ) << 8;
nCount |= ( pBuffer[nPos++] & 0xFF ) << 16;
nCount |= ( pBuffer[nPos++] & 0xFF ) << 24;
rData->m_nIterationCount = nCount;
rSize = pBuffer[nPos++] & 0xFF;
rSize |= ( pBuffer[nPos++] & 0xFF ) << 8;
rSize |= ( pBuffer[nPos++] & 0xFF ) << 16;
rSize |= ( pBuffer[nPos++] & 0xFF ) << 24;
rEncAlg = pBuffer[nPos++] & 0xFF;
rEncAlg |= ( pBuffer[nPos++] & 0xFF ) << 8;
rEncAlg |= ( pBuffer[nPos++] & 0xFF ) << 16;
rEncAlg |= ( pBuffer[nPos++] & 0xFF ) << 24;
rChecksumAlg = pBuffer[nPos++] & 0xFF;
rChecksumAlg |= ( pBuffer[nPos++] & 0xFF ) << 8;
rChecksumAlg |= ( pBuffer[nPos++] & 0xFF ) << 16;
rChecksumAlg |= ( pBuffer[nPos++] & 0xFF ) << 24;
rDerivedKeySize = pBuffer[nPos++] & 0xFF;
rDerivedKeySize |= ( pBuffer[nPos++] & 0xFF ) << 8;
rDerivedKeySize |= ( pBuffer[nPos++] & 0xFF ) << 16;
rDerivedKeySize |= ( pBuffer[nPos++] & 0xFF ) << 24;
rStartKeyGenID = pBuffer[nPos++] & 0xFF;
rStartKeyGenID |= ( pBuffer[nPos++] & 0xFF ) << 8;
rStartKeyGenID |= ( pBuffer[nPos++] & 0xFF ) << 16;
rStartKeyGenID |= ( pBuffer[nPos++] & 0xFF ) << 24;
sal_Int16 nSaltLength = pBuffer[nPos++] & 0xFF;
nSaltLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
sal_Int16 nIVLength = ( pBuffer[nPos++] & 0xFF );
nIVLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
sal_Int16 nDigestLength = pBuffer[nPos++] & 0xFF;
nDigestLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
sal_Int16 nMediaTypeLength = pBuffer[nPos++] & 0xFF;
nMediaTypeLength |= ( pBuffer[nPos++] & 0xFF ) << 8;
if ( nSaltLength == rStream->readBytes ( aBuffer, nSaltLength ) )
{
rData->m_aSalt.realloc ( nSaltLength );
memcpy ( rData->m_aSalt.getArray(), aBuffer.getConstArray(), nSaltLength );
if ( nIVLength == rStream->readBytes ( aBuffer, nIVLength ) )
{
rData->m_aInitVector.realloc ( nIVLength );
memcpy ( rData->m_aInitVector.getArray(), aBuffer.getConstArray(), nIVLength );
if ( nDigestLength == rStream->readBytes ( aBuffer, nDigestLength ) )
{
rData->m_aDigest.realloc ( nDigestLength );
memcpy ( rData->m_aDigest.getArray(), aBuffer.getConstArray(), nDigestLength );
if ( nMediaTypeLength == rStream->readBytes ( aBuffer, nMediaTypeLength ) )
{
aMediaType = OUString( (sal_Unicode*)aBuffer.getConstArray(),
nMediaTypeLength / sizeof( sal_Unicode ) );
bOk = true;
}
}
}
}
}
}
return bOk;
}
uno::Reference< XInputStream > ZipFile::StaticGetDataFromRawStream( const uno::Reference< uno::XComponentContext >& rxContext,
const uno::Reference< XInputStream >& xStream,
const ::rtl::Reference< EncryptionData > &rData )
throw ( packages::WrongPasswordException, ZipIOException, RuntimeException )
{
if ( !rData.is() )
throw ZipIOException("Encrypted stream without encryption data!\n",
uno::Reference< XInterface >() );
if ( !rData->m_aKey.getLength() )
throw packages::WrongPasswordException(THROW_WHERE, uno::Reference< uno::XInterface >() );
uno::Reference< XSeekable > xSeek( xStream, UNO_QUERY );
if ( !xSeek.is() )
throw ZipIOException("The stream must be seekable!\n",
uno::Reference< XInterface >() );
// if we have a digest, then this file is an encrypted one and we should
// check if we can decrypt it or not
OSL_ENSURE( rData->m_aDigest.getLength(), "Can't detect password correctness without digest!\n" );
if ( rData->m_aDigest.getLength() )
{
sal_Int32 nSize = sal::static_int_cast< sal_Int32 >( xSeek->getLength() );
if ( nSize > n_ConstDigestLength + 32 )
nSize = n_ConstDigestLength + 32;
// skip header
xSeek->seek( n_ConstHeaderSize + rData->m_aInitVector.getLength() +
rData->m_aSalt.getLength() + rData->m_aDigest.getLength() );
// Only want to read enough to verify the digest
Sequence < sal_Int8 > aReadBuffer ( nSize );
xStream->readBytes( aReadBuffer, nSize );
if ( !StaticHasValidPassword( rxContext, aReadBuffer, rData ) )
throw packages::WrongPasswordException(THROW_WHERE, uno::Reference< uno::XInterface >() );
}
return new XUnbufferedStream( rxContext, xStream, rData );
}
#if 0
// for debugging purposes
void CheckSequence( const uno::Sequence< sal_Int8 >& aSequence )
{
if ( aSequence.getLength() )
{
sal_Int32* pPointer = *( (sal_Int32**)&aSequence );
sal_Int32 nSize = *( pPointer + 1 );
sal_Int32 nMemSize = *( pPointer - 2 );
sal_Int32 nUsedMemSize = ( nSize + 4 * sizeof( sal_Int32 ) );
OSL_ENSURE( nSize == aSequence.getLength() && nUsedMemSize + 7 - ( nUsedMemSize - 1 ) % 8 == nMemSize, "Broken Sequence!" );
}
}
#endif
bool ZipFile::StaticHasValidPassword( const uno::Reference< uno::XComponentContext >& rxContext, const Sequence< sal_Int8 > &aReadBuffer, const ::rtl::Reference< EncryptionData > &rData )
{
if ( !rData.is() || !rData->m_aKey.getLength() )
return false;
bool bRet = false;
uno::Reference< xml::crypto::XCipherContext > xCipher( StaticGetCipher( rxContext, rData, false ), uno::UNO_SET_THROW );
uno::Sequence< sal_Int8 > aDecryptBuffer;
uno::Sequence< sal_Int8 > aDecryptBuffer2;
try
{
aDecryptBuffer = xCipher->convertWithCipherContext( aReadBuffer );
aDecryptBuffer2 = xCipher->finalizeCipherContextAndDispose();
}
catch( uno::Exception& )
{
// decryption with padding will throw the exception in finalizing if the buffer represent only part of the stream
// it is no problem, actually this is why we read 32 additional bytes ( two of maximal possible encryption blocks )
}
if ( aDecryptBuffer2.getLength() )
{
sal_Int32 nOldLen = aDecryptBuffer.getLength();
aDecryptBuffer.realloc( nOldLen + aDecryptBuffer2.getLength() );
memcpy( aDecryptBuffer.getArray() + nOldLen, aDecryptBuffer2.getArray(), aDecryptBuffer2.getLength() );
}
if ( aDecryptBuffer.getLength() > n_ConstDigestLength )
aDecryptBuffer.realloc( n_ConstDigestLength );
uno::Sequence< sal_Int8 > aDigestSeq;
uno::Reference< xml::crypto::XDigestContext > xDigestContext( StaticGetDigestContextForChecksum( rxContext, rData ), uno::UNO_SET_THROW );
xDigestContext->updateDigest( aDecryptBuffer );
aDigestSeq = xDigestContext->finalizeDigestAndDispose();
// If we don't have a digest, then we have to assume that the password is correct
if ( rData->m_aDigest.getLength() != 0 &&
( aDigestSeq.getLength() != rData->m_aDigest.getLength() ||
0 != memcmp ( aDigestSeq.getConstArray(),
rData->m_aDigest.getConstArray(),
aDigestSeq.getLength() ) ) )
{
// We should probably tell the user that the password they entered was wrong
}
else
bRet = true;
return bRet;
}
bool ZipFile::hasValidPassword ( ZipEntry & rEntry, const ::rtl::Reference< EncryptionData >& rData )
{
::osl::MutexGuard aGuard( m_aMutex );
bool bRet = false;
if ( rData.is() && rData->m_aKey.getLength() )
{
xSeek->seek( rEntry.nOffset );
sal_Int64 nSize = rEntry.nMethod == DEFLATED ? rEntry.nCompressedSize : rEntry.nSize;
// Only want to read enough to verify the digest
if ( nSize > n_ConstDigestDecrypt )
nSize = n_ConstDigestDecrypt;
Sequence < sal_Int8 > aReadBuffer ( nSize );
xStream->readBytes( aReadBuffer, nSize );
bRet = StaticHasValidPassword( m_xContext, aReadBuffer, rData );
}
return bRet;
}
uno::Reference< XInputStream > ZipFile::createUnbufferedStream(
SotMutexHolderRef aMutexHolder,
ZipEntry & rEntry,
const ::rtl::Reference< EncryptionData > &rData,
sal_Int8 nStreamMode,
bool bIsEncrypted,
const OUString& aMediaType )
{
::osl::MutexGuard aGuard( m_aMutex );
return new XUnbufferedStream ( m_xContext, aMutexHolder, rEntry, xStream, rData, nStreamMode, bIsEncrypted, aMediaType, bRecoveryMode );
}
ZipEnumeration * SAL_CALL ZipFile::entries( )
{
return new ZipEnumeration ( aEntries );
}
uno::Reference< XInputStream > SAL_CALL ZipFile::getInputStream( ZipEntry& rEntry,
const ::rtl::Reference< EncryptionData > &rData,
bool bIsEncrypted,
SotMutexHolderRef aMutexHolder )
throw(IOException, ZipException, RuntimeException)
{
::osl::MutexGuard aGuard( m_aMutex );
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
// We want to return a rawStream if we either don't have a key or if the
// key is wrong
bool bNeedRawStream = rEntry.nMethod == STORED;
// if we have a digest, then this file is an encrypted one and we should
// check if we can decrypt it or not
if ( bIsEncrypted && rData.is() && rData->m_aDigest.getLength() )
bNeedRawStream = !hasValidPassword ( rEntry, rData );
return createUnbufferedStream ( aMutexHolder,
rEntry,
rData,
bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA,
bIsEncrypted );
}
uno::Reference< XInputStream > SAL_CALL ZipFile::getDataStream( ZipEntry& rEntry,
const ::rtl::Reference< EncryptionData > &rData,
bool bIsEncrypted,
SotMutexHolderRef aMutexHolder )
throw ( packages::WrongPasswordException,
IOException,
ZipException,
RuntimeException )
{
::osl::MutexGuard aGuard( m_aMutex );
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
// An exception must be thrown in case stream is encrypted and
// there is no key or the key is wrong
bool bNeedRawStream = false;
if ( bIsEncrypted )
{
// in case no digest is provided there is no way
// to detect password correctness
if ( !rData.is() )
throw ZipException("Encrypted stream without encryption data!\n",
uno::Reference< XInterface >() );
// if we have a digest, then this file is an encrypted one and we should
// check if we can decrypt it or not
OSL_ENSURE( rData->m_aDigest.getLength(), "Can't detect password correctness without digest!\n" );
if ( rData->m_aDigest.getLength() && !hasValidPassword ( rEntry, rData ) )
throw packages::WrongPasswordException(THROW_WHERE, uno::Reference< uno::XInterface >() );
}
else
bNeedRawStream = ( rEntry.nMethod == STORED );
return createUnbufferedStream ( aMutexHolder,
rEntry,
rData,
bNeedRawStream ? UNBUFF_STREAM_RAW : UNBUFF_STREAM_DATA,
bIsEncrypted );
}
uno::Reference< XInputStream > SAL_CALL ZipFile::getRawData( ZipEntry& rEntry,
const ::rtl::Reference< EncryptionData >& rData,
bool bIsEncrypted,
SotMutexHolderRef aMutexHolder )
throw(IOException, ZipException, RuntimeException)
{
::osl::MutexGuard aGuard( m_aMutex );
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
return createUnbufferedStream ( aMutexHolder, rEntry, rData, UNBUFF_STREAM_RAW, bIsEncrypted );
}
uno::Reference< XInputStream > SAL_CALL ZipFile::getWrappedRawStream(
ZipEntry& rEntry,
const ::rtl::Reference< EncryptionData >& rData,
const OUString& aMediaType,
SotMutexHolderRef aMutexHolder )
throw ( packages::NoEncryptionException,
IOException,
ZipException,
RuntimeException )
{
::osl::MutexGuard aGuard( m_aMutex );
if ( !rData.is() )
throw packages::NoEncryptionException(THROW_WHERE, uno::Reference< uno::XInterface >() );
if ( rEntry.nOffset <= 0 )
readLOC( rEntry );
return createUnbufferedStream ( aMutexHolder, rEntry, rData, UNBUFF_STREAM_WRAPPEDRAW, true, aMediaType );
}
bool ZipFile::readLOC( ZipEntry &rEntry )
throw(IOException, ZipException, RuntimeException)
{
::osl::MutexGuard aGuard( m_aMutex );
sal_Int32 nTestSig, nTime, nCRC, nSize, nCompressedSize;
sal_Int16 nVersion, nFlag, nHow, nPathLen, nExtraLen;
sal_Int64 nPos = -rEntry.nOffset;
aGrabber.seek(nPos);
aGrabber >> nTestSig;
if (nTestSig != LOCSIG)
throw ZipIOException("Invalid LOC header (bad signature)", uno::Reference < XInterface > () );
aGrabber >> nVersion;
aGrabber >> nFlag;
aGrabber >> nHow;
aGrabber >> nTime;
aGrabber >> nCRC;
aGrabber >> nCompressedSize;
aGrabber >> nSize;
aGrabber >> nPathLen;
aGrabber >> nExtraLen;
rEntry.nOffset = aGrabber.getPosition() + nPathLen + nExtraLen;
// FIXME64: need to read 64bit LOC
bool bBroken = false;
try
{
// read always in UTF8, some tools seem not to set UTF8 bit
uno::Sequence < sal_Int8 > aNameBuffer( nPathLen );
sal_Int32 nRead = aGrabber.readBytes( aNameBuffer, nPathLen );
if ( nRead < aNameBuffer.getLength() )
aNameBuffer.realloc( nRead );
OUString sLOCPath = OUString::intern( (sal_Char *) aNameBuffer.getArray(),
aNameBuffer.getLength(),
RTL_TEXTENCODING_UTF8 );
if ( rEntry.nPathLen == -1 ) // the file was created
{
rEntry.nPathLen = nPathLen;
rEntry.sPath = sLOCPath;
}
// check basic local file header / entry consistency, just
// plain ignore bits 1 & 2 of the flag field - they are either
// purely informative, or even fully undefined (depending on
// nMethod)
// Do *not* compare nMethod / nHow, older versions with
// encrypted streams write mismatching DEFLATE/STORE pairs
// there.
// Do *not* compare timestamps, since MSO 2010 can produce documents
// with timestamp difference in the central directory entry and local
// file header.
bBroken = rEntry.nVersion != nVersion
|| rEntry.nPathLen != nPathLen
|| !rEntry.sPath.equals( sLOCPath );
}
catch(...)
{
bBroken = true;
}
if ( bBroken && !bRecoveryMode )
throw ZipIOException("The stream seems to be broken!",
uno::Reference< XInterface >() );
return true;
}
sal_Int32 ZipFile::findEND( )
throw(IOException, ZipException, RuntimeException)
{
// this method is called in constructor only, no need for mutex
sal_Int32 nLength, nPos, nEnd;
Sequence < sal_Int8 > aBuffer;
try
{
nLength = static_cast <sal_Int32 > (aGrabber.getLength());
if (nLength == 0 || nLength < ENDHDR)
return -1;
nPos = nLength - ENDHDR - ZIP_MAXNAMELEN;
nEnd = nPos >= 0 ? nPos : 0 ;
aGrabber.seek( nEnd );
aGrabber.readBytes ( aBuffer, nLength - nEnd );
const sal_Int8 *pBuffer = aBuffer.getConstArray();
nPos = nLength - nEnd - ENDHDR;
while ( nPos >= 0 )
{
if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 5 && pBuffer[nPos+3] == 6 )
return nPos + nEnd;
nPos--;
}
}
catch ( IllegalArgumentException& )
{
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
catch ( NotConnectedException& )
{
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
catch ( BufferSizeExceededException& )
{
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
sal_Int32 ZipFile::readCEN()
throw(IOException, ZipException, RuntimeException)
{
// this method is called in constructor only, no need for mutex
sal_Int32 nCenLen, nCenPos = -1, nCenOff, nEndPos, nLocPos;
sal_uInt16 nCount, nTotal;
try
{
nEndPos = findEND();
if (nEndPos == -1)
return -1;
aGrabber.seek(nEndPos + ENDTOT);
aGrabber >> nTotal;
aGrabber >> nCenLen;
aGrabber >> nCenOff;
if ( nTotal * CENHDR > nCenLen )
throw ZipException("invalid END header (bad entry count)", uno::Reference < XInterface > () );
if ( nTotal > ZIP_MAXENTRIES )
throw ZipException("too many entries in ZIP File", uno::Reference < XInterface > () );
if ( nCenLen < 0 || nCenLen > nEndPos )
throw ZipException("Invalid END header (bad central directory size)", uno::Reference < XInterface > () );
nCenPos = nEndPos - nCenLen;
if ( nCenOff < 0 || nCenOff > nCenPos )
throw ZipException("Invalid END header (bad central directory size)", uno::Reference < XInterface > () );
nLocPos = nCenPos - nCenOff;
aGrabber.seek( nCenPos );
Sequence < sal_Int8 > aCENBuffer ( nCenLen );
sal_Int64 nRead = aGrabber.readBytes ( aCENBuffer, nCenLen );
if ( static_cast < sal_Int64 > ( nCenLen ) != nRead )
throw ZipException ("Error reading CEN into memory buffer!", uno::Reference < XInterface > () );
MemoryByteGrabber aMemGrabber ( aCENBuffer );
ZipEntry aEntry;
sal_Int32 nTestSig;
sal_Int16 nCommentLen;
for (nCount = 0 ; nCount < nTotal; nCount++)
{
aMemGrabber >> nTestSig;
if ( nTestSig != CENSIG )
throw ZipException("Invalid CEN header (bad signature)", uno::Reference < XInterface > () );
aMemGrabber.skipBytes ( 2 );
aMemGrabber >> aEntry.nVersion;
if ( ( aEntry.nVersion & 1 ) == 1 )
throw ZipException("Invalid CEN header (encrypted entry)", uno::Reference < XInterface > () );
aMemGrabber >> aEntry.nFlag;
aMemGrabber >> aEntry.nMethod;
if ( aEntry.nMethod != STORED && aEntry.nMethod != DEFLATED)
throw ZipException("Invalid CEN header (bad compression method)", uno::Reference < XInterface > () );
aMemGrabber >> aEntry.nTime;
aMemGrabber >> aEntry.nCrc;
sal_uInt32 nCompressedSize, nSize, nOffset;
aMemGrabber >> nCompressedSize;
aMemGrabber >> nSize;
aMemGrabber >> aEntry.nPathLen;
aMemGrabber >> aEntry.nExtraLen;
aMemGrabber >> nCommentLen;
aMemGrabber.skipBytes ( 8 );
aMemGrabber >> nOffset;
// FIXME64: need to read the 64bit header instead
if ( nSize == 0xffffffff ||
nOffset == 0xffffffff ||
nCompressedSize == 0xffffffff ) {
throw ZipException("PK64 zip file entry", uno::Reference < XInterface > () );
} else {
aEntry.nCompressedSize = nCompressedSize;
aEntry.nSize = nSize;
aEntry.nOffset = nOffset;
}
aEntry.nOffset += nLocPos;
aEntry.nOffset *= -1;
if ( aEntry.nPathLen < 0 )
throw ZipException("unexpected name length", uno::Reference < XInterface > () );
if ( nCommentLen < 0 )
throw ZipException("unexpected comment length", uno::Reference < XInterface > () );
if ( aEntry.nExtraLen < 0 )
throw ZipException("unexpected extra header info length", uno::Reference < XInterface > () );
// read always in UTF8, some tools seem not to set UTF8 bit
aEntry.sPath = OUString::intern ( (sal_Char *) aMemGrabber.getCurrentPos(),
aEntry.nPathLen,
RTL_TEXTENCODING_UTF8 );
if ( !::comphelper::OStorageHelper::IsValidZipEntryFileName( aEntry.sPath, true ) )
throw ZipException("Zip entry has an invalid name.", uno::Reference < XInterface > () );
aMemGrabber.skipBytes( aEntry.nPathLen + aEntry.nExtraLen + nCommentLen );
aEntries[aEntry.sPath] = aEntry;
}
if (nCount != nTotal)
throw ZipException("Count != Total", uno::Reference < XInterface > () );
}
catch ( IllegalArgumentException & )
{
// seek can throw this...
nCenPos = -1; // make sure we return -1 to indicate an error
}
return nCenPos;
}
sal_Int32 ZipFile::recover()
throw(IOException, ZipException, RuntimeException)
{
::osl::MutexGuard aGuard( m_aMutex );
sal_Int64 nLength;
Sequence < sal_Int8 > aBuffer;
try
{
nLength = aGrabber.getLength();
if (nLength == 0 || nLength < ENDHDR)
return -1;
aGrabber.seek( 0 );
const sal_Int64 nToRead = 32000;
for( sal_Int64 nGenPos = 0; aGrabber.readBytes( aBuffer, nToRead ) && aBuffer.getLength() > 16; )
{
const sal_Int8 *pBuffer = aBuffer.getConstArray();
sal_Int32 nBufSize = aBuffer.getLength();
sal_Int64 nPos = 0;
// the buffer should contain at least one header,
// or if it is end of the file, at least the postheader with sizes and hash
while( nPos < nBufSize - 30
|| ( nBufSize < nToRead && nPos < nBufSize - 16 ) )
{
if ( nPos < nBufSize - 30 && pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 3 && pBuffer[nPos+3] == 4 )
{
ZipEntry aEntry;
MemoryByteGrabber aMemGrabber ( Sequence< sal_Int8 >( ((sal_Int8*)(&(pBuffer[nPos+4]))), 26 ) );
aMemGrabber >> aEntry.nVersion;
if ( ( aEntry.nVersion & 1 ) != 1 )
{
aMemGrabber >> aEntry.nFlag;
aMemGrabber >> aEntry.nMethod;
if ( aEntry.nMethod == STORED || aEntry.nMethod == DEFLATED )
{
sal_uInt32 nCompressedSize, nSize;
aMemGrabber >> aEntry.nTime;
aMemGrabber >> aEntry.nCrc;
aMemGrabber >> nCompressedSize;
aMemGrabber >> nSize;
aMemGrabber >> aEntry.nPathLen;
aMemGrabber >> aEntry.nExtraLen;
// FIXME64: need to read the 64bit header instead
if ( nSize == 0xffffffff ||
nCompressedSize == 0xffffffff ) {
throw ZipException("PK64 zip file entry", uno::Reference < XInterface > () );
} else {
aEntry.nCompressedSize = nCompressedSize;
aEntry.nSize = nSize;
}
sal_Int32 nDescrLength =
( aEntry.nMethod == DEFLATED && ( aEntry.nFlag & 8 ) ) ? 16 : 0;
sal_Int64 nDataSize = ( aEntry.nMethod == DEFLATED ) ? aEntry.nCompressedSize : aEntry.nSize;
sal_Int64 nBlockLength = nDataSize + aEntry.nPathLen + aEntry.nExtraLen + 30 + nDescrLength;
if ( aEntry.nPathLen >= 0 && aEntry.nExtraLen >= 0
&& ( nGenPos + nPos + nBlockLength ) <= nLength )
{
// read always in UTF8, some tools seem not to set UTF8 bit
if( nPos + 30 + aEntry.nPathLen <= nBufSize )
aEntry.sPath = OUString ( (sal_Char *) &pBuffer[nPos + 30],
aEntry.nPathLen,
RTL_TEXTENCODING_UTF8 );
else
{
Sequence < sal_Int8 > aFileName;
aGrabber.seek( nGenPos + nPos + 30 );
aGrabber.readBytes( aFileName, aEntry.nPathLen );
aEntry.sPath = OUString ( (sal_Char *) aFileName.getArray(),
aFileName.getLength(),
RTL_TEXTENCODING_UTF8 );
aEntry.nPathLen = static_cast< sal_Int16 >(aFileName.getLength());
}
aEntry.nOffset = nGenPos + nPos + 30 + aEntry.nPathLen + aEntry.nExtraLen;
if ( ( aEntry.nSize || aEntry.nCompressedSize ) && !checkSizeAndCRC( aEntry ) )
{
aEntry.nCrc = 0;
aEntry.nCompressedSize = 0;
aEntry.nSize = 0;
}
if ( aEntries.find( aEntry.sPath ) == aEntries.end() )
aEntries[aEntry.sPath] = aEntry;
}
}
}
nPos += 4;
}
else if (pBuffer[nPos] == 'P' && pBuffer[nPos+1] == 'K' && pBuffer[nPos+2] == 7 && pBuffer[nPos+3] == 8 )
{
sal_Int32 nCRC32;
sal_uInt32 nCompressedSize32, nSize32;
sal_Int64 nCompressedSize, nSize;
MemoryByteGrabber aMemGrabber ( Sequence< sal_Int8 >( ((sal_Int8*)(&(pBuffer[nPos+4]))), 12 ) );
aMemGrabber >> nCRC32;
aMemGrabber >> nCompressedSize32;
aMemGrabber >> nSize32;
// FIXME64: work to be done here ...
nCompressedSize = nCompressedSize32;
nSize = nSize32;
for( EntryHash::iterator aIter = aEntries.begin(); aIter != aEntries.end(); ++aIter )
{
ZipEntry aTmp = (*aIter).second;
// this is a broken package, accept this block not only for DEFLATED streams
if( (*aIter).second.nFlag & 8 )
{
sal_Int64 nStreamOffset = nGenPos + nPos - nCompressedSize;
if ( nStreamOffset == (*aIter).second.nOffset && nCompressedSize > (*aIter).second.nCompressedSize )
{
// only DEFLATED blocks need to be checked
bool bAcceptBlock = ( (*aIter).second.nMethod == STORED && nCompressedSize == nSize );
if ( !bAcceptBlock )
{
sal_Int64 nRealSize = 0;
sal_Int32 nRealCRC = 0;
getSizeAndCRC( nStreamOffset, nCompressedSize, &nRealSize, &nRealCRC );
bAcceptBlock = ( nRealSize == nSize && nRealCRC == nCRC32 );
}
if ( bAcceptBlock )
{
(*aIter).second.nCrc = nCRC32;
(*aIter).second.nCompressedSize = nCompressedSize;
(*aIter).second.nSize = nSize;
}
}
#if 0
// for now ignore clearly broken streams
else if( !(*aIter).second.nCompressedSize )
{
(*aIter).second.nCrc = nCRC32;
sal_Int32 nRealStreamSize = nGenPos + nPos - (*aIter).second.nOffset;
(*aIter).second.nCompressedSize = nGenPos + nPos - (*aIter).second.nOffset;
(*aIter).second.nSize = nSize;
}
#endif
}
}
nPos += 4;
}
else
nPos++;
}
nGenPos += nPos;
aGrabber.seek( nGenPos );
}
return 0;
}
catch ( IllegalArgumentException& )
{
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
catch ( NotConnectedException& )
{
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
catch ( BufferSizeExceededException& )
{
throw ZipException("Zip END signature not found!", uno::Reference < XInterface > () );
}
}
bool ZipFile::checkSizeAndCRC( const ZipEntry& aEntry )
{
::osl::MutexGuard aGuard( m_aMutex );
sal_Int32 nCRC = 0;
sal_Int64 nSize = 0;
if( aEntry.nMethod == STORED )
return ( getCRC( aEntry.nOffset, aEntry.nSize ) == aEntry.nCrc );
getSizeAndCRC( aEntry.nOffset, aEntry.nCompressedSize, &nSize, &nCRC );
return ( aEntry.nSize == nSize && aEntry.nCrc == nCRC );
}
sal_Int32 ZipFile::getCRC( sal_Int64 nOffset, sal_Int64 nSize )
{
::osl::MutexGuard aGuard( m_aMutex );
Sequence < sal_Int8 > aBuffer;
CRC32 aCRC;
sal_Int64 nBlockSize = ::std::min(nSize, static_cast< sal_Int64 >(32000));
aGrabber.seek( nOffset );
for (sal_Int64 ind = 0;
aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nSize;
++ind)
{
sal_Int64 nLen = ::std::min(nBlockSize, nSize - ind * nBlockSize);
aCRC.updateSegment(aBuffer, 0, static_cast<sal_Int32>(nLen));
}
return aCRC.getValue();
}
void ZipFile::getSizeAndCRC( sal_Int64 nOffset, sal_Int64 nCompressedSize, sal_Int64 *nSize, sal_Int32 *nCRC )
{
::osl::MutexGuard aGuard( m_aMutex );
Sequence < sal_Int8 > aBuffer;
CRC32 aCRC;
sal_Int64 nRealSize = 0;
Inflater aInflaterLocal( true );
sal_Int32 nBlockSize = static_cast< sal_Int32 > (::std::min( nCompressedSize, static_cast< sal_Int64 >( 32000 ) ) );
aGrabber.seek( nOffset );
for ( sal_Int64 ind = 0;
!aInflaterLocal.finished() && aGrabber.readBytes( aBuffer, nBlockSize ) && ind * nBlockSize < nCompressedSize;
ind++ )
{
Sequence < sal_Int8 > aData( nBlockSize );
sal_Int32 nLastInflated = 0;
sal_Int64 nInBlock = 0;
aInflaterLocal.setInput( aBuffer );
do
{
nLastInflated = aInflaterLocal.doInflateSegment( aData, 0, nBlockSize );
aCRC.updateSegment( aData, 0, nLastInflated );
nInBlock += nLastInflated;
} while( !aInflater.finished() && nLastInflated );
nRealSize += nInBlock;
}
*nSize = nRealSize;
*nCRC = aCRC.getValue();
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */