Files
libreoffice/vcl/qa/cppunit/timer.cxx
Ashod Nakashian b103e7d786 vcl: unittests for Timer and AutoTimer.
Enabled VCL Timer unittests on Windows builds and added two unittests to
detect misfiring of timer events.

Due to the nature of timer events having virtually no guarantees on
non-realtime operating systems, the tests may fail randomly under
different system loads.  The tests repeat a few times in such cases, but
still there are no guarantees.

These tests are added to detect gross breaks in the timer algorithms and
to improve certain corner cases.  They are designed to minimize any
random failures.

Posterity might hate me for committing such unittests, so I added
TEST_TIMERPRECISION directive to include/exclude the tests at compile
time. It should be enabled if it causes more harm than good.

Change-Id: If2856f194cb4732c84900113bdb969f397f67d5a
Reviewed-on: https://gerrit.libreoffice.org/17906
Reviewed-by: Thorsten Behrens <Thorsten.Behrens@CIB.de>
Tested-by: Thorsten Behrens <Thorsten.Behrens@CIB.de>
2015-08-23 21:19:20 +00:00

369 lines
9.4 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/*
* Timers are evil beasties across platforms ...
*/
#include <test/bootstrapfixture.hxx>
#include <osl/thread.hxx>
#include <salhelper/thread.hxx>
#include <vcl/timer.hxx>
#include <vcl/idle.hxx>
#include <vcl/svapp.hxx>
#include "svdata.hxx"
#include "salinst.hxx"
// #define TEST_WATCHDOG
// Comment if UT fails randomly.
#define TEST_TIMERPRECISION
/// Avoid our timer tests just wedging the build if they fail.
class WatchDog : public osl::Thread
{
sal_Int32 mnSeconds;
public:
explicit WatchDog(sal_Int32 nSeconds) :
Thread(),
mnSeconds( nSeconds )
{
create();
}
virtual void SAL_CALL run() SAL_OVERRIDE
{
TimeValue aWait;
aWait.Seconds = mnSeconds;
aWait.Nanosec = 1000000; // +1ms
osl::Thread::wait( aWait );
CPPUNIT_ASSERT_MESSAGE("watchdog triggered", false);
}
};
static WatchDog aWatchDog( 12 /* 12 secs should be enough */);
class TimerTest : public test::BootstrapFixture
{
public:
TimerTest() : BootstrapFixture(true, false) {}
void testIdleMainloop();
void testIdle();
#ifdef TEST_WATCHDOG
void testWatchdog();
#endif
void testDurations();
void testAutoTimer();
void testMultiAutoTimers();
void testRecursiveTimer();
void testSlowTimerCallback();
CPPUNIT_TEST_SUITE(TimerTest);
CPPUNIT_TEST(testIdle);
CPPUNIT_TEST(testIdleMainloop);
#ifdef TEST_WATCHDOG
CPPUNIT_TEST(testWatchdog);
#endif
CPPUNIT_TEST(testDurations);
CPPUNIT_TEST(testAutoTimer);
CPPUNIT_TEST(testMultiAutoTimers);
CPPUNIT_TEST(testRecursiveTimer);
CPPUNIT_TEST(testSlowTimerCallback);
CPPUNIT_TEST_SUITE_END();
};
#ifdef TEST_WATCHDOG
void TimerTest::testWatchdog()
{
// out-wait the watchdog.
TimeValue aWait;
aWait.Seconds = 12;
aWait.Nanosec = 0;
osl::Thread::wait( aWait );
}
#endif
// --------------------------------------------------------------------
class IdleBool : public Idle
{
bool &mrBool;
public:
explicit IdleBool( bool &rBool ) :
Idle(), mrBool( rBool )
{
SetPriority( SchedulerPriority::LOWEST );
Start();
mrBool = false;
}
virtual void Invoke() SAL_OVERRIDE
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testIdle()
{
bool bTriggered = false;
IdleBool aTest( bTriggered );
Scheduler::ProcessTaskScheduling(false);
CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered);
}
// tdf#91727
void TimerTest::testIdleMainloop()
{
#ifndef WNT
bool bTriggered = false;
IdleBool aTest( bTriggered );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while (!bTriggered)
{
ImplSVData* pSVData = ImplGetSVData();
// can't test this via Application::Yield since this
// also processes all tasks directly via the scheduler.
pSVData->maAppData.mnDispatchLevel++;
pSVData->mpDefInst->DoYield(true, false, 0);
pSVData->maAppData.mnDispatchLevel--;
}
CPPUNIT_ASSERT_MESSAGE("mainloop idle triggered", bTriggered);
#endif
}
// --------------------------------------------------------------------
class TimerBool : public Timer
{
bool &mrBool;
public:
TimerBool( sal_uLong nMS, bool &rBool ) :
Timer(), mrBool( rBool )
{
SetTimeout( nMS );
Start();
mrBool = false;
}
virtual void Invoke() SAL_OVERRIDE
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testDurations()
{
static const sal_uLong aDurations[] = { 0, 1, 500, 1000 };
for (size_t i = 0; i < SAL_N_ELEMENTS( aDurations ); i++)
{
bool bDone = false;
TimerBool aTimer( aDurations[i], bDone );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while( !bDone )
{
Application::Yield();
}
}
}
// --------------------------------------------------------------------
class AutoTimerCount : public AutoTimer
{
sal_Int32 &mrCount;
public:
AutoTimerCount( sal_uLong nMS, sal_Int32 &rCount ) :
AutoTimer(), mrCount( rCount )
{
SetTimeout( nMS );
Start();
mrCount = 0;
}
virtual void Invoke() SAL_OVERRIDE
{
mrCount++;
}
};
void TimerTest::testAutoTimer()
{
const sal_Int32 nDurationMs = 30;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
sal_Int32 nCount = 0;
double dur = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
const auto start = std::chrono::high_resolution_clock::now();
nCount = 0;
AutoTimerCount aCount(nDurationMs, nCount);
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed
<< "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2))
{
// Success.
return;
}
}
#ifdef TEST_TIMERPRECISION
CPPUNIT_FAIL(msg.str().c_str());
#endif
}
void TimerTest::testMultiAutoTimers()
{
// The behavior of the timers change drastically
// when multiple timers are present.
// The worst, in my tests, is when two
// timers with 1ms period exist with a
// third of much longer period.
const sal_Int32 nDurationMsX = 5;
const sal_Int32 nDurationMsY = 10;
const sal_Int32 nDurationMs = 40;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
const double expX = (exp / nDurationMsX);
const double expY = (exp / nDurationMsY);
double dur = 0;
sal_Int32 nCountX = 0;
sal_Int32 nCountY = 0;
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
nCountX = 0;
nCountY = 0;
nCount = 0;
const auto start = std::chrono::high_resolution_clock::now();
AutoTimerCount aCountX(nDurationMsX, nCountX);
AutoTimerCount aCountY(nDurationMsY, nCountY);
AutoTimerCount aCount(nDurationMs, nCount);
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed << "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms, nCount: " << nCount
<< " (" << nEventsCount << "), nCountX: " << nCountX
<< " (" << expX << "), nCountY: " << nCountY
<< " (" << expY << ")." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2) &&
nCountX >= (expX * 0.8) && nCountX <= (expX * 1.2) &&
nCountY >= (expY * 0.8) && nCountY <= (expY * 1.2))
{
// Success.
return;
}
}
#ifdef TEST_TIMERPRECISION
CPPUNIT_FAIL(msg.str().c_str());
#endif
}
// --------------------------------------------------------------------
class YieldTimer : public Timer
{
public:
explicit YieldTimer( sal_uLong nMS ) : Timer()
{
SetTimeout( nMS );
Start();
}
virtual void Invoke() SAL_OVERRIDE
{
for (int i = 0; i < 100; i++)
Application::Yield();
}
};
void TimerTest::testRecursiveTimer()
{
sal_Int32 nCount = 0;
YieldTimer aCount(5);
AutoTimerCount aCountUp( 3, nCount );
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 20)
Application::Yield();
}
// --------------------------------------------------------------------
class SlowCallbackTimer : public Timer
{
bool &mbSlow;
public:
SlowCallbackTimer( sal_uLong nMS, bool &bBeenSlow ) :
Timer(), mbSlow( bBeenSlow )
{
SetTimeout( nMS );
Start();
mbSlow = false;
}
virtual void Invoke() SAL_OVERRIDE
{
TimeValue aWait;
aWait.Seconds = 1;
aWait.Nanosec = 0;
osl::Thread::wait( aWait );
mbSlow = true;
}
};
void TimerTest::testSlowTimerCallback()
{
bool bBeenSlow = false;
sal_Int32 nCount = 0;
AutoTimerCount aHighFreq(1, nCount);
SlowCallbackTimer aSlow(250, bBeenSlow);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bBeenSlow
while (!bBeenSlow)
Application::Yield();
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 200)
Application::Yield();
}
CPPUNIT_TEST_SUITE_REGISTRATION(TimerTest);
CPPUNIT_PLUGIN_IMPLEMENT();
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */