Files
libreoffice/vcl/qa/cppunit/timer.cxx
Noel Grandin 19a4eaab9a tdf#100337 Message boxes showup empty with white background
the bug here was that we had, on the stack, going into the scheduler
THREE times. Two of those were idles.

The original code would end up always picking the first idle from inside
    ImplSchedulerData::GetMostImportantTask
and then
    ImplSchedulerData::Invoke
would just return because we were still inside that Idle, and the second
Idle would never get executed

Since the second Idle was responsible for painting the dialog in the
bug, sometimes the dialog would never get painted.

Change-Id: Ia15b98a06e231c8e1c29450e05a76ad427e41e36
Reviewed-on: https://gerrit.libreoffice.org/31785
Reviewed-by: Michael Meeks <michael.meeks@collabora.com>
Tested-by: Jenkins <ci@libreoffice.org>
2016-12-09 13:39:27 +00:00

396 lines
10 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/*
* Timers are evil beasts across platforms...
*/
#include <test/bootstrapfixture.hxx>
#include <osl/thread.hxx>
#include <salhelper/thread.hxx>
#include <chrono>
#include <vcl/timer.hxx>
#include <vcl/idle.hxx>
#include <vcl/svapp.hxx>
#include "svdata.hxx"
#include "salinst.hxx"
// #define TEST_WATCHDOG
// Enables timer tests that appear to provoke windows under load unduly.
//#define TEST_TIMERPRECISION
/// Avoid our timer tests just wedging the build if they fail.
class WatchDog : public osl::Thread
{
sal_Int32 mnSeconds;
public:
explicit WatchDog(sal_Int32 nSeconds) :
Thread(),
mnSeconds( nSeconds )
{
create();
}
virtual void SAL_CALL run() override
{
osl::Thread::wait( std::chrono::seconds(mnSeconds) );
fprintf(stderr, "ERROR: WatchDog timer thread expired, failing the test!\n");
fflush(stderr);
CPPUNIT_ASSERT_MESSAGE("watchdog triggered", false);
}
};
static WatchDog aWatchDog( 120 ); // random high number in secs
class TimerTest : public test::BootstrapFixture
{
public:
TimerTest() : BootstrapFixture(true, false) {}
void testIdleMainloop();
void testIdle();
#ifdef TEST_WATCHDOG
void testWatchdog();
#endif
void testDurations();
#ifdef TEST_TIMERPRECISION
void testAutoTimer();
void testMultiAutoTimers();
#endif
void testRecursiveTimer();
void testSlowTimerCallback();
void testTriggerIdleFromIdle();
CPPUNIT_TEST_SUITE(TimerTest);
CPPUNIT_TEST(testIdle);
CPPUNIT_TEST(testIdleMainloop);
#ifdef TEST_WATCHDOG
CPPUNIT_TEST(testWatchdog);
#endif
CPPUNIT_TEST(testDurations);
#ifdef TEST_TIMERPRECISION
CPPUNIT_TEST(testAutoTimer);
CPPUNIT_TEST(testMultiAutoTimers);
#endif
CPPUNIT_TEST(testRecursiveTimer);
CPPUNIT_TEST(testSlowTimerCallback);
CPPUNIT_TEST(testTriggerIdleFromIdle);
CPPUNIT_TEST_SUITE_END();
};
#ifdef TEST_WATCHDOG
void TimerTest::testWatchdog()
{
// out-wait the watchdog.
osl::Thread::wait( std::chrono::seconds(12) );
}
#endif
class IdleBool : public Idle
{
bool &mrBool;
public:
explicit IdleBool( bool &rBool ) :
Idle(), mrBool( rBool )
{
SetPriority( SchedulerPriority::LOWEST );
Start();
mrBool = false;
}
virtual void Invoke() override
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testIdle()
{
bool bTriggered = false;
IdleBool aTest( bTriggered );
Scheduler::ProcessTaskScheduling(false);
CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered);
}
// tdf#91727
void TimerTest::testIdleMainloop()
{
#ifndef _WIN32
bool bTriggered = false;
IdleBool aTest( bTriggered );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while (!bTriggered)
{
ImplSVData* pSVData = ImplGetSVData();
// can't test this via Application::Yield since this
// also processes all tasks directly via the scheduler.
pSVData->maAppData.mnDispatchLevel++;
pSVData->mpDefInst->DoYield(true, false, 0);
pSVData->maAppData.mnDispatchLevel--;
}
CPPUNIT_ASSERT_MESSAGE("mainloop idle triggered", bTriggered);
#endif
}
class TimerBool : public Timer
{
bool &mrBool;
public:
TimerBool( sal_uLong nMS, bool &rBool ) :
Timer(), mrBool( rBool )
{
SetTimeout( nMS );
Start();
mrBool = false;
}
virtual void Invoke() override
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testDurations()
{
static const sal_uLong aDurations[] = { 0, 1, 500, 1000 };
for (size_t i = 0; i < SAL_N_ELEMENTS( aDurations ); i++)
{
bool bDone = false;
TimerBool aTimer( aDurations[i], bDone );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while( !bDone )
{
Application::Yield();
}
}
}
class AutoTimerCount : public AutoTimer
{
sal_Int32 &mrCount;
public:
AutoTimerCount( sal_uLong nMS, sal_Int32 &rCount ) :
AutoTimer(), mrCount( rCount )
{
SetTimeout( nMS );
Start();
mrCount = 0;
}
virtual void Invoke() override
{
mrCount++;
}
};
#ifdef TEST_TIMERPRECISION
void TimerTest::testAutoTimer()
{
const sal_Int32 nDurationMs = 30;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
const auto start = std::chrono::high_resolution_clock::now();
nCount = 0;
AutoTimerCount aCount(nDurationMs, nCount);
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
double dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed
<< "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2))
{
// Success.
return;
}
}
CPPUNIT_FAIL(msg.str().c_str());
}
void TimerTest::testMultiAutoTimers()
{
// The behavior of the timers change drastically
// when multiple timers are present.
// The worst, in my tests, is when two
// timers with 1ms period exist with a
// third of much longer period.
const sal_Int32 nDurationMsX = 5;
const sal_Int32 nDurationMsY = 10;
const sal_Int32 nDurationMs = 40;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
const double expX = (exp / nDurationMsX);
const double expY = (exp / nDurationMsY);
sal_Int32 nCountX = 0;
sal_Int32 nCountY = 0;
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
nCountX = 0;
nCountY = 0;
nCount = 0;
const auto start = std::chrono::high_resolution_clock::now();
AutoTimerCount aCountX(nDurationMsX, nCountX);
AutoTimerCount aCountY(nDurationMsY, nCountY);
AutoTimerCount aCount(nDurationMs, nCount);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle nCount
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
double dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed << "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms, nCount: " << nCount
<< " (" << nEventsCount << "), nCountX: " << nCountX
<< " (" << expX << "), nCountY: " << nCountY
<< " (" << expY << ")." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2) &&
nCountX >= (expX * 0.8) && nCountX <= (expX * 1.2) &&
nCountY >= (expY * 0.8) && nCountY <= (expY * 1.2))
{
// Success.
return;
}
}
CPPUNIT_FAIL(msg.str().c_str());
}
#endif // TEST_TIMERPRECISION
class YieldTimer : public Timer
{
public:
explicit YieldTimer( sal_uLong nMS ) : Timer()
{
SetTimeout( nMS );
Start();
}
virtual void Invoke() override
{
for (int i = 0; i < 100; i++)
Application::Yield();
}
};
void TimerTest::testRecursiveTimer()
{
sal_Int32 nCount = 0;
YieldTimer aCount(5);
AutoTimerCount aCountUp( 3, nCount );
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 20)
Application::Yield();
}
class SlowCallbackTimer : public Timer
{
bool &mbSlow;
public:
SlowCallbackTimer( sal_uLong nMS, bool &bBeenSlow ) :
Timer(), mbSlow( bBeenSlow )
{
SetTimeout( nMS );
Start();
mbSlow = false;
}
virtual void Invoke() override
{
osl::Thread::wait( std::chrono::seconds(1) );
mbSlow = true;
}
};
void TimerTest::testSlowTimerCallback()
{
bool bBeenSlow = false;
sal_Int32 nCount = 0;
AutoTimerCount aHighFreq(1, nCount);
SlowCallbackTimer aSlow(250, bBeenSlow);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bBeenSlow
while (!bBeenSlow)
Application::Yield();
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 200)
Application::Yield();
}
class TriggerIdleFromIdle : public Idle
{
bool* mpTriggered;
TriggerIdleFromIdle* mpOther;
public:
explicit TriggerIdleFromIdle( bool* pTriggered, TriggerIdleFromIdle* pOther ) :
Idle(), mpTriggered(pTriggered), mpOther(pOther)
{
}
virtual void Invoke() override
{
Start();
if (mpOther)
mpOther->Start();
Application::Yield();
if (mpTriggered)
*mpTriggered = true;
}
};
void TimerTest::testTriggerIdleFromIdle()
{
bool bTriggered1 = false;
bool bTriggered2 = false;
TriggerIdleFromIdle aTest2( &bTriggered2, nullptr );
TriggerIdleFromIdle aTest1( &bTriggered1, &aTest2 );
aTest1.Start();
Application::Yield();
CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered1);
CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered2);
}
CPPUNIT_TEST_SUITE_REGISTRATION(TimerTest);
CPPUNIT_PLUGIN_IMPLEMENT();
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */