Files
libreoffice/chart2/source/tools/PolynomialRegressionCurveCalculator.cxx
Laurent Balland-Poirier 00cb825ab3 fdo#75538 R^2 calculation for trendline similar to LINEST function
Modify for forced intercept of trendline, calculation of R^2 in the same
way as LINEST function does calculation

Change-Id: Ic943b1ca1bbe30b1a4b88e2a338eb9dc34d848b6
Reviewed-on: https://gerrit.libreoffice.org/8402
Reviewed-by: Tomaž Vajngerl <quikee@gmail.com>
Tested-by: Tomaž Vajngerl <quikee@gmail.com>
2014-03-03 11:15:05 -06:00

280 lines
8.2 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "PolynomialRegressionCurveCalculator.hxx"
#include "macros.hxx"
#include "RegressionCalculationHelper.hxx"
#include <cmath>
#include <rtl/math.hxx>
#include <rtl/ustrbuf.hxx>
using namespace com::sun::star;
namespace chart
{
PolynomialRegressionCurveCalculator::PolynomialRegressionCurveCalculator()
{}
PolynomialRegressionCurveCalculator::~PolynomialRegressionCurveCalculator()
{}
// ____ XRegressionCurveCalculator ____
void SAL_CALL PolynomialRegressionCurveCalculator::recalculateRegression(
const uno::Sequence< double >& aXValues,
const uno::Sequence< double >& aYValues )
throw (uno::RuntimeException, std::exception)
{
rtl::math::setNan(&m_fCorrelationCoeffitient);
RegressionCalculationHelper::tDoubleVectorPair aValues(
RegressionCalculationHelper::cleanup( aXValues, aYValues, RegressionCalculationHelper::isValid()));
const sal_Int32 aNoValues = aValues.first.size();
const sal_Int32 aNoPowers = mForceIntercept ? mDegree : mDegree + 1;
mCoefficients.clear();
mCoefficients.resize(aNoPowers, 0.0);
double yAverage = 0.0;
std::vector<double> aQRTransposed;
aQRTransposed.resize(aNoValues * aNoPowers, 0.0);
std::vector<double> yVector;
yVector.resize(aNoValues, 0.0);
for(sal_Int32 i = 0; i < aNoValues; i++)
{
double yValue = aValues.second[i];
if (mForceIntercept)
yValue -= mInterceptValue;
yVector[i] = yValue;
yAverage += yValue;
}
yAverage /= aNoValues;
for(sal_Int32 j = 0; j < aNoPowers; j++)
{
sal_Int32 aPower = mForceIntercept ? j+1 : j;
sal_Int32 aColumnIndex = j * aNoValues;
for(sal_Int32 i = 0; i < aNoValues; i++)
{
double xValue = aValues.first[i];
aQRTransposed[i + aColumnIndex] = std::pow(xValue, (int) aPower);
}
}
// QR decomposition - based on org.apache.commons.math.linear.QRDecomposition from apache commons math (ASF)
sal_Int32 aMinorSize = std::min(aNoValues, aNoPowers);
std::vector<double> aDiagonal;
aDiagonal.resize(aMinorSize, 0.0);
// Calculate Householder reflectors
for (sal_Int32 aMinor = 0; aMinor < aMinorSize; aMinor++)
{
double aNormSqr = 0.0;
for (sal_Int32 x = aMinor; x < aNoValues; x++)
{
double c = aQRTransposed[x + aMinor * aNoValues];
aNormSqr += c * c;
}
double a;
if (aQRTransposed[aMinor + aMinor * aNoValues] > 0.0)
a = -std::sqrt(aNormSqr);
else
a = std::sqrt(aNormSqr);
aDiagonal[aMinor] = a;
if (a != 0.0)
{
aQRTransposed[aMinor + aMinor * aNoValues] -= a;
for (sal_Int32 aColumn = aMinor + 1; aColumn < aNoPowers; aColumn++)
{
double alpha = 0.0;
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
alpha -= aQRTransposed[aRow + aColumn * aNoValues] * aQRTransposed[aRow + aMinor * aNoValues];
}
alpha /= a * aQRTransposed[aMinor + aMinor * aNoValues];
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
aQRTransposed[aRow + aColumn * aNoValues] -= alpha * aQRTransposed[aRow + aMinor * aNoValues];
}
}
}
}
// Solve the linear equation
for (sal_Int32 aMinor = 0; aMinor < aMinorSize; aMinor++)
{
double aDotProduct = 0;
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
aDotProduct += yVector[aRow] * aQRTransposed[aRow + aMinor * aNoValues];
}
aDotProduct /= aDiagonal[aMinor] * aQRTransposed[aMinor + aMinor * aNoValues];
for (sal_Int32 aRow = aMinor; aRow < aNoValues; aRow++)
{
yVector[aRow] += aDotProduct * aQRTransposed[aRow + aMinor * aNoValues];
}
}
for (sal_Int32 aRow = aDiagonal.size() - 1; aRow >= 0; aRow--)
{
yVector[aRow] /= aDiagonal[aRow];
double yRow = yVector[aRow];
mCoefficients[aRow] = yRow;
for (sal_Int32 i = 0; i < aRow; i++)
{
yVector[i] -= yRow * aQRTransposed[i + aRow * aNoValues];
}
}
if(mForceIntercept)
{
mCoefficients.insert(mCoefficients.begin(), mInterceptValue);
}
// Calculate correlation coeffitient
double aSumError = 0.0;
double aSumTotal = 0.0;
double aSumYpred2 = 0.0;
for( sal_Int32 i = 0; i < aNoValues; i++ )
{
double xValue = aValues.first[i];
double yActual = aValues.second[i];
double yPredicted = getCurveValue( xValue );
aSumTotal += (yActual - yAverage) * (yActual - yAverage);
aSumError += (yActual - yPredicted) * (yActual - yPredicted);
if(mForceIntercept)
aSumYpred2 += (yPredicted - mInterceptValue) * (yPredicted - mInterceptValue);
}
double aRSquared = 0.0;
if(mForceIntercept)
{
aRSquared = aSumYpred2 / (aSumError + aSumYpred2);
}
else
{
aRSquared = 1.0 - (aSumError / aSumTotal);
}
if (aRSquared > 0.0)
m_fCorrelationCoeffitient = std::sqrt(aRSquared);
else
m_fCorrelationCoeffitient = 0.0;
}
double SAL_CALL PolynomialRegressionCurveCalculator::getCurveValue( double x )
throw (lang::IllegalArgumentException,
uno::RuntimeException, std::exception)
{
double fResult;
rtl::math::setNan(&fResult);
if (mCoefficients.empty())
{
return fResult;
}
sal_Int32 aNoCoefficients = (sal_Int32) mCoefficients.size();
// Horner's method
fResult = 0.0;
for (sal_Int32 i = aNoCoefficients - 1; i >= 0; i--)
{
fResult = mCoefficients[i] + (x * fResult);
}
return fResult;
}
uno::Sequence< geometry::RealPoint2D > SAL_CALL PolynomialRegressionCurveCalculator::getCurveValues(
double min, double max, sal_Int32 nPointCount,
const uno::Reference< chart2::XScaling >& xScalingX,
const uno::Reference< chart2::XScaling >& xScalingY,
sal_Bool bMaySkipPointsInCalculation )
throw (lang::IllegalArgumentException,
uno::RuntimeException, std::exception)
{
return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
}
OUString PolynomialRegressionCurveCalculator::ImplGetRepresentation(
const uno::Reference< util::XNumberFormatter >& xNumFormatter,
sal_Int32 nNumberFormatKey ) const
{
OUStringBuffer aBuf( "f(x) = ");
sal_Int32 aLastIndex = mCoefficients.size() - 1;
for (sal_Int32 i = aLastIndex; i >= 0; i--)
{
double aValue = mCoefficients[i];
if (aValue == 0.0)
{
continue;
}
else if (aValue < 0.0)
{
aBuf.appendAscii( " - " );
}
else
{
if (i != aLastIndex)
aBuf.appendAscii( " + " );
}
aBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, std::abs( aValue ) ) );
if(i > 0)
{
if (i == 1)
{
aBuf.appendAscii( "x" );
}
else
{
aBuf.appendAscii( "x^" );
aBuf.append(i);
}
}
}
return aBuf.makeStringAndClear();
}
} // namespace chart
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */