Files
libreoffice/bridges/source/cpp_uno/gcc3_ios_arm/uno2cpp.cxx
Tor Lillqvist 9540af1ece Start of C++/UNO bridge for iOS simulator and device
Unlikely to work yet, but at least builds for the simulator.

We can not use dynamic code generation on iOS, so we use a fixed set
of code snippets, genertated by a Perl script. Experimentation seems
to indicate that a relatively small set of static code snippets should
be enough in simple use cases with no extensions (that we can't really
support on iOS anyway) and stuff.

Except for the static set of snippets the code mostly is, or will be,
an ifdefified combination of the gcc3_linux_arm and gcc3_macosx_intel
code. The ABI on iOS ARM devices should be quite close to that on
Linux ARM, knock on wood.
2011-08-14 00:51:32 +03:00

501 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_bridges.hxx"
#include <stdio.h>
#include <com/sun/star/uno/genfunc.hxx>
#include "com/sun/star/uno/RuntimeException.hpp"
#include <uno/data.h>
#include "bridges/cpp_uno/shared/bridge.hxx"
#include "bridges/cpp_uno/shared/types.hxx"
#include "bridges/cpp_uno/shared/unointerfaceproxy.hxx"
#include "bridges/cpp_uno/shared/vtables.hxx"
#include "share.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace
{
//==================================================================================================
// The call instruction within the asm section of callVirtualMethod may throw
// exceptions. So that the compiler handles this correctly, it is important
// that (a) callVirtualMethod might call dummy_can_throw_anything (although this
// never happens at runtime), which in turn can throw exceptions, and (b)
// callVirtualMethod is not inlined at its call site (so that any exceptions are
// caught which are thrown from the instruction calling callVirtualMethod):
void callVirtualMethod(
void * pAdjustedThisPtr,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn,
sal_Int32 * pStackLongs,
sal_Int32 nStackLongs ) __attribute__((noinline));
void callVirtualMethod(
void * pAdjustedThisPtr,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescription * pReturnTypeDescr, bool bSimpleReturn,
sal_Int32 * pStackLongs,
sal_Int32 nStackLongs )
{
// parameter list is mixed list of * and values
// reference parameters are pointers
OSL_ENSURE( pStackLongs && pAdjustedThisPtr, "### null ptr!" );
OSL_ENSURE( (sizeof(void *) == 4) && (sizeof(sal_Int32) == 4), "### unexpected size of int!" );
OSL_ENSURE( nStackLongs && pStackLongs, "### no stack in callVirtualMethod !" );
// never called
if (! pAdjustedThisPtr) CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something
#ifdef __arm
#else
volatile long edx = 0, eax = 0; // for register returns
void * stackptr;
asm volatile (
"mov %%esp, %6\n\t"
"mov %0, %%eax\n\t"
"mov %%eax, %%edx\n\t"
// stack padding to keep stack aligned:
"shl $2, %%eax\n\t"
"neg %%eax\n\t"
"add %%esp, %%eax\n\t"
"and $0xf, %%eax\n\t"
"sub %%eax, %%esp\n\t"
// copy:
"mov %%edx, %%eax\n\t"
"dec %%edx\n\t"
"shl $2, %%edx\n\t"
"add %1, %%edx\n"
"Lcopy:\n\t"
"pushl 0(%%edx)\n\t"
"sub $4, %%edx\n\t"
"dec %%eax\n\t"
"jne Lcopy\n\t"
// do the actual call
"mov %2, %%edx\n\t"
"mov 0(%%edx), %%edx\n\t"
"mov %3, %%eax\n\t"
"shl $2, %%eax\n\t"
"add %%eax, %%edx\n\t"
"mov 0(%%edx), %%edx\n\t"
"call *%%edx\n\t"
// save return registers
"mov %%eax, %4\n\t"
"mov %%edx, %5\n\t"
// cleanup stack
"mov %6, %%esp\n\t"
:
: "m"(nStackLongs), "m"(pStackLongs), "m"(pAdjustedThisPtr),
"m"(nVtableIndex), "m"(eax), "m"(edx), "m"(stackptr)
: "eax", "edx" );
switch( pReturnTypeDescr->eTypeClass )
{
case typelib_TypeClass_VOID:
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
((long*)pRegisterReturn)[1] = edx;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_ENUM:
((long*)pRegisterReturn)[0] = eax;
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*(unsigned short*)pRegisterReturn = eax;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*(unsigned char*)pRegisterReturn = eax;
break;
case typelib_TypeClass_FLOAT:
asm ( "fstps %0" : : "m"(*(char *)pRegisterReturn) );
break;
case typelib_TypeClass_DOUBLE:
asm ( "fstpl %0\n\t" : : "m"(*(char *)pRegisterReturn) );
break;
default: {
sal_Int32 const nRetSize = pReturnTypeDescr->nSize;
if (bSimpleReturn && nRetSize <= 8 && nRetSize > 0) {
if (nRetSize > 4)
static_cast<long *>(pRegisterReturn)[1] = edx;
static_cast<long *>(pRegisterReturn)[0] = eax;
}
break;
}
}
#endif
}
//==================================================================================================
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
char * pCppStack =
(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
char * pCppStackStart = pCppStack;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bSimpleReturn = true;
if (pReturnTypeDescr)
{
bSimpleReturn = CPPU_CURRENT_NAMESPACE::isSimpleReturnType(
pReturnTypeDescr);
if (bSimpleReturn)
{
pCppReturn = pUnoReturn; // direct way for simple types
}
else
{
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType(
pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
// complex return via ptr
*(void **)pCppStack = pCppReturn;
pCppStack += sizeof(void *);
}
}
// push this
void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI())
+ aVtableSlot.offset;
*(void**)pCppStack = pAdjustedThisPtr;
pCppStack += sizeof( void* );
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut
&& bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_DOUBLE:
pCppStack += sizeof(sal_Int32); // extra long
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType(
pParamTypeDescr ))
{
uno_copyAndConvertData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
pCppStack += sizeof(sal_Int32); // standard parameter length
}
try
{
OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr, bSimpleReturn,
(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
#if OSL_DEBUG_LEVEL > 1
fprintf( stderr, "caught C++ exception\n" );
#endif
// fill uno exception
fillUnoException( CPPU_CURRENT_NAMESPACE::__cxa_get_globals()->caughtExceptions, *ppUnoExc, pThis->getBridge()->getCpp2Uno() );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace CPPU_CURRENT_NAMESPACE {
bool isSimpleReturnType(typelib_TypeDescription * pTD, bool recursive)
{
if (bridges::cpp_uno::shared::isSimpleType( pTD ))
return true;
// Only structs of exactly 1, 2, 4, or 8 bytes are returned through
// registers, see <http://developer.apple.com/documentation/DeveloperTools/
// Conceptual/LowLevelABI/Articles/IA32.html>:
if (pTD->eTypeClass == typelib_TypeClass_STRUCT &&
(recursive || pTD->nSize <= 2 || pTD->nSize == 4 || pTD->nSize == 8))
{
typelib_CompoundTypeDescription *const pCompTD =
(typelib_CompoundTypeDescription *) pTD;
for ( sal_Int32 pos = pCompTD->nMembers; pos--; ) {
typelib_TypeDescription * pMemberTD = 0;
TYPELIB_DANGER_GET( &pMemberTD, pCompTD->ppTypeRefs[pos] );
bool const b = isSimpleReturnType(pMemberTD, true);
TYPELIB_DANGER_RELEASE( pMemberTD );
if (! b)
return false;
}
return true;
}
return false;
}
}
//==================================================================================================
namespace bridges { namespace cpp_uno { namespace shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; // get, then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
} } }
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */