Files
libreoffice/vcl/qa/cppunit/timer.cxx
Jan-Marek Glogowski 3f7e8ddea8 Enable many more unit tests on all archs
This depends on commit "Make font-based unit test depend on instdir
fonts, not that it's sure that this really fixes the problem, as its
origin is really unknown.

It especially enables all the font-based tests I could find on all
archs. Same for many more test where I couldn't see any reason they
don't work generally. To get rid of even more ifdefs, it moves these
from the class to the functions, so there is actually just one needed
for any test. As a result some few tests run but do nothing.

There is still some problem with embedded fonts on MacOS and with
delayed graphics loading on Windows, so these ifdefs are kept.

Change-Id: I63f8424e9debda6cbf3e5777c93245e09f8eb0f2
Reviewed-on: https://gerrit.libreoffice.org/74719
Tested-by: Jenkins
Reviewed-by: Jan-Marek Glogowski <glogow@fbihome.de>
2019-07-05 20:05:59 +02:00

535 lines
14 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
/*
* Timers are evil beasts across platforms...
*/
#include <test/bootstrapfixture.hxx>
#include <osl/thread.hxx>
#include <chrono>
#include <vcl/timer.hxx>
#include <vcl/idle.hxx>
#include <vcl/svapp.hxx>
#include <vcl/scheduler.hxx>
#include <svdata.hxx>
#include <salinst.hxx>
// #define TEST_WATCHDOG
// Enables timer tests that appear to provoke windows under load unduly.
//#define TEST_TIMERPRECISION
/// Avoid our timer tests just wedging the build if they fail.
class WatchDog : public osl::Thread
{
sal_Int32 const mnSeconds;
public:
explicit WatchDog(sal_Int32 nSeconds) :
Thread(),
mnSeconds( nSeconds )
{
create();
}
virtual void SAL_CALL run() override
{
osl::Thread::wait( std::chrono::seconds(mnSeconds) );
fprintf(stderr, "ERROR: WatchDog timer thread expired, failing the test!\n");
fflush(stderr);
CPPUNIT_ASSERT_MESSAGE("watchdog triggered", false);
}
};
static WatchDog * aWatchDog = new WatchDog( 120 ); // random high number in secs
class TimerTest : public test::BootstrapFixture
{
public:
TimerTest() : BootstrapFixture(true, false) {}
void testIdle();
void testIdleMainloop();
#ifdef TEST_WATCHDOG
void testWatchdog();
#endif
void testDurations();
#ifdef TEST_TIMERPRECISION
void testAutoTimer();
void testMultiAutoTimers();
#endif
void testAutoTimerStop();
void testNestedTimer();
void testSlowTimerCallback();
void testTriggerIdleFromIdle();
void testInvokedReStart();
void testPriority();
void testRoundRobin();
CPPUNIT_TEST_SUITE(TimerTest);
CPPUNIT_TEST(testIdle);
CPPUNIT_TEST(testIdleMainloop);
#ifdef TEST_WATCHDOG
CPPUNIT_TEST(testWatchdog);
#endif
CPPUNIT_TEST(testDurations);
#ifdef TEST_TIMERPRECISION
CPPUNIT_TEST(testAutoTimer);
CPPUNIT_TEST(testMultiAutoTimers);
#endif
CPPUNIT_TEST(testAutoTimerStop);
CPPUNIT_TEST(testNestedTimer);
CPPUNIT_TEST(testSlowTimerCallback);
CPPUNIT_TEST(testTriggerIdleFromIdle);
CPPUNIT_TEST(testInvokedReStart);
CPPUNIT_TEST(testPriority);
CPPUNIT_TEST(testRoundRobin);
CPPUNIT_TEST_SUITE_END();
};
#ifdef TEST_WATCHDOG
void TimerTest::testWatchdog()
{
// out-wait the watchdog.
osl::Thread::wait( std::chrono::seconds(12) );
}
#endif
class IdleBool : public Idle
{
bool &mrBool;
public:
explicit IdleBool( bool &rBool ) :
Idle( "IdleBool" ), mrBool( rBool )
{
SetPriority( TaskPriority::LOWEST );
Start();
mrBool = false;
}
virtual void Invoke() override
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testIdle()
{
bool bTriggered = false;
IdleBool aTest( bTriggered );
Scheduler::ProcessEventsToIdle();
CPPUNIT_ASSERT_MESSAGE("idle triggered", bTriggered);
}
void TimerTest::testIdleMainloop()
{
bool bTriggered = false;
IdleBool aTest( bTriggered );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while (!bTriggered)
{
ImplSVData* pSVData = ImplGetSVData();
// can't test this via Application::Yield since this
// also processes all tasks directly via the scheduler.
pSVData->maAppData.mnDispatchLevel++;
pSVData->mpDefInst->DoYield(true, false);
pSVData->maAppData.mnDispatchLevel--;
}
CPPUNIT_ASSERT_MESSAGE("mainloop idle triggered", bTriggered);
}
class TimerBool : public Timer
{
bool &mrBool;
public:
TimerBool( sal_uLong nMS, bool &rBool ) :
Timer( "TimerBool" ), mrBool( rBool )
{
SetTimeout( nMS );
Start();
mrBool = false;
}
virtual void Invoke() override
{
mrBool = true;
Application::EndYield();
}
};
void TimerTest::testDurations()
{
static const sal_uLong aDurations[] = { 0, 1, 500, 1000 };
for (size_t i = 0; i < SAL_N_ELEMENTS( aDurations ); i++)
{
bool bDone = false;
TimerBool aTimer( aDurations[i], bDone );
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bDone
while( !bDone )
{
Application::Yield();
}
}
}
class AutoTimerCount : public AutoTimer
{
sal_Int32 &mrCount;
const sal_Int32 mnMaxCount;
public:
AutoTimerCount( sal_uLong nMS, sal_Int32 &rCount,
const sal_Int32 nMaxCount = -1 )
: AutoTimer( "AutoTimerCount" )
, mrCount( rCount )
, mnMaxCount( nMaxCount )
{
SetTimeout( nMS );
Start();
mrCount = 0;
}
virtual void Invoke() override
{
++mrCount;
CPPUNIT_ASSERT( mnMaxCount < 0 || mrCount <= mnMaxCount );
if ( mrCount == mnMaxCount )
Stop();
}
};
#ifdef TEST_TIMERPRECISION
void TimerTest::testAutoTimer()
{
const sal_Int32 nDurationMs = 30;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
const auto start = std::chrono::high_resolution_clock::now();
nCount = 0;
AutoTimerCount aCount(nDurationMs, nCount);
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
double dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed
<< "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2))
{
// Success.
return;
}
}
CPPUNIT_FAIL(msg.str().c_str());
}
void TimerTest::testMultiAutoTimers()
{
// The behavior of the timers change drastically
// when multiple timers are present.
// The worst, in my tests, is when two
// timers with 1ms period exist with a
// third of much longer period.
const sal_Int32 nDurationMsX = 5;
const sal_Int32 nDurationMsY = 10;
const sal_Int32 nDurationMs = 40;
const sal_Int32 nEventsCount = 5;
const double exp = (nDurationMs * nEventsCount);
const double expX = (exp / nDurationMsX);
const double expY = (exp / nDurationMsY);
sal_Int32 nCountX = 0;
sal_Int32 nCountY = 0;
sal_Int32 nCount = 0;
std::ostringstream msg;
// Repeat when we have random latencies.
// This is expected on non-realtime OSes.
for (int i = 0; i < 10; ++i)
{
nCountX = 0;
nCountY = 0;
nCount = 0;
const auto start = std::chrono::high_resolution_clock::now();
AutoTimerCount aCountX(nDurationMsX, nCountX);
AutoTimerCount aCountY(nDurationMsY, nCountY);
AutoTimerCount aCount(nDurationMs, nCount);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle nCount
while (nCount < nEventsCount) {
Application::Yield();
}
const auto end = std::chrono::high_resolution_clock::now();
double dur = std::chrono::duration<double, std::milli>(end - start).count();
msg << std::setprecision(2) << std::fixed << "periodic multi-timer - dur: "
<< dur << " (" << exp << ") ms, nCount: " << nCount
<< " (" << nEventsCount << "), nCountX: " << nCountX
<< " (" << expX << "), nCountY: " << nCountY
<< " (" << expY << ")." << std::endl;
// +/- 20% should be reasonable enough a margin.
if (dur >= (exp * 0.8) && dur <= (exp * 1.2) &&
nCountX >= (expX * 0.8) && nCountX <= (expX * 1.2) &&
nCountY >= (expY * 0.8) && nCountY <= (expY * 1.2))
{
// Success.
return;
}
}
CPPUNIT_FAIL(msg.str().c_str());
}
#endif // TEST_TIMERPRECISION
void TimerTest::testAutoTimerStop()
{
sal_Int32 nTimerCount = 0;
const sal_Int32 nMaxCount = 5;
AutoTimerCount aAutoTimer( 0, nTimerCount, nMaxCount );
// coverity[loop_top] - Application::Yield allows the timer to fire and increment TimerCount
while (nMaxCount != nTimerCount)
Application::Yield();
CPPUNIT_ASSERT( !aAutoTimer.IsActive() );
CPPUNIT_ASSERT( !Application::Reschedule() );
}
class YieldTimer : public Timer
{
public:
explicit YieldTimer( sal_uLong nMS ) : Timer( "YieldTimer" )
{
SetTimeout( nMS );
Start();
}
virtual void Invoke() override
{
for (int i = 0; i < 100; i++)
Application::Yield();
}
};
void TimerTest::testNestedTimer()
{
sal_Int32 nCount = 0;
YieldTimer aCount(5);
AutoTimerCount aCountUp( 3, nCount );
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 20)
Application::Yield();
}
class SlowCallbackTimer : public Timer
{
bool &mbSlow;
public:
SlowCallbackTimer( sal_uLong nMS, bool &bBeenSlow ) :
Timer( "SlowCallbackTimer" ), mbSlow( bBeenSlow )
{
SetTimeout( nMS );
Start();
mbSlow = false;
}
virtual void Invoke() override
{
osl::Thread::wait( std::chrono::seconds(1) );
mbSlow = true;
}
};
void TimerTest::testSlowTimerCallback()
{
bool bBeenSlow = false;
sal_Int32 nCount = 0;
AutoTimerCount aHighFreq(1, nCount);
SlowCallbackTimer aSlow(250, bBeenSlow);
// coverity[loop_top] - Application::Yield allows the timer to fire and toggle bBeenSlow
while (!bBeenSlow)
Application::Yield();
// coverity[loop_top] - Application::Yield allows the timer to fire and increment nCount
while (nCount < 200)
Application::Yield();
}
class TriggerIdleFromIdle : public Idle
{
bool* mpTriggered;
TriggerIdleFromIdle* mpOther;
public:
explicit TriggerIdleFromIdle( bool* pTriggered, TriggerIdleFromIdle* pOther ) :
Idle( "TriggerIdleFromIdle" ), mpTriggered(pTriggered), mpOther(pOther)
{
}
virtual void Invoke() override
{
Start();
if (mpOther)
mpOther->Start();
Application::Yield();
if (mpTriggered)
*mpTriggered = true;
}
};
void TimerTest::testTriggerIdleFromIdle()
{
bool bTriggered1 = false;
bool bTriggered2 = false;
TriggerIdleFromIdle aTest2( &bTriggered2, nullptr );
TriggerIdleFromIdle aTest1( &bTriggered1, &aTest2 );
aTest1.Start();
Application::Yield();
CPPUNIT_ASSERT_MESSAGE("idle not triggered", bTriggered1);
CPPUNIT_ASSERT_MESSAGE("idle not triggered", bTriggered2);
}
class IdleInvokedReStart : public Idle
{
sal_Int32 &mrCount;
public:
IdleInvokedReStart( sal_Int32 &rCount )
: Idle( "IdleInvokedReStart" ), mrCount( rCount )
{
Start();
}
virtual void Invoke() override
{
mrCount++;
if ( mrCount < 2 )
Start();
}
};
void TimerTest::testInvokedReStart()
{
sal_Int32 nCount = 0;
IdleInvokedReStart aIdle( nCount );
Scheduler::ProcessEventsToIdle();
CPPUNIT_ASSERT_EQUAL( sal_Int32(2), nCount );
}
class IdleSerializer : public Idle
{
sal_uInt32 const mnPosition;
sal_uInt32 &mrProcesed;
public:
IdleSerializer(const sal_Char *pDebugName, TaskPriority ePrio,
sal_uInt32 nPosition, sal_uInt32 &rProcesed)
: Idle( pDebugName )
, mnPosition( nPosition )
, mrProcesed( rProcesed )
{
SetPriority(ePrio);
Start();
}
virtual void Invoke() override
{
++mrProcesed;
CPPUNIT_ASSERT_EQUAL_MESSAGE( "Ignored prio", mnPosition, mrProcesed );
}
};
void TimerTest::testPriority()
{
// scope, so tasks are deleted
{
// Start: 1st Idle low, 2nd high
sal_uInt32 nProcessed = 0;
IdleSerializer aLowPrioIdle("IdleSerializer LowPrio",
TaskPriority::LOWEST, 2, nProcessed);
IdleSerializer aHighPrioIdle("IdleSerializer HighPrio",
TaskPriority::HIGHEST, 1, nProcessed);
Scheduler::ProcessEventsToIdle();
CPPUNIT_ASSERT_EQUAL_MESSAGE( "Not all idles processed", sal_uInt32(2), nProcessed );
}
{
// Start: 1st Idle high, 2nd low
sal_uInt32 nProcessed = 0;
IdleSerializer aHighPrioIdle("IdleSerializer HighPrio",
TaskPriority::HIGHEST, 1, nProcessed);
IdleSerializer aLowPrioIdle("IdleSerializer LowPrio",
TaskPriority::LOWEST, 2, nProcessed);
Scheduler::ProcessEventsToIdle();
CPPUNIT_ASSERT_EQUAL_MESSAGE( "Not all idles processed", sal_uInt32(2), nProcessed );
}
}
class TestAutoIdleRR : public AutoIdle
{
sal_uInt32 &mrCount;
DECL_LINK( IdleRRHdl, Timer *, void );
public:
TestAutoIdleRR( sal_uInt32 &rCount,
const sal_Char *pDebugName )
: AutoIdle( pDebugName )
, mrCount( rCount )
{
CPPUNIT_ASSERT_EQUAL( sal_uInt32(0), mrCount );
SetInvokeHandler( LINK( this, TestAutoIdleRR, IdleRRHdl ) );
Start();
}
};
IMPL_LINK_NOARG(TestAutoIdleRR, IdleRRHdl, Timer *, void)
{
++mrCount;
if ( mrCount == 3 )
Stop();
}
void TimerTest::testRoundRobin()
{
sal_uInt32 nCount1 = 0, nCount2 = 0;
TestAutoIdleRR aIdle1( nCount1, "TestAutoIdleRR aIdle1" ),
aIdle2( nCount2, "TestAutoIdleRR aIdle2" );
while ( Application::Reschedule() )
{
CPPUNIT_ASSERT( nCount1 == nCount2 || nCount1 - 1 == nCount2 );
CPPUNIT_ASSERT( nCount1 <= 3 );
CPPUNIT_ASSERT( nCount2 <= 3 );
}
CPPUNIT_ASSERT( 3 == nCount1 && 3 == nCount2 );
}
CPPUNIT_TEST_SUITE_REGISTRATION(TimerTest);
CPPUNIT_PLUGIN_IMPLEMENT();
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */