549 lines
15 KiB
C++
549 lines
15 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <tools/fract.hxx>
|
|
#include <tools/debug.hxx>
|
|
#include <tools/lineend.hxx>
|
|
#include <tools/stream.hxx>
|
|
#include <o3tl/safeint.hxx>
|
|
#include <rtl/ustring.hxx>
|
|
#include <sal/log.hxx>
|
|
#include <osl/diagnose.h>
|
|
|
|
#include <limits.h>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include <boost/math/common_factor_rt.hpp>
|
|
#include <boost/rational.hpp>
|
|
|
|
static boost::rational<sal_Int32> rational_FromDouble(double dVal);
|
|
|
|
static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits);
|
|
|
|
struct Fraction::Impl
|
|
{
|
|
bool valid;
|
|
boost::rational<sal_Int32> value;
|
|
|
|
Impl()
|
|
: valid(false)
|
|
{
|
|
}
|
|
Impl(const Impl&) = delete;
|
|
Impl& operator=(const Impl&) = delete;
|
|
};
|
|
|
|
Fraction::Fraction() : mpImpl(new Impl)
|
|
{
|
|
mpImpl->valid = true;
|
|
}
|
|
|
|
Fraction::Fraction( const Fraction& rFrac ) : mpImpl(new Impl)
|
|
{
|
|
mpImpl->valid = rFrac.mpImpl->valid;
|
|
if (mpImpl->valid)
|
|
mpImpl->value.assign( rFrac.mpImpl->value.numerator(), rFrac.mpImpl->value.denominator() );
|
|
}
|
|
|
|
Fraction::Fraction( Fraction&& rFrac ) : mpImpl(std::move(rFrac.mpImpl))
|
|
{
|
|
}
|
|
|
|
// Initialized by setting nNum as nominator and nDen as denominator
|
|
// Negative values in the denominator are invalid and cause the
|
|
// inversion of both nominator and denominator signs
|
|
// in order to return the correct value.
|
|
Fraction::Fraction( sal_Int64 nNum, sal_Int64 nDen ) : mpImpl(new Impl)
|
|
{
|
|
assert( nNum >= std::numeric_limits<sal_Int32>::min() );
|
|
assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
|
|
assert( nDen >= std::numeric_limits<sal_Int32>::min() );
|
|
assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
|
|
if ( nDen == 0 )
|
|
{
|
|
mpImpl->valid = false;
|
|
SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
|
|
return;
|
|
}
|
|
mpImpl->value.assign( nNum, nDen);
|
|
mpImpl->valid = true;
|
|
}
|
|
|
|
Fraction::Fraction( double dVal ) : mpImpl(new Impl)
|
|
{
|
|
try
|
|
{
|
|
mpImpl->value = rational_FromDouble( dVal );
|
|
if ( HasOverflowValue() )
|
|
throw boost::bad_rational();
|
|
mpImpl->valid = true;
|
|
}
|
|
catch (const boost::bad_rational&)
|
|
{
|
|
mpImpl->valid = false;
|
|
SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" );
|
|
}
|
|
}
|
|
|
|
Fraction::~Fraction()
|
|
{
|
|
}
|
|
|
|
bool Fraction::HasOverflowValue()
|
|
{
|
|
//coverity[result_independent_of_operands]
|
|
return mpImpl->value.numerator() < std::numeric_limits<sal_Int32>::min() ||
|
|
mpImpl->value.numerator() > std::numeric_limits<sal_Int32>::max() ||
|
|
mpImpl->value.denominator() < std::numeric_limits<sal_Int32>::min() ||
|
|
mpImpl->value.denominator() > std::numeric_limits<sal_Int32>::max();
|
|
}
|
|
|
|
Fraction::operator double() const
|
|
{
|
|
if (!mpImpl->valid)
|
|
{
|
|
SAL_WARN( "tools.fraction", "'double()' on invalid fraction" );
|
|
return 0.0;
|
|
}
|
|
|
|
return boost::rational_cast<double>(mpImpl->value);
|
|
}
|
|
|
|
// This methods first validates both values.
|
|
// If one of the arguments is invalid, the whole operation is invalid.
|
|
// After computation detect if result overflows a sal_Int32 value
|
|
// which cause the operation to be marked as invalid
|
|
Fraction& Fraction::operator += ( const Fraction& rVal )
|
|
{
|
|
if ( !rVal.mpImpl->valid )
|
|
mpImpl->valid = false;
|
|
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" );
|
|
return *this;
|
|
}
|
|
|
|
mpImpl->value += rVal.mpImpl->value;
|
|
|
|
if ( HasOverflowValue() )
|
|
{
|
|
mpImpl->valid = false;
|
|
SAL_WARN( "tools.fraction", "'operator +=' detected overflow" );
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
Fraction& Fraction::operator -= ( const Fraction& rVal )
|
|
{
|
|
if ( !rVal.mpImpl->valid )
|
|
mpImpl->valid = false;
|
|
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" );
|
|
return *this;
|
|
}
|
|
|
|
mpImpl->value -= rVal.mpImpl->value;
|
|
|
|
if ( HasOverflowValue() )
|
|
{
|
|
mpImpl->valid = false;
|
|
SAL_WARN( "tools.fraction", "'operator -=' detected overflow" );
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template<typename T> bool checked_multiply_by(boost::rational<T>& i, const boost::rational<T>& r)
|
|
{
|
|
// Protect against self-modification
|
|
T num = r.numerator();
|
|
T den = r.denominator();
|
|
|
|
// Avoid overflow and preserve normalization
|
|
T gcd1 = boost::math::gcd(i.numerator(), den);
|
|
T gcd2 = boost::math::gcd(num, i.denominator());
|
|
|
|
bool fail = false;
|
|
fail |= o3tl::checked_multiply(i.numerator() / gcd1, num / gcd2, num);
|
|
fail |= o3tl::checked_multiply(i.denominator() / gcd2, den / gcd1, den);
|
|
i.assign(num, den);
|
|
|
|
return fail;
|
|
}
|
|
}
|
|
|
|
Fraction& Fraction::operator *= ( const Fraction& rVal )
|
|
{
|
|
if ( !rVal.mpImpl->valid )
|
|
mpImpl->valid = false;
|
|
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" );
|
|
return *this;
|
|
}
|
|
|
|
bool bFail = checked_multiply_by(mpImpl->value, rVal.mpImpl->value);
|
|
|
|
if (bFail || HasOverflowValue())
|
|
{
|
|
mpImpl->valid = false;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
Fraction& Fraction::operator /= ( const Fraction& rVal )
|
|
{
|
|
if ( !rVal.mpImpl->valid )
|
|
mpImpl->valid = false;
|
|
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" );
|
|
return *this;
|
|
}
|
|
|
|
mpImpl->value /= rVal.mpImpl->value;
|
|
|
|
if ( HasOverflowValue() )
|
|
{
|
|
mpImpl->valid = false;
|
|
SAL_WARN( "tools.fraction", "'operator /=' detected overflow" );
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/** Inaccurate cancellation for a fraction.
|
|
|
|
Clip both nominator and denominator to said number of bits. If
|
|
either of those already have equal or less number of bits used,
|
|
this method does nothing.
|
|
|
|
@param nSignificantBits denotes, how many significant binary
|
|
digits to maintain, in both nominator and denominator.
|
|
|
|
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
|
|
largest error occurs with the following pair of values:
|
|
|
|
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
|
|
= 1082130431/1073741824
|
|
= approx. 1.007812499
|
|
|
|
A ReduceInaccurate(8) yields 1/1.
|
|
*/
|
|
void Fraction::ReduceInaccurate( unsigned nSignificantBits )
|
|
{
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" );
|
|
return;
|
|
}
|
|
|
|
if ( !mpImpl->value.numerator() )
|
|
return;
|
|
|
|
rational_ReduceInaccurate(mpImpl->value, nSignificantBits);
|
|
}
|
|
|
|
sal_Int32 Fraction::GetNumerator() const
|
|
{
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" );
|
|
return 0;
|
|
}
|
|
return mpImpl->value.numerator();
|
|
}
|
|
|
|
sal_Int32 Fraction::GetDenominator() const
|
|
{
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" );
|
|
return -1;
|
|
}
|
|
return mpImpl->value.denominator();
|
|
}
|
|
|
|
Fraction& Fraction::operator=( const Fraction& rFrac )
|
|
{
|
|
if (this == &rFrac)
|
|
return *this;
|
|
|
|
Fraction tmp(rFrac);
|
|
std::swap(mpImpl, tmp.mpImpl);
|
|
return *this;
|
|
}
|
|
|
|
Fraction& Fraction::operator=( Fraction&& rFrac )
|
|
{
|
|
mpImpl = std::move(rFrac.mpImpl);
|
|
return *this;
|
|
}
|
|
|
|
bool Fraction::IsValid() const
|
|
{
|
|
return mpImpl->valid;
|
|
}
|
|
|
|
Fraction::operator sal_Int32() const
|
|
{
|
|
if ( !mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator sal_Int32()' on invalid fraction" );
|
|
return 0;
|
|
}
|
|
return boost::rational_cast<sal_Int32>(mpImpl->value);
|
|
}
|
|
|
|
Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
Fraction aErg( rVal1 );
|
|
aErg += rVal2;
|
|
return aErg;
|
|
}
|
|
|
|
Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
Fraction aErg( rVal1 );
|
|
aErg -= rVal2;
|
|
return aErg;
|
|
}
|
|
|
|
Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
Fraction aErg( rVal1 );
|
|
aErg *= rVal2;
|
|
return aErg;
|
|
}
|
|
|
|
Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
Fraction aErg( rVal1 );
|
|
aErg /= rVal2;
|
|
return aErg;
|
|
}
|
|
|
|
bool operator !=( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
return !(rVal1 == rVal2);
|
|
}
|
|
|
|
bool operator <=( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
return !(rVal1 > rVal2);
|
|
}
|
|
|
|
bool operator >=( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
return !(rVal1 < rVal2);
|
|
}
|
|
|
|
bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" );
|
|
return false;
|
|
}
|
|
|
|
return rVal1.mpImpl->value == rVal2.mpImpl->value;
|
|
}
|
|
|
|
bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" );
|
|
return false;
|
|
}
|
|
|
|
return rVal1.mpImpl->value < rVal2.mpImpl->value;
|
|
}
|
|
|
|
bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
|
|
{
|
|
if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" );
|
|
return false;
|
|
}
|
|
|
|
return rVal1.mpImpl->value > rVal2.mpImpl->value;
|
|
}
|
|
|
|
SvStream& ReadFraction( SvStream& rIStream, Fraction const & rFract )
|
|
{
|
|
sal_Int32 num(0), den(0);
|
|
rIStream.ReadInt32( num );
|
|
rIStream.ReadInt32( den );
|
|
if ( den <= 0 )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'ReadFraction()' read an invalid fraction" );
|
|
rFract.mpImpl->valid = false;
|
|
}
|
|
else
|
|
{
|
|
rFract.mpImpl->value.assign( num, den );
|
|
rFract.mpImpl->valid = true;
|
|
}
|
|
return rIStream;
|
|
}
|
|
|
|
SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract )
|
|
{
|
|
if ( !rFract.mpImpl->valid )
|
|
{
|
|
SAL_WARN( "tools.fraction", "'WriteFraction()' write an invalid fraction" );
|
|
rOStream.WriteInt32( 0 );
|
|
rOStream.WriteInt32( -1 );
|
|
} else {
|
|
rOStream.WriteInt32( rFract.mpImpl->value.numerator() );
|
|
rOStream.WriteInt32( rFract.mpImpl->value.denominator() );
|
|
}
|
|
return rOStream;
|
|
}
|
|
|
|
// If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational.
|
|
// Otherwise, dVal and denominator are multiplied by 10, until one of them
|
|
// is larger than (LONG_MAX / 10).
|
|
//
|
|
// NOTE: here we use 'sal_Int32' due that only values in sal_Int32 range are valid.
|
|
static boost::rational<sal_Int32> rational_FromDouble(double dVal)
|
|
{
|
|
if ( dVal > std::numeric_limits<sal_Int32>::max() ||
|
|
dVal < std::numeric_limits<sal_Int32>::min() )
|
|
throw boost::bad_rational();
|
|
|
|
const sal_Int32 nMAX = std::numeric_limits<sal_Int32>::max() / 10;
|
|
sal_Int32 nDen = 1;
|
|
while ( std::abs( dVal ) < nMAX && nDen < nMAX ) {
|
|
dVal *= 10;
|
|
nDen *= 10;
|
|
}
|
|
return boost::rational<sal_Int32>( sal_Int32(dVal), nDen );
|
|
}
|
|
|
|
// Similar to clz_table that can be googled
|
|
const char nbits_table[32] =
|
|
{
|
|
32, 1, 23, 2, 29, 24, 14, 3,
|
|
30, 27, 25, 18, 20, 15, 10, 4,
|
|
31, 22, 28, 13, 26, 17, 19, 9,
|
|
21, 12, 16, 8, 11, 7, 6, 5
|
|
};
|
|
|
|
static int impl_NumberOfBits( sal_uInt32 nNum )
|
|
{
|
|
// http://en.wikipedia.org/wiki/De_Bruijn_sequence
|
|
// background paper: Using de Bruijn Sequences to Index a 1 in a
|
|
// Computer Word (1998) Charles E. Leiserson,
|
|
// Harald Prokop, Keith H. Randall
|
|
// (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
|
|
const sal_uInt32 nDeBruijn = 0x7DCD629;
|
|
|
|
if ( nNum == 0 )
|
|
return 0;
|
|
|
|
// Get it to form like 0000001111111111b
|
|
nNum |= ( nNum >> 1 );
|
|
nNum |= ( nNum >> 2 );
|
|
nNum |= ( nNum >> 4 );
|
|
nNum |= ( nNum >> 8 );
|
|
nNum |= ( nNum >> 16 );
|
|
|
|
sal_uInt32 nNumber;
|
|
int nBonus;
|
|
|
|
nNumber = nNum;
|
|
nBonus = 0;
|
|
|
|
// De facto shift left of nDeBruijn using multiplication (nNumber
|
|
// is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
|
|
// nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
|
|
// zero, sets the next bit to one, and thus effectively shift-left
|
|
// nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
|
|
// sequence in the msb for each distinct position of the last
|
|
// leading 0 bit - that's the property of a de Bruijn number.
|
|
nNumber = nDeBruijn + ( nDeBruijn * nNumber );
|
|
|
|
// 5-bit window indexes the result
|
|
return ( nbits_table[nNumber >> 27] ) + nBonus;
|
|
}
|
|
|
|
/** Inaccurate cancellation for a fraction.
|
|
|
|
Clip both nominator and denominator to said number of bits. If
|
|
either of those already have equal or less number of bits used,
|
|
this method does nothing.
|
|
|
|
@param nSignificantBits denotes, how many significant binary
|
|
digits to maintain, in both nominator and denominator.
|
|
|
|
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
|
|
largest error occurs with the following pair of values:
|
|
|
|
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
|
|
= 1082130431/1073741824
|
|
= approx. 1.007812499
|
|
|
|
A ReduceInaccurate(8) yields 1/1.
|
|
*/
|
|
static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits)
|
|
{
|
|
if ( !rRational )
|
|
return;
|
|
|
|
// http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation
|
|
const bool bNeg = ( rRational.numerator() < 0 );
|
|
sal_Int32 nMul = bNeg? -rRational.numerator(): rRational.numerator();
|
|
sal_Int32 nDiv = rRational.denominator();
|
|
|
|
DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
|
|
|
|
// How much bits can we lose?
|
|
const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
|
|
const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
|
|
|
|
const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
|
|
|
|
// Remove the bits
|
|
nMul >>= nToLose;
|
|
nDiv >>= nToLose;
|
|
|
|
if ( !nMul || !nDiv ) {
|
|
// Return without reduction
|
|
OSL_FAIL( "Oops, we reduced too much..." );
|
|
return;
|
|
}
|
|
|
|
rRational.assign( bNeg ? -nMul : nMul, nDiv );
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|