2
0
mirror of https://github.com/lm-sensors/lm-sensors synced 2025-09-05 16:55:45 +00:00
Files
lm-sensors/lib/sysfs.c

572 lines
15 KiB
C
Raw Normal View History

/*
sysfs.c - Part of libsensors, a library for reading Linux sensor data
Copyright (c) 2005 Mark M. Hoffman <mhoffman@lightlink.com>
Copyright (C) 2007 Jean Delvare <khali@linux-fr.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* this define needed for strndup() */
#define _GNU_SOURCE
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <errno.h>
#include <sysfs/libsysfs.h>
#include "data.h"
#include "error.h"
#include "access.h"
#include "general.h"
#include "sysfs.h"
char sensors_sysfs_mount[NAME_MAX];
#define MAX_SENSORS_PER_TYPE 20
#define MAX_SUB_FEATURES 8
/* Room for all 3 types (in, fan, temp) with all their subfeatures + VID
+ misc features */
#define ALL_POSSIBLE_FEATURES (MAX_SENSORS_PER_TYPE * MAX_SUB_FEATURES * 6 \
+ MAX_SENSORS_PER_TYPE + 1)
static
int get_type_scaling(int type)
{
switch (type & 0xFF10) {
case SENSORS_FEATURE_IN:
case SENSORS_FEATURE_TEMP:
return 1000;
case SENSORS_FEATURE_FAN:
return 1;
}
switch (type) {
case SENSORS_FEATURE_VID:
case SENSORS_FEATURE_TEMP_OFFSET:
return 1000;
default:
return 1;
}
}
/* Static mappings for use by sensors_feature_get_type() */
struct feature_subtype_match
{
const char *name;
sensors_feature_type type;
};
struct feature_type_match
{
const char *name;
const struct feature_subtype_match *submatches;
};
static const struct feature_subtype_match temp_matches[] = {
{ "input", SENSORS_FEATURE_TEMP },
{ "max", SENSORS_FEATURE_TEMP_MAX },
{ "max_hyst", SENSORS_FEATURE_TEMP_MAX_HYST },
{ "min", SENSORS_FEATURE_TEMP_MIN },
{ "crit", SENSORS_FEATURE_TEMP_CRIT },
{ "crit_hyst", SENSORS_FEATURE_TEMP_CRIT_HYST },
{ "alarm", SENSORS_FEATURE_TEMP_ALARM },
{ "min_alarm", SENSORS_FEATURE_TEMP_MIN_ALARM },
{ "max_alarm", SENSORS_FEATURE_TEMP_MAX_ALARM },
{ "crit_alarm", SENSORS_FEATURE_TEMP_CRIT_ALARM },
{ "fault", SENSORS_FEATURE_TEMP_FAULT },
{ "type", SENSORS_FEATURE_TEMP_TYPE },
{ "offset", SENSORS_FEATURE_TEMP_OFFSET },
{ NULL, 0 }
};
static const struct feature_subtype_match in_matches[] = {
{ "input", SENSORS_FEATURE_IN },
{ "min", SENSORS_FEATURE_IN_MIN },
{ "max", SENSORS_FEATURE_IN_MAX },
{ "alarm", SENSORS_FEATURE_IN_ALARM },
{ "min_alarm", SENSORS_FEATURE_IN_MIN_ALARM },
{ "max_alarm", SENSORS_FEATURE_IN_MAX_ALARM },
{ NULL, 0 }
};
static const struct feature_subtype_match fan_matches[] = {
{ "input", SENSORS_FEATURE_FAN },
{ "min", SENSORS_FEATURE_FAN_MIN },
{ "div", SENSORS_FEATURE_FAN_DIV },
{ "alarm", SENSORS_FEATURE_FAN_ALARM },
{ "fault", SENSORS_FEATURE_FAN_FAULT },
{ NULL, 0 }
};
static const struct feature_subtype_match cpu_matches[] = {
{ "vid", SENSORS_FEATURE_VID },
{ NULL, 0 }
};
static struct feature_type_match matches[] = {
{ "temp%d%c", temp_matches },
{ "in%d%c", in_matches },
{ "fan%d%c", fan_matches },
{ "cpu%d%c", cpu_matches },
};
/* Return the feature type and channel number based on the feature name */
static
sensors_feature_type sensors_feature_get_type(const char *name, int *nr)
{
char c;
int i, count;
const struct feature_subtype_match *submatches;
/* Special case */
if (!strcmp(name, "beep_enable")) {
*nr = 0;
return SENSORS_FEATURE_BEEP_ENABLE;
}
for (i = 0; i < ARRAY_SIZE(matches); i++)
if ((count = sscanf(name, matches[i].name, nr, &c)))
break;
if (i == ARRAY_SIZE(matches) || count != 2 || c != '_')
return SENSORS_FEATURE_UNKNOWN; /* no match */
submatches = matches[i].submatches;
name = strchr(name + 3, '_') + 1;
for (i = 0; submatches[i].name != NULL; i++)
if (!strcmp(name, submatches[i].name))
return submatches[i].type;
return SENSORS_FEATURE_UNKNOWN;
}
static int sensors_read_dynamic_chip(sensors_chip_features *chip,
struct sysfs_device *sysdir)
{
int i, type, fnum = 0;
struct sysfs_attribute *attr;
struct dlist *attrs;
sensors_feature_data *features;
sensors_feature_data *dyn_features;
attrs = sysfs_get_device_attributes(sysdir);
if (attrs == NULL)
return -ENOENT;
/* We use a large sparse table at first to store all found features,
so that we can store them sorted at type and index and then later
create a dense sorted table. */
features = calloc(ALL_POSSIBLE_FEATURES, sizeof(sensors_feature_data));
if (!features)
sensors_fatal_error(__FUNCTION__, "Out of memory");
dlist_for_each_data(attrs, attr, struct sysfs_attribute) {
char *name = attr->name;
int nr;
type = sensors_feature_get_type(name, &nr);
if (type == SENSORS_FEATURE_UNKNOWN)
continue;
/* Adjust the channel number */
switch (type & 0xFF00) {
case SENSORS_FEATURE_FAN:
case SENSORS_FEATURE_TEMP:
if (nr)
nr--;
break;
}
if (nr >= MAX_SENSORS_PER_TYPE) {
fprintf(stderr, "libsensors error, more sensors of one"
" type then MAX_SENSORS_PER_TYPE, ignoring "
"feature: %s\n", name);
continue;
}
/* "calculate" a place to store the feature in our sparse,
sorted table */
switch (type) {
case SENSORS_FEATURE_VID:
i = nr + MAX_SENSORS_PER_TYPE * MAX_SUB_FEATURES * 6;
break;
case SENSORS_FEATURE_BEEP_ENABLE:
i = MAX_SENSORS_PER_TYPE * MAX_SUB_FEATURES * 6 +
MAX_SENSORS_PER_TYPE;
break;
default:
i = (type >> 8) * MAX_SENSORS_PER_TYPE *
MAX_SUB_FEATURES * 2 + nr * MAX_SUB_FEATURES * 2 +
((type & 0x10) >> 4) * MAX_SUB_FEATURES +
(type & 0x0F);
}
if (features[i].name) {
fprintf(stderr, "libsensors error, trying to add dupli"
"cate feature: %s to dynamic feature table\n",
name);
continue;
}
/* fill in the feature members */
features[i].type = type;
/* check for _input extension and remove */
nr = strlen(name);
if (nr > 6 && !strcmp(name + nr - 6, "_input"))
features[i].name = strndup(name, nr - 6);
else
features[i].name = strdup(name);
if ((type & 0x00FF) == 0) {
/* main feature */
features[i].mapping = SENSORS_NO_MAPPING;
} else {
/* sub feature */
/* The mapping is set below after numbering */
if (!(type & 0x10))
features[i].flags |= SENSORS_COMPUTE_MAPPING;
}
if (attr->method & SYSFS_METHOD_SHOW)
features[i].flags |= SENSORS_MODE_R;
if (attr->method & SYSFS_METHOD_STORE)
features[i].flags |= SENSORS_MODE_W;
fnum++;
}
if (!fnum) { /* No feature */
chip->feature = NULL;
goto exit_free;
}
dyn_features = calloc(fnum, sizeof(sensors_feature_data));
if (dyn_features == NULL) {
sensors_fatal_error(__FUNCTION__, "Out of memory");
}
fnum = 0;
for (i = 0; i < ALL_POSSIBLE_FEATURES; i++) {
if (features[i].name) {
dyn_features[fnum] = features[i];
fnum++;
}
}
/* Number the features linearly, so that feature number N is at
position N in the array. This allows for O(1) look-ups. */
for (i = 0; i < fnum; i++) {
int j;
dyn_features[i].number = i;
if (dyn_features[i].mapping == SENSORS_NO_MAPPING) {
/* Main feature, set the mapping field of all its
subfeatures */
for (j = i + 1; j < fnum &&
dyn_features[j].mapping != SENSORS_NO_MAPPING;
j++)
dyn_features[j].mapping = i;
}
}
chip->feature = dyn_features;
chip->feature_count = fnum;
exit_free:
free(features);
return 0;
}
/* returns !0 if sysfs filesystem was found, 0 otherwise */
int sensors_init_sysfs(void)
{
struct stat statbuf;
/* libsysfs will return success even if sysfs is not mounted,
so we have to double-check */
if (sysfs_get_mnt_path(sensors_sysfs_mount, NAME_MAX)
|| stat(sensors_sysfs_mount, &statbuf) < 0
|| statbuf.st_nlink <= 2) /* Empty directory */
return 0;
return 1;
}
/* returns: 0 if successful, !0 otherwise */
static int sensors_read_one_sysfs_chip(struct sysfs_device *dev)
{
int domain, bus, slot, fn;
int err = -SENSORS_ERR_PARSE;
struct sysfs_attribute *attr, *bus_attr;
char bus_path[SYSFS_PATH_MAX];
sensors_chip_features entry;
/* ignore any device without name attribute */
if (!(attr = sysfs_get_device_attr(dev, "name")))
return 0;
/* NB: attr->value[attr->len-1] == '\n'; chop that off */
entry.chip.prefix = strndup(attr->value, attr->len - 1);
if (!entry.chip.prefix)
sensors_fatal_error(__FUNCTION__, "out of memory");
entry.chip.path = strdup(dev->path);
if (!entry.chip.path)
sensors_fatal_error(__FUNCTION__, "out of memory");
if (sscanf(dev->name, "%hd-%x", &entry.chip.bus.nr, &entry.chip.addr) == 2) {
/* find out if legacy ISA or not */
if (entry.chip.bus.nr == 9191) {
entry.chip.bus.type = SENSORS_BUS_TYPE_ISA;
entry.chip.bus.nr = 0;
} else {
entry.chip.bus.type = SENSORS_BUS_TYPE_I2C;
snprintf(bus_path, sizeof(bus_path),
"%s/class/i2c-adapter/i2c-%d/device/name",
sensors_sysfs_mount, entry.chip.bus.nr);
if ((bus_attr = sysfs_open_attribute(bus_path))) {
if (sysfs_read_attribute(bus_attr)) {
sysfs_close_attribute(bus_attr);
goto exit_free;
}
if (bus_attr->value
&& !strncmp(bus_attr->value, "ISA ", 4)) {
entry.chip.bus.type = SENSORS_BUS_TYPE_ISA;
entry.chip.bus.nr = 0;
}
sysfs_close_attribute(bus_attr);
}
}
} else if (sscanf(dev->name, "spi%hd.%d", &entry.chip.bus.nr,
&entry.chip.addr) == 2) {
/* SPI */
entry.chip.bus.type = SENSORS_BUS_TYPE_SPI;
} else if (sscanf(dev->name, "%*[a-z0-9_].%d", &entry.chip.addr) == 1) {
/* must be new ISA (platform driver) */
entry.chip.bus.type = SENSORS_BUS_TYPE_ISA;
entry.chip.bus.nr = 0;
} else if (sscanf(dev->name, "%x:%x:%x.%x", &domain, &bus, &slot, &fn) == 4) {
/* PCI */
entry.chip.addr = (domain << 16) + (bus << 8) + (slot << 3) + fn;
entry.chip.bus.type = SENSORS_BUS_TYPE_PCI;
entry.chip.bus.nr = 0;
} else
goto exit_free;
if (sensors_read_dynamic_chip(&entry, dev) < 0)
goto exit_free;
if (!entry.feature) { /* No feature, discard chip */
err = 0;
goto exit_free;
}
sensors_add_proc_chips(&entry);
return 0;
exit_free:
free(entry.chip.prefix);
free(entry.chip.path);
return err;
}
/* returns 0 if successful, !0 otherwise */
static int sensors_read_sysfs_chips_compat(void)
{
struct sysfs_bus *bus;
struct dlist *devs;
struct sysfs_device *dev;
int ret = 0;
if (!(bus = sysfs_open_bus("i2c"))) {
if (errno && errno != ENOENT)
ret = -SENSORS_ERR_PROC;
goto exit0;
}
if (!(devs = sysfs_get_bus_devices(bus))) {
if (errno && errno != ENOENT)
ret = -SENSORS_ERR_PROC;
goto exit1;
}
dlist_for_each_data(devs, dev, struct sysfs_device)
if ((ret = sensors_read_one_sysfs_chip(dev)))
goto exit1;
exit1:
/* this frees bus and devs */
sysfs_close_bus(bus);
exit0:
return ret;
}
/* returns 0 if successful, !0 otherwise */
int sensors_read_sysfs_chips(void)
{
struct sysfs_class *cls;
struct dlist *clsdevs;
struct sysfs_class_device *clsdev;
int ret = 0;
if (!(cls = sysfs_open_class("hwmon"))) {
/* compatibility function for kernel 2.6.n where n <= 13 */
return sensors_read_sysfs_chips_compat();
}
if (!(clsdevs = sysfs_get_class_devices(cls))) {
if (errno && errno != ENOENT)
ret = -SENSORS_ERR_PROC;
goto exit;
}
dlist_for_each_data(clsdevs, clsdev, struct sysfs_class_device) {
struct sysfs_device *dev;
if (!(dev = sysfs_get_classdev_device(clsdev))) {
ret = -SENSORS_ERR_PROC;
goto exit;
}
if ((ret = sensors_read_one_sysfs_chip(dev)))
goto exit;
}
exit:
/* this frees cls and clsdevs */
sysfs_close_class(cls);
return ret;
}
/* returns 0 if successful, !0 otherwise */
int sensors_read_sysfs_bus(void)
{
struct sysfs_class *cls;
struct dlist *clsdevs;
struct sysfs_class_device *clsdev;
sensors_bus entry;
int ret = 0;
if (!(cls = sysfs_open_class("i2c-adapter"))) {
if (errno && errno != ENOENT)
ret = -SENSORS_ERR_PROC;
goto exit0;
}
if (!(clsdevs = sysfs_get_class_devices(cls))) {
if (errno && errno != ENOENT)
ret = -SENSORS_ERR_PROC;
goto exit1;
}
dlist_for_each_data(clsdevs, clsdev, struct sysfs_class_device) {
struct sysfs_device *dev;
struct sysfs_attribute *attr;
/* Get the adapter name from the classdev "name" attribute
* (Linux 2.6.20 and later). If it fails, fall back to
* the device "name" attribute (for older kernels). */
if (!(attr = sysfs_get_classdev_attr(clsdev, "name"))
&& !((dev = sysfs_get_classdev_device(clsdev)) &&
(attr = sysfs_get_device_attr(dev, "name"))))
continue;
if (sscanf(clsdev->name, "i2c-%hd", &entry.bus.nr) != 1 ||
entry.bus.nr == 9191) /* legacy ISA */
continue;
entry.bus.type = SENSORS_BUS_TYPE_I2C;
/* NB: attr->value[attr->len-1] == '\n'; chop that off */
entry.adapter = strndup(attr->value, attr->len - 1);
if (!entry.adapter)
sensors_fatal_error(__FUNCTION__, "out of memory");
sensors_add_proc_bus(&entry);
}
exit1:
/* this frees *cls _and_ *clsdevs */
sysfs_close_class(cls);
exit0:
return ret;
}
int sensors_read_sysfs_attr(const sensors_chip_name *name, int feature,
double *value)
{
const sensors_feature_data *the_feature;
char n[NAME_MAX];
FILE *f;
const char *suffix = "";
if (!(the_feature = sensors_lookup_feature_nr(name, feature)))
return -SENSORS_ERR_NO_ENTRY;
/* REVISIT: this is a ugly hack */
if (the_feature->type == SENSORS_FEATURE_IN
|| the_feature->type == SENSORS_FEATURE_FAN
|| the_feature->type == SENSORS_FEATURE_TEMP)
suffix = "_input";
snprintf(n, NAME_MAX, "%s/%s%s", name->path, the_feature->name,
suffix);
if ((f = fopen(n, "r"))) {
int res = fscanf(f, "%lf", value);
fclose(f);
if (res != 1)
return -SENSORS_ERR_PROC;
*value /= get_type_scaling(the_feature->type);
} else
return -SENSORS_ERR_PROC;
return 0;
}
int sensors_write_sysfs_attr(const sensors_chip_name *name, int feature,
double value)
{
const sensors_feature_data *the_feature;
char n[NAME_MAX];
FILE *f;
const char *suffix = "";
if (!(the_feature = sensors_lookup_feature_nr(name, feature)))
return -SENSORS_ERR_NO_ENTRY;
/* REVISIT: this is a ugly hack */
if (the_feature->type == SENSORS_FEATURE_IN
|| the_feature->type == SENSORS_FEATURE_FAN
|| the_feature->type == SENSORS_FEATURE_TEMP)
suffix = "_input";
snprintf(n, NAME_MAX, "%s/%s%s", name->path, the_feature->name,
suffix);
if ((f = fopen(n, "w"))) {
value *= get_type_scaling(the_feature->type);
fprintf(f, "%d", (int) value);
fclose(f);
} else
return -SENSORS_ERR_PROC;
return 0;
}