2
0
mirror of https://github.com/lm-sensors/lm-sensors synced 2025-09-05 08:45:26 +00:00
Files
lm-sensors/kernel/chips/lm80.c
Frodo Looijaard 5059c482fd Just to make sure, added `#include <linux/version.h>' at several
other places.


git-svn-id: http://lm-sensors.org/svn/lm-sensors/trunk@645 7894878c-1315-0410-8ee3-d5d059ff63e0
1999-12-01 00:48:34 +00:00

705 lines
24 KiB
C

/*
lm80.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
and Philip Edelbrock <phil@netroedge.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/malloc.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/sysctl.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <linux/types.h>
#include <linux/i2c.h>
#include "version.h"
#include "i2c-isa.h"
#include "sensors.h"
#include "compat.h"
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,53)
#include <linux/init.h>
#else
#define __init
#define __initdata
#endif
/* Addresses to scan */
static unsigned short normal_i2c[] = {SENSORS_I2C_END};
static unsigned short normal_i2c_range[] = {0x20,0x2f,SENSORS_I2C_END};
static unsigned int normal_isa[] = {SENSORS_ISA_END};
static unsigned int normal_isa_range[] = {SENSORS_ISA_END};
/* Insmod parameters */
SENSORS_INSMOD_1(lm80);
/* Many LM80 constants specified below */
/* The LM80 registers */
#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
#define LM80_REG_IN(nr) (0x20 + (nr))
#define LM80_REG_FAN1_MIN 0x3c
#define LM80_REG_FAN2_MIN 0x3d
#define LM80_REG_FAN1 0x28
#define LM80_REG_FAN2 0x29
#define LM80_REG_TEMP 0x27
#define LM80_REG_TEMP_HOT_MAX 0x38
#define LM80_REG_TEMP_HOT_HYST 0x39
#define LM80_REG_TEMP_OS_MAX 0x3a
#define LM80_REG_TEMP_OS_HYST 0x3b
#define LM80_REG_CONFIG 0x00
#define LM80_REG_ALARM1 0x01
#define LM80_REG_ALARM2 0x02
#define LM80_REG_MASK1 0x03
#define LM80_REG_MASK2 0x04
#define LM80_REG_FANDIV 0x05
#define LM80_REG_RES 0x06
/* Conversions. Rounding and limit checking is only done on the TO_REG
variants. Note that you should be a bit careful with which arguments
these macros are called: arguments may be evaluated more than once.
Fixing this is just not worth it. */
#define IN_TO_REG(val,nr) (SENSORS_LIMIT((val),0,255))
#define IN_FROM_REG(val,nr) (val)
extern inline unsigned char
FAN_TO_REG (unsigned rpm, unsigned div)
{
if (rpm == 0)
return 255;
rpm = SENSORS_LIMIT(rpm,1,1000000);
return SENSORS_LIMIT((1350000 + rpm*div/2) / (rpm*div),1,254);
}
#define FAN_FROM_REG(val,div) ((val)==0?-1:\
(val)==255?0:1350000/((div)*(val)))
extern inline long TEMP_FROM_REG(u16 temp)
{
long res;
temp= temp >> 4;
if (temp < 0x0800) {
res = (625 * (long)temp);
} else {
res = ((long)temp - 0x01000) * 625;
}
return res;
}
#define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*100)
#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-50)/100):\
((val)+50)/100), \
0,255)
#define ALARMS_FROM_REG(val) (val)
#define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
/* Initial limits */
#define LM80_INIT_IN_0 190
#define LM80_INIT_IN_1 190
#define LM80_INIT_IN_2 190
#define LM80_INIT_IN_3 190
#define LM80_INIT_IN_4 190
#define LM80_INIT_IN_5 190
#define LM80_INIT_IN_6 190
#define LM80_INIT_IN_PERCENTAGE 10
#define LM80_INIT_IN_MIN_0 \
(LM80_INIT_IN_0 - LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_0 \
(LM80_INIT_IN_0 + LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_1 \
(LM80_INIT_IN_1 - LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_1 \
(LM80_INIT_IN_1 + LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_2 \
(LM80_INIT_IN_2 - LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_2 \
(LM80_INIT_IN_2 + LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_3 \
(LM80_INIT_IN_3 - LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_3 \
(LM80_INIT_IN_3 + LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_4 \
(LM80_INIT_IN_4 - LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_4 \
(LM80_INIT_IN_4 + LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_5 \
(LM80_INIT_IN_5 - LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_5 \
(LM80_INIT_IN_5 + LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MIN_6 \
(LM80_INIT_IN_6 - LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_IN_MAX_6 \
(LM80_INIT_IN_6 + LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
#define LM80_INIT_FAN_MIN_1 3000
#define LM80_INIT_FAN_MIN_2 3000
#define LM80_INIT_TEMP_OS_MAX 600
#define LM80_INIT_TEMP_OS_HYST 500
#define LM80_INIT_TEMP_HOT_MAX 700
#define LM80_INIT_TEMP_HOT_HYST 600
#ifdef MODULE
extern int init_module(void);
extern int cleanup_module(void);
#endif /* MODULE */
/* For each registered LM80, we need to keep some data in memory. That
data is pointed to by lm80_list[NR]->data. The structure itself is
dynamically allocated, at the same time when a new lm80 client is
allocated. */
struct lm80_data {
int sysctl_id;
struct semaphore update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[7]; /* Register value */
u8 in_max[7]; /* Register value */
u8 in_min[7]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 temp; /* Register values, shifted right */
u8 temp_hot_max; /* Register value */
u8 temp_hot_hyst; /* Register value */
u8 temp_os_max; /* Register value */
u8 temp_os_hyst; /* Register value */
u16 alarms; /* Register encoding, combined */
};
static int __init sensors_lm80_init(void);
static int __init lm80_cleanup(void);
static int lm80_attach_adapter(struct i2c_adapter *adapter);
static int lm80_detect(struct i2c_adapter *adapter, int address,
unsigned short flags, int kind);
static int lm80_detach_client(struct i2c_client *client);
static int lm80_command(struct i2c_client *client, unsigned int cmd,
void *arg);
static void lm80_inc_use (struct i2c_client *client);
static void lm80_dec_use (struct i2c_client *client);
static int lm80_read_value(struct i2c_client *client, u8 register);
static int lm80_write_value(struct i2c_client *client, u8 register, u8 value);
static void lm80_update_client(struct i2c_client *client);
static void lm80_init_client(struct i2c_client *client);
static void lm80_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results);
static int lm80_id = 0;
static struct i2c_driver lm80_driver = {
/* name */ "LM80 sensor driver",
/* id */ I2C_DRIVERID_LM80,
/* flags */ I2C_DF_NOTIFY,
/* attach_adapter */ &lm80_attach_adapter,
/* detach_client */ &lm80_detach_client,
/* command */ &lm80_command,
/* inc_use */ &lm80_inc_use,
/* dec_use */ &lm80_dec_use
};
/* Used by lm80_init/cleanup */
static int __initdata lm80_initialized = 0;
/* The /proc/sys entries */
/* These files are created for each detected LM80. This is just a template;
though at first sight, you might think we could use a statically
allocated list, we need some way to get back to the parent - which
is done through one of the 'extra' fields which are initialized
when a new copy is allocated. */
static ctl_table lm80_dir_table_template[] = {
{ LM80_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_in },
{ LM80_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan },
{ LM80_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_temp },
{ LM80_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_fan_div },
{ LM80_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &sensors_proc_real,
&sensors_sysctl_real, NULL, &lm80_alarms },
{ 0 }
};
int lm80_attach_adapter(struct i2c_adapter *adapter)
{
return sensors_detect(adapter,&addr_data,lm80_detect);
}
int lm80_detect(struct i2c_adapter *adapter, int address,
unsigned short flags, int kind)
{
int i,cur;
struct i2c_client *new_client;
struct lm80_data *data;
int err=0;
const char *type_name,*client_name;
/* Make sure we aren't probing the ISA bus!! This is just a safety check
at this moment; sensors_detect really won't call us. */
#ifdef DEBUG
if (i2c_is_isa_adapter(adapter)) {
printk("lm80.o: lm80_detect called for an ISA bus adapter?!?\n");
return 0;
}
#endif
if (! i2c_check_functionality(adapter,I2C_FUNC_SMBUS_BYTE_DATA))
goto ERROR0;
/* Here, we have to do the address registration check for the I2C bus.
But that is not yet implemented. */
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access lm80_{read,write}_value. */
if (! (new_client = kmalloc(sizeof(struct i2c_client) +
sizeof(struct lm80_data),
GFP_KERNEL))) {
err = -ENOMEM;
goto ERROR0;
}
data = (struct lm80_data *) (new_client + 1);
new_client->addr = address;
new_client->data = data;
new_client->adapter = adapter;
new_client->driver = &lm80_driver;
new_client->flags = 0;
/* Now, we do the remaining detection. It is lousy. */
if (lm80_read_value(new_client,LM80_REG_ALARM2) & 0xc0)
goto ERROR1;
for (i = 0x2a; i <= 0x3d; i++) {
cur = i2c_smbus_read_byte_data(new_client,i);
if ((i2c_smbus_read_byte_data(new_client,i+0x40) != cur) ||
(i2c_smbus_read_byte_data(new_client,i+0x80) != cur) ||
(i2c_smbus_read_byte_data(new_client,i+0xc0) != cur))
goto ERROR1;
}
/* Determine the chip type - only one kind supported! */
if (kind <= 0)
kind = lm80;
if (kind == lm80) {
type_name = "lm80";
client_name = "LM80 chip";
} else {
#ifdef DEBUG
printk("lm80.o: Internal error: unknown kind (%d)?!?",kind);
#endif
goto ERROR1;
}
/* Fill in the remaining client fields and put it into the global list */
strcpy(new_client->name,client_name);
new_client->id = lm80_id++;
data->valid = 0;
init_MUTEX(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto ERROR3;
/* Register a new directory entry with module sensors */
if ((i = sensors_register_entry(new_client,type_name,
lm80_dir_table_template,
THIS_MODULE)) < 0) {
err = i;
goto ERROR4;
}
data->sysctl_id = i;
lm80_init_client(new_client);
return 0;
/* OK, this is not exactly good programming practice, usually. But it is
very code-efficient in this case. */
ERROR4:
i2c_detach_client(new_client);
ERROR3:
ERROR1:
kfree(new_client);
ERROR0:
return err;
}
int lm80_detach_client(struct i2c_client *client)
{
int err;
sensors_deregister_entry(((struct lm80_data *)(client->data))->sysctl_id);
if ((err = i2c_detach_client(client))) {
printk("lm80.o: Client deregistration failed, client not detached.\n");
return err;
}
kfree(client);
return 0;
}
/* No commands defined yet */
int lm80_command(struct i2c_client *client, unsigned int cmd, void *arg)
{
return 0;
}
void lm80_inc_use (struct i2c_client *client)
{
#ifdef MODULE
MOD_INC_USE_COUNT;
#endif
}
void lm80_dec_use (struct i2c_client *client)
{
#ifdef MODULE
MOD_DEC_USE_COUNT;
#endif
}
int lm80_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg,value);
}
/* Called when we have found a new LM80. It should set limits, etc. */
void lm80_init_client(struct i2c_client *client)
{
/* Reset all except Watchdog values and last conversion values
This sets fan-divs to 2, among others. This makes most other
initializations unnecessary */
lm80_write_value(client,LM80_REG_CONFIG,0x80);
/* Set 11-bit temperature resolution */
lm80_write_value(client,LM80_REG_RES,0x08);
lm80_write_value(client,LM80_REG_IN_MIN(0),IN_TO_REG(LM80_INIT_IN_MIN_0,0));
lm80_write_value(client,LM80_REG_IN_MAX(0),IN_TO_REG(LM80_INIT_IN_MAX_0,0));
lm80_write_value(client,LM80_REG_IN_MIN(1),IN_TO_REG(LM80_INIT_IN_MIN_1,1));
lm80_write_value(client,LM80_REG_IN_MAX(1),IN_TO_REG(LM80_INIT_IN_MAX_1,1));
lm80_write_value(client,LM80_REG_IN_MIN(2),IN_TO_REG(LM80_INIT_IN_MIN_2,2));
lm80_write_value(client,LM80_REG_IN_MAX(2),IN_TO_REG(LM80_INIT_IN_MAX_2,2));
lm80_write_value(client,LM80_REG_IN_MIN(3),IN_TO_REG(LM80_INIT_IN_MIN_3,3));
lm80_write_value(client,LM80_REG_IN_MAX(3),IN_TO_REG(LM80_INIT_IN_MAX_3,3));
lm80_write_value(client,LM80_REG_IN_MIN(4),IN_TO_REG(LM80_INIT_IN_MIN_4,4));
lm80_write_value(client,LM80_REG_IN_MAX(4),IN_TO_REG(LM80_INIT_IN_MAX_4,4));
lm80_write_value(client,LM80_REG_IN_MIN(5),IN_TO_REG(LM80_INIT_IN_MIN_5,5));
lm80_write_value(client,LM80_REG_IN_MAX(5),IN_TO_REG(LM80_INIT_IN_MAX_5,5));
lm80_write_value(client,LM80_REG_IN_MIN(6),IN_TO_REG(LM80_INIT_IN_MIN_6,6));
lm80_write_value(client,LM80_REG_IN_MAX(6),IN_TO_REG(LM80_INIT_IN_MAX_6,6));
lm80_write_value(client,LM80_REG_FAN1_MIN,FAN_TO_REG(LM80_INIT_FAN_MIN_1,2));
lm80_write_value(client,LM80_REG_FAN2_MIN,FAN_TO_REG(LM80_INIT_FAN_MIN_2,2));
lm80_write_value(client,LM80_REG_TEMP_HOT_MAX,
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_MAX));
lm80_write_value(client,LM80_REG_TEMP_HOT_HYST,
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_HYST));
lm80_write_value(client,LM80_REG_TEMP_OS_MAX,
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_MAX));
lm80_write_value(client,LM80_REG_TEMP_OS_HYST,
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_HYST));
/* Start monitoring */
lm80_write_value(client,LM80_REG_CONFIG,0x01);
}
void lm80_update_client(struct i2c_client *client)
{
struct lm80_data *data = client->data;
int i;
down(&data->update_lock);
if ((jiffies - data->last_updated > 2*HZ ) ||
(jiffies < data->last_updated) || ! data->valid) {
#ifdef DEBUG
printk("Starting lm80 update\n");
#endif
for (i = 0; i <= 6; i++) {
data->in[i] = lm80_read_value(client,LM80_REG_IN(i));
data->in_min[i] = lm80_read_value(client,LM80_REG_IN_MIN(i));
data->in_max[i] = lm80_read_value(client,LM80_REG_IN_MAX(i));
}
data->fan[0] = lm80_read_value(client,LM80_REG_FAN1);
data->fan_min[0] = lm80_read_value(client,LM80_REG_FAN1_MIN);
data->fan[1] = lm80_read_value(client,LM80_REG_FAN2);
data->fan_min[1] = lm80_read_value(client,LM80_REG_FAN2_MIN);
data->temp = (lm80_read_value(client,LM80_REG_TEMP) << 8) |
(lm80_read_value(client,LM80_REG_RES) & 0xf0);
data->temp_os_max = lm80_read_value(client,LM80_REG_TEMP_OS_MAX);
data->temp_os_hyst = lm80_read_value(client,LM80_REG_TEMP_OS_HYST);
data->temp_hot_max = lm80_read_value(client,LM80_REG_TEMP_HOT_MAX);
data->temp_hot_hyst = lm80_read_value(client,LM80_REG_TEMP_HOT_HYST);
i = lm80_read_value(client,LM80_REG_FANDIV);
data->fan_div[0] = (i >> 2) & 0x03;
data->fan_div[1] = (i >> 4) & 0x03;
data->alarms = lm80_read_value(client,LM80_REG_ALARM1) +
(lm80_read_value(client,LM80_REG_ALARM2) << 8);
data->last_updated = jiffies;
data->valid = 1;
}
up(&data->update_lock);
}
/* The next few functions are the call-back functions of the /proc/sys and
sysctl files. Which function is used is defined in the ctl_table in
the extra1 field.
Each function must return the magnitude (power of 10 to divide the date
with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
put a maximum of *nrels elements in results reflecting the data of this
file, and set *nrels to the number it actually put in it, if operation==
SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
large enough (by checking the incoming value of *nrels). This is not very
good practice, but as long as you put less than about 5 values in results,
you can assume it is large enough. */
void lm80_in(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int nr = ctl_name - LM80_SYSCTL_IN0;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 2;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = IN_FROM_REG(data->in_min[nr],nr);
results[1] = IN_FROM_REG(data->in_max[nr],nr);
results[2] = IN_FROM_REG(data->in[nr],nr);
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->in_min[nr] = IN_TO_REG(results[0],nr);
lm80_write_value(client,LM80_REG_IN_MIN(nr),data->in_min[nr]);
}
if (*nrels_mag >= 2) {
data->in_max[nr] = IN_TO_REG(results[1],nr);
lm80_write_value(client,LM80_REG_IN_MAX(nr),data->in_max[nr]);
}
}
}
void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int nr = ctl_name - LM80_SYSCTL_FAN1 + 1;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = FAN_FROM_REG(data->fan_min[nr-1],
DIV_FROM_REG(data->fan_div[nr-1]));
results[1] = FAN_FROM_REG(data->fan[nr-1],
DIV_FROM_REG(data->fan_div[nr-1]));
*nrels_mag = 2;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->fan_min[nr-1] = FAN_TO_REG(results[0],
DIV_FROM_REG(data->fan_div[nr-1]));
lm80_write_value(client,nr==1?LM80_REG_FAN1_MIN:LM80_REG_FAN2_MIN,
data->fan_min[nr-1]);
}
}
}
void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 4;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = TEMP_LIMIT_FROM_REG(data->temp_hot_max) * 10000;
results[1] = TEMP_LIMIT_FROM_REG(data->temp_hot_hyst) * 10000;
results[2] = TEMP_LIMIT_FROM_REG(data->temp_os_max) * 10000;
results[3] = TEMP_LIMIT_FROM_REG(data->temp_os_hyst) * 10000;
results[4] = TEMP_FROM_REG(data->temp);
*nrels_mag = 5;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
if (*nrels_mag >= 1) {
data->temp_hot_max = TEMP_LIMIT_TO_REG(results[0]);
lm80_write_value(client,LM80_REG_TEMP_HOT_MAX,data->temp_hot_max);
}
if (*nrels_mag >= 2) {
data->temp_hot_hyst = TEMP_LIMIT_TO_REG(results[1]);
lm80_write_value(client,LM80_REG_TEMP_HOT_HYST,data->temp_hot_hyst);
}
if (*nrels_mag >= 3) {
data->temp_os_max = TEMP_LIMIT_TO_REG(results[2]);
lm80_write_value(client,LM80_REG_TEMP_OS_MAX,data->temp_os_max);
}
if (*nrels_mag >= 4) {
data->temp_os_hyst = TEMP_LIMIT_TO_REG(results[3]);
lm80_write_value(client,LM80_REG_TEMP_OS_HYST,data->temp_os_hyst);
}
}
}
void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = ALARMS_FROM_REG(data->alarms);
*nrels_mag = 1;
}
}
void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
int *nrels_mag, long *results)
{
struct lm80_data *data = client->data;
int old;
if (operation == SENSORS_PROC_REAL_INFO)
*nrels_mag = 0;
else if (operation == SENSORS_PROC_REAL_READ) {
lm80_update_client(client);
results[0] = DIV_FROM_REG(data->fan_div[0]);
results[1] = DIV_FROM_REG(data->fan_div[1]);
results[2] = 2;
*nrels_mag = 3;
} else if (operation == SENSORS_PROC_REAL_WRITE) {
old = lm80_read_value(client,LM80_REG_FANDIV);
if (*nrels_mag >= 2) {
data->fan_div[1] = DIV_TO_REG(results[1]);
old = (old & 0xcf) | (data->fan_div[1] << 4);
}
if (*nrels_mag >= 1) {
data->fan_div[0] = DIV_TO_REG(results[0]);
old = (old & 0xf3) | (data->fan_div[0] << 2);
lm80_write_value(client,LM80_REG_FANDIV,old);
}
}
}
int __init sensors_lm80_init(void)
{
int res;
printk("lm80.o version %s (%s)\n",LM_VERSION,LM_DATE);
lm80_initialized = 0;
if ((res =i2c_add_driver(&lm80_driver))) {
printk("lm80.o: Driver registration failed, module not inserted.\n");
lm80_cleanup();
return res;
}
lm80_initialized ++;
return 0;
}
int __init lm80_cleanup(void)
{
int res;
if (lm80_initialized >= 1) {
if ((res = i2c_del_driver(&lm80_driver))) {
printk("lm80.o: Driver deregistration failed, module not removed.\n");
return res;
}
lm80_initialized --;
}
return 0;
}
EXPORT_NO_SYMBOLS;
#ifdef MODULE
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
int init_module(void)
{
return sensors_lm80_init();
}
int cleanup_module(void)
{
return lm80_cleanup();
}
#endif /* MODULE */