mirror of
https://github.com/lm-sensors/lm-sensors
synced 2025-09-05 08:45:26 +00:00
other places. git-svn-id: http://lm-sensors.org/svn/lm-sensors/trunk@645 7894878c-1315-0410-8ee3-d5d059ff63e0
705 lines
24 KiB
C
705 lines
24 KiB
C
/*
|
|
lm80.c - Part of lm_sensors, Linux kernel modules for hardware
|
|
monitoring
|
|
Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
|
|
and Philip Edelbrock <phil@netroedge.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/version.h>
|
|
#include <linux/module.h>
|
|
#include <linux/malloc.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/sysctl.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/io.h>
|
|
#include <linux/types.h>
|
|
#include <linux/i2c.h>
|
|
#include "version.h"
|
|
#include "i2c-isa.h"
|
|
#include "sensors.h"
|
|
#include "compat.h"
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,53)
|
|
#include <linux/init.h>
|
|
#else
|
|
#define __init
|
|
#define __initdata
|
|
#endif
|
|
|
|
|
|
/* Addresses to scan */
|
|
static unsigned short normal_i2c[] = {SENSORS_I2C_END};
|
|
static unsigned short normal_i2c_range[] = {0x20,0x2f,SENSORS_I2C_END};
|
|
static unsigned int normal_isa[] = {SENSORS_ISA_END};
|
|
static unsigned int normal_isa_range[] = {SENSORS_ISA_END};
|
|
|
|
/* Insmod parameters */
|
|
SENSORS_INSMOD_1(lm80);
|
|
|
|
/* Many LM80 constants specified below */
|
|
|
|
/* The LM80 registers */
|
|
#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
|
|
#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
|
|
#define LM80_REG_IN(nr) (0x20 + (nr))
|
|
|
|
#define LM80_REG_FAN1_MIN 0x3c
|
|
#define LM80_REG_FAN2_MIN 0x3d
|
|
#define LM80_REG_FAN1 0x28
|
|
#define LM80_REG_FAN2 0x29
|
|
|
|
#define LM80_REG_TEMP 0x27
|
|
#define LM80_REG_TEMP_HOT_MAX 0x38
|
|
#define LM80_REG_TEMP_HOT_HYST 0x39
|
|
#define LM80_REG_TEMP_OS_MAX 0x3a
|
|
#define LM80_REG_TEMP_OS_HYST 0x3b
|
|
|
|
#define LM80_REG_CONFIG 0x00
|
|
#define LM80_REG_ALARM1 0x01
|
|
#define LM80_REG_ALARM2 0x02
|
|
#define LM80_REG_MASK1 0x03
|
|
#define LM80_REG_MASK2 0x04
|
|
#define LM80_REG_FANDIV 0x05
|
|
#define LM80_REG_RES 0x06
|
|
|
|
|
|
/* Conversions. Rounding and limit checking is only done on the TO_REG
|
|
variants. Note that you should be a bit careful with which arguments
|
|
these macros are called: arguments may be evaluated more than once.
|
|
Fixing this is just not worth it. */
|
|
|
|
#define IN_TO_REG(val,nr) (SENSORS_LIMIT((val),0,255))
|
|
#define IN_FROM_REG(val,nr) (val)
|
|
|
|
extern inline unsigned char
|
|
FAN_TO_REG (unsigned rpm, unsigned div)
|
|
{
|
|
if (rpm == 0)
|
|
return 255;
|
|
rpm = SENSORS_LIMIT(rpm,1,1000000);
|
|
return SENSORS_LIMIT((1350000 + rpm*div/2) / (rpm*div),1,254);
|
|
}
|
|
#define FAN_FROM_REG(val,div) ((val)==0?-1:\
|
|
(val)==255?0:1350000/((div)*(val)))
|
|
|
|
extern inline long TEMP_FROM_REG(u16 temp)
|
|
{
|
|
long res;
|
|
|
|
temp= temp >> 4;
|
|
if (temp < 0x0800) {
|
|
res = (625 * (long)temp);
|
|
} else {
|
|
res = ((long)temp - 0x01000) * 625;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*100)
|
|
|
|
#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-50)/100):\
|
|
((val)+50)/100), \
|
|
0,255)
|
|
|
|
#define ALARMS_FROM_REG(val) (val)
|
|
|
|
#define DIV_FROM_REG(val) (1 << (val))
|
|
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
|
|
|
|
/* Initial limits */
|
|
#define LM80_INIT_IN_0 190
|
|
#define LM80_INIT_IN_1 190
|
|
#define LM80_INIT_IN_2 190
|
|
#define LM80_INIT_IN_3 190
|
|
#define LM80_INIT_IN_4 190
|
|
#define LM80_INIT_IN_5 190
|
|
#define LM80_INIT_IN_6 190
|
|
|
|
#define LM80_INIT_IN_PERCENTAGE 10
|
|
|
|
#define LM80_INIT_IN_MIN_0 \
|
|
(LM80_INIT_IN_0 - LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_0 \
|
|
(LM80_INIT_IN_0 + LM80_INIT_IN_0 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MIN_1 \
|
|
(LM80_INIT_IN_1 - LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_1 \
|
|
(LM80_INIT_IN_1 + LM80_INIT_IN_1 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MIN_2 \
|
|
(LM80_INIT_IN_2 - LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_2 \
|
|
(LM80_INIT_IN_2 + LM80_INIT_IN_2 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MIN_3 \
|
|
(LM80_INIT_IN_3 - LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_3 \
|
|
(LM80_INIT_IN_3 + LM80_INIT_IN_3 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MIN_4 \
|
|
(LM80_INIT_IN_4 - LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_4 \
|
|
(LM80_INIT_IN_4 + LM80_INIT_IN_4 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MIN_5 \
|
|
(LM80_INIT_IN_5 - LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_5 \
|
|
(LM80_INIT_IN_5 + LM80_INIT_IN_5 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MIN_6 \
|
|
(LM80_INIT_IN_6 - LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
#define LM80_INIT_IN_MAX_6 \
|
|
(LM80_INIT_IN_6 + LM80_INIT_IN_6 * LM80_INIT_IN_PERCENTAGE / 100)
|
|
|
|
#define LM80_INIT_FAN_MIN_1 3000
|
|
#define LM80_INIT_FAN_MIN_2 3000
|
|
|
|
#define LM80_INIT_TEMP_OS_MAX 600
|
|
#define LM80_INIT_TEMP_OS_HYST 500
|
|
#define LM80_INIT_TEMP_HOT_MAX 700
|
|
#define LM80_INIT_TEMP_HOT_HYST 600
|
|
|
|
#ifdef MODULE
|
|
extern int init_module(void);
|
|
extern int cleanup_module(void);
|
|
#endif /* MODULE */
|
|
|
|
/* For each registered LM80, we need to keep some data in memory. That
|
|
data is pointed to by lm80_list[NR]->data. The structure itself is
|
|
dynamically allocated, at the same time when a new lm80 client is
|
|
allocated. */
|
|
struct lm80_data {
|
|
int sysctl_id;
|
|
|
|
struct semaphore update_lock;
|
|
char valid; /* !=0 if following fields are valid */
|
|
unsigned long last_updated; /* In jiffies */
|
|
|
|
u8 in[7]; /* Register value */
|
|
u8 in_max[7]; /* Register value */
|
|
u8 in_min[7]; /* Register value */
|
|
u8 fan[2]; /* Register value */
|
|
u8 fan_min[2]; /* Register value */
|
|
u8 fan_div[2]; /* Register encoding, shifted right */
|
|
u16 temp; /* Register values, shifted right */
|
|
u8 temp_hot_max; /* Register value */
|
|
u8 temp_hot_hyst; /* Register value */
|
|
u8 temp_os_max; /* Register value */
|
|
u8 temp_os_hyst; /* Register value */
|
|
u16 alarms; /* Register encoding, combined */
|
|
};
|
|
|
|
|
|
static int __init sensors_lm80_init(void);
|
|
static int __init lm80_cleanup(void);
|
|
|
|
static int lm80_attach_adapter(struct i2c_adapter *adapter);
|
|
static int lm80_detect(struct i2c_adapter *adapter, int address,
|
|
unsigned short flags, int kind);
|
|
static int lm80_detach_client(struct i2c_client *client);
|
|
static int lm80_command(struct i2c_client *client, unsigned int cmd,
|
|
void *arg);
|
|
static void lm80_inc_use (struct i2c_client *client);
|
|
static void lm80_dec_use (struct i2c_client *client);
|
|
|
|
static int lm80_read_value(struct i2c_client *client, u8 register);
|
|
static int lm80_write_value(struct i2c_client *client, u8 register, u8 value);
|
|
static void lm80_update_client(struct i2c_client *client);
|
|
static void lm80_init_client(struct i2c_client *client);
|
|
|
|
|
|
static void lm80_in(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results);
|
|
static void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results);
|
|
static void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results);
|
|
static void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results);
|
|
static void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results);
|
|
|
|
static int lm80_id = 0;
|
|
|
|
static struct i2c_driver lm80_driver = {
|
|
/* name */ "LM80 sensor driver",
|
|
/* id */ I2C_DRIVERID_LM80,
|
|
/* flags */ I2C_DF_NOTIFY,
|
|
/* attach_adapter */ &lm80_attach_adapter,
|
|
/* detach_client */ &lm80_detach_client,
|
|
/* command */ &lm80_command,
|
|
/* inc_use */ &lm80_inc_use,
|
|
/* dec_use */ &lm80_dec_use
|
|
};
|
|
|
|
/* Used by lm80_init/cleanup */
|
|
static int __initdata lm80_initialized = 0;
|
|
|
|
/* The /proc/sys entries */
|
|
/* These files are created for each detected LM80. This is just a template;
|
|
though at first sight, you might think we could use a statically
|
|
allocated list, we need some way to get back to the parent - which
|
|
is done through one of the 'extra' fields which are initialized
|
|
when a new copy is allocated. */
|
|
static ctl_table lm80_dir_table_template[] = {
|
|
{ LM80_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_in },
|
|
{ LM80_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_fan },
|
|
{ LM80_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_fan },
|
|
{ LM80_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_temp },
|
|
{ LM80_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_fan_div },
|
|
{ LM80_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &sensors_proc_real,
|
|
&sensors_sysctl_real, NULL, &lm80_alarms },
|
|
{ 0 }
|
|
};
|
|
|
|
int lm80_attach_adapter(struct i2c_adapter *adapter)
|
|
{
|
|
return sensors_detect(adapter,&addr_data,lm80_detect);
|
|
}
|
|
|
|
int lm80_detect(struct i2c_adapter *adapter, int address,
|
|
unsigned short flags, int kind)
|
|
{
|
|
int i,cur;
|
|
struct i2c_client *new_client;
|
|
struct lm80_data *data;
|
|
int err=0;
|
|
const char *type_name,*client_name;
|
|
|
|
/* Make sure we aren't probing the ISA bus!! This is just a safety check
|
|
at this moment; sensors_detect really won't call us. */
|
|
#ifdef DEBUG
|
|
if (i2c_is_isa_adapter(adapter)) {
|
|
printk("lm80.o: lm80_detect called for an ISA bus adapter?!?\n");
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
if (! i2c_check_functionality(adapter,I2C_FUNC_SMBUS_BYTE_DATA))
|
|
goto ERROR0;
|
|
|
|
/* Here, we have to do the address registration check for the I2C bus.
|
|
But that is not yet implemented. */
|
|
|
|
/* OK. For now, we presume we have a valid client. We now create the
|
|
client structure, even though we cannot fill it completely yet.
|
|
But it allows us to access lm80_{read,write}_value. */
|
|
if (! (new_client = kmalloc(sizeof(struct i2c_client) +
|
|
sizeof(struct lm80_data),
|
|
GFP_KERNEL))) {
|
|
err = -ENOMEM;
|
|
goto ERROR0;
|
|
}
|
|
|
|
data = (struct lm80_data *) (new_client + 1);
|
|
new_client->addr = address;
|
|
new_client->data = data;
|
|
new_client->adapter = adapter;
|
|
new_client->driver = &lm80_driver;
|
|
new_client->flags = 0;
|
|
|
|
/* Now, we do the remaining detection. It is lousy. */
|
|
if (lm80_read_value(new_client,LM80_REG_ALARM2) & 0xc0)
|
|
goto ERROR1;
|
|
for (i = 0x2a; i <= 0x3d; i++) {
|
|
cur = i2c_smbus_read_byte_data(new_client,i);
|
|
if ((i2c_smbus_read_byte_data(new_client,i+0x40) != cur) ||
|
|
(i2c_smbus_read_byte_data(new_client,i+0x80) != cur) ||
|
|
(i2c_smbus_read_byte_data(new_client,i+0xc0) != cur))
|
|
goto ERROR1;
|
|
}
|
|
|
|
/* Determine the chip type - only one kind supported! */
|
|
if (kind <= 0)
|
|
kind = lm80;
|
|
|
|
if (kind == lm80) {
|
|
type_name = "lm80";
|
|
client_name = "LM80 chip";
|
|
} else {
|
|
#ifdef DEBUG
|
|
printk("lm80.o: Internal error: unknown kind (%d)?!?",kind);
|
|
#endif
|
|
goto ERROR1;
|
|
}
|
|
|
|
/* Fill in the remaining client fields and put it into the global list */
|
|
strcpy(new_client->name,client_name);
|
|
|
|
new_client->id = lm80_id++;
|
|
data->valid = 0;
|
|
init_MUTEX(&data->update_lock);
|
|
|
|
/* Tell the I2C layer a new client has arrived */
|
|
if ((err = i2c_attach_client(new_client)))
|
|
goto ERROR3;
|
|
|
|
/* Register a new directory entry with module sensors */
|
|
if ((i = sensors_register_entry(new_client,type_name,
|
|
lm80_dir_table_template,
|
|
THIS_MODULE)) < 0) {
|
|
err = i;
|
|
goto ERROR4;
|
|
}
|
|
data->sysctl_id = i;
|
|
|
|
lm80_init_client(new_client);
|
|
return 0;
|
|
|
|
/* OK, this is not exactly good programming practice, usually. But it is
|
|
very code-efficient in this case. */
|
|
ERROR4:
|
|
i2c_detach_client(new_client);
|
|
ERROR3:
|
|
ERROR1:
|
|
kfree(new_client);
|
|
ERROR0:
|
|
return err;
|
|
}
|
|
|
|
int lm80_detach_client(struct i2c_client *client)
|
|
{
|
|
int err;
|
|
|
|
sensors_deregister_entry(((struct lm80_data *)(client->data))->sysctl_id);
|
|
|
|
if ((err = i2c_detach_client(client))) {
|
|
printk("lm80.o: Client deregistration failed, client not detached.\n");
|
|
return err;
|
|
}
|
|
|
|
kfree(client);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* No commands defined yet */
|
|
int lm80_command(struct i2c_client *client, unsigned int cmd, void *arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void lm80_inc_use (struct i2c_client *client)
|
|
{
|
|
#ifdef MODULE
|
|
MOD_INC_USE_COUNT;
|
|
#endif
|
|
}
|
|
|
|
void lm80_dec_use (struct i2c_client *client)
|
|
{
|
|
#ifdef MODULE
|
|
MOD_DEC_USE_COUNT;
|
|
#endif
|
|
}
|
|
|
|
|
|
int lm80_read_value(struct i2c_client *client, u8 reg)
|
|
{
|
|
return i2c_smbus_read_byte_data(client, reg);
|
|
}
|
|
|
|
int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
|
|
{
|
|
return i2c_smbus_write_byte_data(client, reg,value);
|
|
}
|
|
|
|
/* Called when we have found a new LM80. It should set limits, etc. */
|
|
void lm80_init_client(struct i2c_client *client)
|
|
{
|
|
/* Reset all except Watchdog values and last conversion values
|
|
This sets fan-divs to 2, among others. This makes most other
|
|
initializations unnecessary */
|
|
lm80_write_value(client,LM80_REG_CONFIG,0x80);
|
|
/* Set 11-bit temperature resolution */
|
|
lm80_write_value(client,LM80_REG_RES,0x08);
|
|
|
|
lm80_write_value(client,LM80_REG_IN_MIN(0),IN_TO_REG(LM80_INIT_IN_MIN_0,0));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(0),IN_TO_REG(LM80_INIT_IN_MAX_0,0));
|
|
lm80_write_value(client,LM80_REG_IN_MIN(1),IN_TO_REG(LM80_INIT_IN_MIN_1,1));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(1),IN_TO_REG(LM80_INIT_IN_MAX_1,1));
|
|
lm80_write_value(client,LM80_REG_IN_MIN(2),IN_TO_REG(LM80_INIT_IN_MIN_2,2));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(2),IN_TO_REG(LM80_INIT_IN_MAX_2,2));
|
|
lm80_write_value(client,LM80_REG_IN_MIN(3),IN_TO_REG(LM80_INIT_IN_MIN_3,3));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(3),IN_TO_REG(LM80_INIT_IN_MAX_3,3));
|
|
lm80_write_value(client,LM80_REG_IN_MIN(4),IN_TO_REG(LM80_INIT_IN_MIN_4,4));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(4),IN_TO_REG(LM80_INIT_IN_MAX_4,4));
|
|
lm80_write_value(client,LM80_REG_IN_MIN(5),IN_TO_REG(LM80_INIT_IN_MIN_5,5));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(5),IN_TO_REG(LM80_INIT_IN_MAX_5,5));
|
|
lm80_write_value(client,LM80_REG_IN_MIN(6),IN_TO_REG(LM80_INIT_IN_MIN_6,6));
|
|
lm80_write_value(client,LM80_REG_IN_MAX(6),IN_TO_REG(LM80_INIT_IN_MAX_6,6));
|
|
lm80_write_value(client,LM80_REG_FAN1_MIN,FAN_TO_REG(LM80_INIT_FAN_MIN_1,2));
|
|
lm80_write_value(client,LM80_REG_FAN2_MIN,FAN_TO_REG(LM80_INIT_FAN_MIN_2,2));
|
|
lm80_write_value(client,LM80_REG_TEMP_HOT_MAX,
|
|
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_MAX));
|
|
lm80_write_value(client,LM80_REG_TEMP_HOT_HYST,
|
|
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_HYST));
|
|
lm80_write_value(client,LM80_REG_TEMP_OS_MAX,
|
|
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_MAX));
|
|
lm80_write_value(client,LM80_REG_TEMP_OS_HYST,
|
|
TEMP_LIMIT_TO_REG(LM80_INIT_TEMP_OS_HYST));
|
|
|
|
/* Start monitoring */
|
|
lm80_write_value(client,LM80_REG_CONFIG,0x01);
|
|
}
|
|
|
|
void lm80_update_client(struct i2c_client *client)
|
|
{
|
|
struct lm80_data *data = client->data;
|
|
int i;
|
|
|
|
down(&data->update_lock);
|
|
|
|
if ((jiffies - data->last_updated > 2*HZ ) ||
|
|
(jiffies < data->last_updated) || ! data->valid) {
|
|
|
|
#ifdef DEBUG
|
|
printk("Starting lm80 update\n");
|
|
#endif
|
|
for (i = 0; i <= 6; i++) {
|
|
data->in[i] = lm80_read_value(client,LM80_REG_IN(i));
|
|
data->in_min[i] = lm80_read_value(client,LM80_REG_IN_MIN(i));
|
|
data->in_max[i] = lm80_read_value(client,LM80_REG_IN_MAX(i));
|
|
}
|
|
data->fan[0] = lm80_read_value(client,LM80_REG_FAN1);
|
|
data->fan_min[0] = lm80_read_value(client,LM80_REG_FAN1_MIN);
|
|
data->fan[1] = lm80_read_value(client,LM80_REG_FAN2);
|
|
data->fan_min[1] = lm80_read_value(client,LM80_REG_FAN2_MIN);
|
|
|
|
data->temp = (lm80_read_value(client,LM80_REG_TEMP) << 8) |
|
|
(lm80_read_value(client,LM80_REG_RES) & 0xf0);
|
|
data->temp_os_max = lm80_read_value(client,LM80_REG_TEMP_OS_MAX);
|
|
data->temp_os_hyst = lm80_read_value(client,LM80_REG_TEMP_OS_HYST);
|
|
data->temp_hot_max = lm80_read_value(client,LM80_REG_TEMP_HOT_MAX);
|
|
data->temp_hot_hyst = lm80_read_value(client,LM80_REG_TEMP_HOT_HYST);
|
|
|
|
i = lm80_read_value(client,LM80_REG_FANDIV);
|
|
data->fan_div[0] = (i >> 2) & 0x03;
|
|
data->fan_div[1] = (i >> 4) & 0x03;
|
|
data->alarms = lm80_read_value(client,LM80_REG_ALARM1) +
|
|
(lm80_read_value(client,LM80_REG_ALARM2) << 8);
|
|
data->last_updated = jiffies;
|
|
data->valid = 1;
|
|
}
|
|
|
|
up(&data->update_lock);
|
|
}
|
|
|
|
|
|
/* The next few functions are the call-back functions of the /proc/sys and
|
|
sysctl files. Which function is used is defined in the ctl_table in
|
|
the extra1 field.
|
|
Each function must return the magnitude (power of 10 to divide the date
|
|
with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
|
|
put a maximum of *nrels elements in results reflecting the data of this
|
|
file, and set *nrels to the number it actually put in it, if operation==
|
|
SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
|
|
results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
|
|
Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
|
|
large enough (by checking the incoming value of *nrels). This is not very
|
|
good practice, but as long as you put less than about 5 values in results,
|
|
you can assume it is large enough. */
|
|
void lm80_in(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results)
|
|
{
|
|
struct lm80_data *data = client->data;
|
|
int nr = ctl_name - LM80_SYSCTL_IN0;
|
|
|
|
if (operation == SENSORS_PROC_REAL_INFO)
|
|
*nrels_mag = 2;
|
|
else if (operation == SENSORS_PROC_REAL_READ) {
|
|
lm80_update_client(client);
|
|
results[0] = IN_FROM_REG(data->in_min[nr],nr);
|
|
results[1] = IN_FROM_REG(data->in_max[nr],nr);
|
|
results[2] = IN_FROM_REG(data->in[nr],nr);
|
|
*nrels_mag = 3;
|
|
} else if (operation == SENSORS_PROC_REAL_WRITE) {
|
|
if (*nrels_mag >= 1) {
|
|
data->in_min[nr] = IN_TO_REG(results[0],nr);
|
|
lm80_write_value(client,LM80_REG_IN_MIN(nr),data->in_min[nr]);
|
|
}
|
|
if (*nrels_mag >= 2) {
|
|
data->in_max[nr] = IN_TO_REG(results[1],nr);
|
|
lm80_write_value(client,LM80_REG_IN_MAX(nr),data->in_max[nr]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results)
|
|
{
|
|
struct lm80_data *data = client->data;
|
|
int nr = ctl_name - LM80_SYSCTL_FAN1 + 1;
|
|
|
|
if (operation == SENSORS_PROC_REAL_INFO)
|
|
*nrels_mag = 0;
|
|
else if (operation == SENSORS_PROC_REAL_READ) {
|
|
lm80_update_client(client);
|
|
results[0] = FAN_FROM_REG(data->fan_min[nr-1],
|
|
DIV_FROM_REG(data->fan_div[nr-1]));
|
|
results[1] = FAN_FROM_REG(data->fan[nr-1],
|
|
DIV_FROM_REG(data->fan_div[nr-1]));
|
|
*nrels_mag = 2;
|
|
} else if (operation == SENSORS_PROC_REAL_WRITE) {
|
|
if (*nrels_mag >= 1) {
|
|
data->fan_min[nr-1] = FAN_TO_REG(results[0],
|
|
DIV_FROM_REG(data->fan_div[nr-1]));
|
|
lm80_write_value(client,nr==1?LM80_REG_FAN1_MIN:LM80_REG_FAN2_MIN,
|
|
data->fan_min[nr-1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results)
|
|
{
|
|
struct lm80_data *data = client->data;
|
|
if (operation == SENSORS_PROC_REAL_INFO)
|
|
*nrels_mag = 4;
|
|
else if (operation == SENSORS_PROC_REAL_READ) {
|
|
lm80_update_client(client);
|
|
results[0] = TEMP_LIMIT_FROM_REG(data->temp_hot_max) * 10000;
|
|
results[1] = TEMP_LIMIT_FROM_REG(data->temp_hot_hyst) * 10000;
|
|
results[2] = TEMP_LIMIT_FROM_REG(data->temp_os_max) * 10000;
|
|
results[3] = TEMP_LIMIT_FROM_REG(data->temp_os_hyst) * 10000;
|
|
results[4] = TEMP_FROM_REG(data->temp);
|
|
*nrels_mag = 5;
|
|
} else if (operation == SENSORS_PROC_REAL_WRITE) {
|
|
if (*nrels_mag >= 1) {
|
|
data->temp_hot_max = TEMP_LIMIT_TO_REG(results[0]);
|
|
lm80_write_value(client,LM80_REG_TEMP_HOT_MAX,data->temp_hot_max);
|
|
}
|
|
if (*nrels_mag >= 2) {
|
|
data->temp_hot_hyst = TEMP_LIMIT_TO_REG(results[1]);
|
|
lm80_write_value(client,LM80_REG_TEMP_HOT_HYST,data->temp_hot_hyst);
|
|
}
|
|
if (*nrels_mag >= 3) {
|
|
data->temp_os_max = TEMP_LIMIT_TO_REG(results[2]);
|
|
lm80_write_value(client,LM80_REG_TEMP_OS_MAX,data->temp_os_max);
|
|
}
|
|
if (*nrels_mag >= 4) {
|
|
data->temp_os_hyst = TEMP_LIMIT_TO_REG(results[3]);
|
|
lm80_write_value(client,LM80_REG_TEMP_OS_HYST,data->temp_os_hyst);
|
|
}
|
|
}
|
|
}
|
|
|
|
void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results)
|
|
{
|
|
struct lm80_data *data = client->data;
|
|
if (operation == SENSORS_PROC_REAL_INFO)
|
|
*nrels_mag = 0;
|
|
else if (operation == SENSORS_PROC_REAL_READ) {
|
|
lm80_update_client(client);
|
|
results[0] = ALARMS_FROM_REG(data->alarms);
|
|
*nrels_mag = 1;
|
|
}
|
|
}
|
|
|
|
void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
|
|
int *nrels_mag, long *results)
|
|
{
|
|
struct lm80_data *data = client->data;
|
|
int old;
|
|
|
|
if (operation == SENSORS_PROC_REAL_INFO)
|
|
*nrels_mag = 0;
|
|
else if (operation == SENSORS_PROC_REAL_READ) {
|
|
lm80_update_client(client);
|
|
results[0] = DIV_FROM_REG(data->fan_div[0]);
|
|
results[1] = DIV_FROM_REG(data->fan_div[1]);
|
|
results[2] = 2;
|
|
*nrels_mag = 3;
|
|
} else if (operation == SENSORS_PROC_REAL_WRITE) {
|
|
old = lm80_read_value(client,LM80_REG_FANDIV);
|
|
if (*nrels_mag >= 2) {
|
|
data->fan_div[1] = DIV_TO_REG(results[1]);
|
|
old = (old & 0xcf) | (data->fan_div[1] << 4);
|
|
}
|
|
if (*nrels_mag >= 1) {
|
|
data->fan_div[0] = DIV_TO_REG(results[0]);
|
|
old = (old & 0xf3) | (data->fan_div[0] << 2);
|
|
lm80_write_value(client,LM80_REG_FANDIV,old);
|
|
}
|
|
}
|
|
}
|
|
|
|
int __init sensors_lm80_init(void)
|
|
{
|
|
int res;
|
|
|
|
printk("lm80.o version %s (%s)\n",LM_VERSION,LM_DATE);
|
|
lm80_initialized = 0;
|
|
|
|
if ((res =i2c_add_driver(&lm80_driver))) {
|
|
printk("lm80.o: Driver registration failed, module not inserted.\n");
|
|
lm80_cleanup();
|
|
return res;
|
|
}
|
|
lm80_initialized ++;
|
|
return 0;
|
|
}
|
|
|
|
int __init lm80_cleanup(void)
|
|
{
|
|
int res;
|
|
|
|
if (lm80_initialized >= 1) {
|
|
if ((res = i2c_del_driver(&lm80_driver))) {
|
|
printk("lm80.o: Driver deregistration failed, module not removed.\n");
|
|
return res;
|
|
}
|
|
lm80_initialized --;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_NO_SYMBOLS;
|
|
|
|
#ifdef MODULE
|
|
|
|
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
|
|
MODULE_DESCRIPTION("LM80 driver");
|
|
|
|
int init_module(void)
|
|
{
|
|
return sensors_lm80_init();
|
|
}
|
|
|
|
int cleanup_module(void)
|
|
{
|
|
return lm80_cleanup();
|
|
}
|
|
|
|
#endif /* MODULE */
|
|
|