2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-25 15:07:05 +00:00
Files
openvswitch/datapath/flow.c

1983 lines
52 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007-2013 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include "vlan.h"
static struct kmem_cache *flow_cache;
static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
struct sw_flow_key_range *range, u8 val);
static void update_range__(struct sw_flow_match *match,
size_t offset, size_t size, bool is_mask)
{
struct sw_flow_key_range *range = NULL;
size_t start = offset;
size_t end = offset + size;
if (!is_mask)
range = &match->range;
else if (match->mask)
range = &match->mask->range;
if (!range)
return;
if (range->start == range->end) {
range->start = start;
range->end = end;
return;
}
if (range->start > start)
range->start = start;
if (range->end < end)
range->end = end;
}
#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
do { \
update_range__(match, offsetof(struct sw_flow_key, field), \
sizeof((match)->key->field), is_mask); \
if (is_mask && match->mask != NULL) { \
(match)->mask->key.field = value; \
} else { \
(match)->key->field = value; \
} \
} while (0)
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
do { \
update_range__(match, offsetof(struct sw_flow_key, field), \
len, is_mask); \
if (is_mask && match->mask != NULL) { \
memcpy(&(match)->mask->key.field, value_p, len); \
} else { \
memcpy(&(match)->key->field, value_p, len); \
} \
} while (0)
void ovs_match_init(struct sw_flow_match *match,
struct sw_flow_key *key,
struct sw_flow_mask *mask)
{
memset(match, 0, sizeof(*match));
match->key = key;
match->mask = mask;
memset(key, 0, sizeof(*key));
if (mask) {
memset(&mask->key, 0, sizeof(mask->key));
mask->range.start = mask->range.end = 0;
}
}
static bool ovs_match_validate(const struct sw_flow_match *match,
u64 key_attrs, u64 mask_attrs)
{
u64 key_expected = 1ULL << OVS_KEY_ATTR_ETHERNET;
u64 mask_allowed = key_attrs; /* At most allow all key attributes */
/* The following mask attributes allowed only if they
* pass the validation tests. */
mask_allowed &= ~((1ULL << OVS_KEY_ATTR_IPV4)
| (1ULL << OVS_KEY_ATTR_IPV6)
| (1ULL << OVS_KEY_ATTR_TCP)
| (1ULL << OVS_KEY_ATTR_UDP)
| (1ULL << OVS_KEY_ATTR_ICMP)
| (1ULL << OVS_KEY_ATTR_ICMPV6)
| (1ULL << OVS_KEY_ATTR_ARP)
| (1ULL << OVS_KEY_ATTR_ND));
if (match->key->phy.in_port == DP_MAX_PORTS &&
match->mask && (match->mask->key.phy.in_port == 0xffff))
mask_allowed |= (1ULL << OVS_KEY_ATTR_IN_PORT);
if (match->key->eth.type == htons(ETH_P_802_2) &&
match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= (1ULL << OVS_KEY_ATTR_ETHERTYPE);
/* Check key attributes. */
if (match->key->eth.type == htons(ETH_P_ARP)
|| match->key->eth.type == htons(ETH_P_RARP)) {
key_expected |= 1ULL << OVS_KEY_ATTR_ARP;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1ULL << OVS_KEY_ATTR_ARP;
}
if (match->key->eth.type == htons(ETH_P_IP)) {
key_expected |= 1ULL << OVS_KEY_ATTR_IPV4;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV4;
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
if (match->key->ip.proto == IPPROTO_UDP) {
key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
}
if (match->key->ip.proto == IPPROTO_TCP) {
key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
}
if (match->key->ip.proto == IPPROTO_ICMP) {
key_expected |= 1ULL << OVS_KEY_ATTR_ICMP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMP;
}
}
}
if (match->key->eth.type == htons(ETH_P_IPV6)) {
key_expected |= 1ULL << OVS_KEY_ATTR_IPV6;
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
mask_allowed |= 1ULL << OVS_KEY_ATTR_IPV6;
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
if (match->key->ip.proto == IPPROTO_UDP) {
key_expected |= 1ULL << OVS_KEY_ATTR_UDP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1ULL << OVS_KEY_ATTR_UDP;
}
if (match->key->ip.proto == IPPROTO_TCP) {
key_expected |= 1ULL << OVS_KEY_ATTR_TCP;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1ULL << OVS_KEY_ATTR_TCP;
}
if (match->key->ip.proto == IPPROTO_ICMPV6) {
key_expected |= 1ULL << OVS_KEY_ATTR_ICMPV6;
if (match->mask && (match->mask->key.ip.proto == 0xff))
mask_allowed |= 1ULL << OVS_KEY_ATTR_ICMPV6;
if (match->key->ipv6.tp.src ==
htons(NDISC_NEIGHBOUR_SOLICITATION) ||
match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
key_expected |= 1ULL << OVS_KEY_ATTR_ND;
if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
mask_allowed |= 1ULL << OVS_KEY_ATTR_ND;
}
}
}
}
if ((key_attrs & key_expected) != key_expected) {
/* Key attributes check failed. */
OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
key_attrs, key_expected);
return false;
}
if ((mask_attrs & mask_allowed) != mask_attrs) {
/* Mask attributes check failed. */
OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
mask_attrs, mask_allowed);
return false;
}
return true;
}
static int check_header(struct sk_buff *skb, int len)
{
if (unlikely(skb->len < len))
return -EINVAL;
if (unlikely(!pskb_may_pull(skb, len)))
return -ENOMEM;
return 0;
}
static bool arphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_network_offset(skb) +
sizeof(struct arp_eth_header));
}
static int check_iphdr(struct sk_buff *skb)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int ip_len;
int err;
err = check_header(skb, nh_ofs + sizeof(struct iphdr));
if (unlikely(err))
return err;
ip_len = ip_hdrlen(skb);
if (unlikely(ip_len < sizeof(struct iphdr) ||
skb->len < nh_ofs + ip_len))
return -EINVAL;
skb_set_transport_header(skb, nh_ofs + ip_len);
return 0;
}
static bool tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
int tcp_len;
if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
return false;
tcp_len = tcp_hdrlen(skb);
if (unlikely(tcp_len < sizeof(struct tcphdr) ||
skb->len < th_ofs + tcp_len))
return false;
return true;
}
static bool udphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct udphdr));
}
static bool icmphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct icmphdr));
}
u64 ovs_flow_used_time(unsigned long flow_jiffies)
{
struct timespec cur_ts;
u64 cur_ms, idle_ms;
ktime_get_ts(&cur_ts);
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
cur_ts.tv_nsec / NSEC_PER_MSEC;
return cur_ms - idle_ms;
}
static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int nh_len;
int payload_ofs;
struct ipv6hdr *nh;
uint8_t nexthdr;
__be16 frag_off;
int err;
err = check_header(skb, nh_ofs + sizeof(*nh));
if (unlikely(err))
return err;
nh = ipv6_hdr(skb);
nexthdr = nh->nexthdr;
payload_ofs = (u8 *)(nh + 1) - skb->data;
key->ip.proto = NEXTHDR_NONE;
key->ip.tos = ipv6_get_dsfield(nh);
key->ip.ttl = nh->hop_limit;
key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
key->ipv6.addr.src = nh->saddr;
key->ipv6.addr.dst = nh->daddr;
payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
if (unlikely(payload_ofs < 0))
return -EINVAL;
if (frag_off) {
if (frag_off & htons(~0x7))
key->ip.frag = OVS_FRAG_TYPE_LATER;
else
key->ip.frag = OVS_FRAG_TYPE_FIRST;
}
nh_len = payload_ofs - nh_ofs;
skb_set_transport_header(skb, nh_ofs + nh_len);
key->ip.proto = nexthdr;
return nh_len;
}
static bool icmp6hdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct icmp6hdr));
}
void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src,
const struct sw_flow_mask *mask)
{
u8 *m = (u8 *)&mask->key + mask->range.start;
u8 *s = (u8 *)src + mask->range.start;
u8 *d = (u8 *)dst + mask->range.start;
int i;
memset(dst, 0, sizeof(*dst));
for (i = 0; i < ovs_sw_flow_mask_size_roundup(mask); i++) {
*d = *s & *m;
d++, s++, m++;
}
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
u8 tcp_flags = 0;
if ((flow->key.eth.type == htons(ETH_P_IP) ||
flow->key.eth.type == htons(ETH_P_IPV6)) &&
flow->key.ip.proto == IPPROTO_TCP &&
likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
spin_lock(&flow->lock);
flow->used = jiffies;
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock(&flow->lock);
}
struct sw_flow_actions *ovs_flow_actions_alloc(int size)
{
struct sw_flow_actions *sfa;
if (size > MAX_ACTIONS_BUFSIZE)
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->actions_len = 0;
return sfa;
}
struct sw_flow *ovs_flow_alloc(void)
{
struct sw_flow *flow;
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
if (!flow)
return ERR_PTR(-ENOMEM);
spin_lock_init(&flow->lock);
flow->sf_acts = NULL;
flow->mask = NULL;
return flow;
}
static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
{
hash = jhash_1word(hash, table->hash_seed);
return flex_array_get(table->buckets,
(hash & (table->n_buckets - 1)));
}
static struct flex_array *alloc_buckets(unsigned int n_buckets)
{
struct flex_array *buckets;
int i, err;
buckets = flex_array_alloc(sizeof(struct hlist_head *),
n_buckets, GFP_KERNEL);
if (!buckets)
return NULL;
err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
if (err) {
flex_array_free(buckets);
return NULL;
}
for (i = 0; i < n_buckets; i++)
INIT_HLIST_HEAD((struct hlist_head *)
flex_array_get(buckets, i));
return buckets;
}
static void free_buckets(struct flex_array *buckets)
{
flex_array_free(buckets);
}
static struct flow_table *__flow_tbl_alloc(int new_size)
{
struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return NULL;
table->buckets = alloc_buckets(new_size);
if (!table->buckets) {
kfree(table);
return NULL;
}
table->n_buckets = new_size;
table->count = 0;
table->node_ver = 0;
table->keep_flows = false;
get_random_bytes(&table->hash_seed, sizeof(u32));
table->mask_list = NULL;
return table;
}
static void __flow_tbl_destroy(struct flow_table *table)
{
int i;
if (table->keep_flows)
goto skip_flows;
for (i = 0; i < table->n_buckets; i++) {
struct sw_flow *flow;
struct hlist_head *head = flex_array_get(table->buckets, i);
datapath: hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Gross <jesse@nicira.com>
2013-03-14 18:40:32 -07:00
struct hlist_node *n;
int ver = table->node_ver;
datapath: hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Gross <jesse@nicira.com>
2013-03-14 18:40:32 -07:00
hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
hlist_del_rcu(&flow->hash_node[ver]);
ovs_flow_free(flow, false);
}
}
BUG_ON(!list_empty(table->mask_list));
kfree(table->mask_list);
skip_flows:
free_buckets(table->buckets);
kfree(table);
}
struct flow_table *ovs_flow_tbl_alloc(int new_size)
{
struct flow_table *table = __flow_tbl_alloc(new_size);
if (!table)
return NULL;
table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL);
if (!table->mask_list) {
table->keep_flows = true;
__flow_tbl_destroy(table);
return NULL;
}
INIT_LIST_HEAD(table->mask_list);
return table;
}
static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
{
struct flow_table *table = container_of(rcu, struct flow_table, rcu);
__flow_tbl_destroy(table);
}
void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred)
{
if (!table)
return;
if (deferred)
call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
else
__flow_tbl_destroy(table);
}
struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last)
{
struct sw_flow *flow;
struct hlist_head *head;
int ver;
int i;
ver = table->node_ver;
while (*bucket < table->n_buckets) {
i = 0;
head = flex_array_get(table->buckets, *bucket);
datapath: hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Gross <jesse@nicira.com>
2013-03-14 18:40:32 -07:00
hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
if (i < *last) {
i++;
continue;
}
*last = i + 1;
return flow;
}
(*bucket)++;
*last = 0;
}
return NULL;
}
static void __tbl_insert(struct flow_table *table, struct sw_flow *flow)
{
struct hlist_head *head;
head = find_bucket(table, flow->hash);
hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
table->count++;
}
static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
{
int old_ver;
int i;
old_ver = old->node_ver;
new->node_ver = !old_ver;
/* Insert in new table. */
for (i = 0; i < old->n_buckets; i++) {
struct sw_flow *flow;
struct hlist_head *head;
head = flex_array_get(old->buckets, i);
datapath: hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Gross <jesse@nicira.com>
2013-03-14 18:40:32 -07:00
hlist_for_each_entry(flow, head, hash_node[old_ver])
__tbl_insert(new, flow);
}
new->mask_list = old->mask_list;
old->keep_flows = true;
}
static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
{
struct flow_table *new_table;
new_table = __flow_tbl_alloc(n_buckets);
if (!new_table)
return ERR_PTR(-ENOMEM);
flow_table_copy_flows(table, new_table);
return new_table;
}
struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
{
return __flow_tbl_rehash(table, table->n_buckets);
}
struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
{
return __flow_tbl_rehash(table, table->n_buckets * 2);
}
static void __flow_free(struct sw_flow *flow)
{
kfree((struct sf_flow_acts __force *)flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
__flow_free(flow);
}
void ovs_flow_free(struct sw_flow *flow, bool deferred)
{
if (!flow)
return;
ovs_sw_flow_mask_del_ref(flow->mask, deferred);
if (deferred)
call_rcu(&flow->rcu, rcu_free_flow_callback);
else
__flow_free(flow);
}
/* RCU callback used by ovs_flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
struct sw_flow_actions *sf_acts = container_of(rcu,
struct sw_flow_actions, rcu);
kfree(sf_acts);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
struct qtag_prefix {
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
return 0;
if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
sizeof(__be16))))
return -ENOMEM;
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
qp = (struct qtag_prefix *) skb->data;
key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
__skb_pull(skb, sizeof(struct qtag_prefix));
return 0;
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
}
static __be16 parse_ethertype(struct sk_buff *skb)
{
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
struct llc_snap_hdr {
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[3];
__be16 ethertype;
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
};
struct llc_snap_hdr *llc;
__be16 proto;
proto = *(__be16 *) skb->data;
__skb_pull(skb, sizeof(__be16));
if (ntohs(proto) >= ETH_P_802_3_MIN)
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
return proto;
if (skb->len < sizeof(struct llc_snap_hdr))
return htons(ETH_P_802_2);
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
return htons(0);
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
llc = (struct llc_snap_hdr *) skb->data;
if (llc->dsap != LLC_SAP_SNAP ||
llc->ssap != LLC_SAP_SNAP ||
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
return htons(ETH_P_802_2);
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
__skb_pull(skb, sizeof(struct llc_snap_hdr));
if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
return llc->ethertype;
return htons(ETH_P_802_2);
}
static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
int nh_len)
{
struct icmp6hdr *icmp = icmp6_hdr(skb);
/* The ICMPv6 type and code fields use the 16-bit transport port
* fields, so we need to store them in 16-bit network byte order.
*/
key->ipv6.tp.src = htons(icmp->icmp6_type);
key->ipv6.tp.dst = htons(icmp->icmp6_code);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
int icmp_len = skb->len - skb_transport_offset(skb);
struct nd_msg *nd;
int offset;
/* In order to process neighbor discovery options, we need the
* entire packet.
*/
if (unlikely(icmp_len < sizeof(*nd)))
return 0;
if (unlikely(skb_linearize(skb)))
return -ENOMEM;
nd = (struct nd_msg *)skb_transport_header(skb);
key->ipv6.nd.target = nd->target;
icmp_len -= sizeof(*nd);
offset = 0;
while (icmp_len >= 8) {
struct nd_opt_hdr *nd_opt =
(struct nd_opt_hdr *)(nd->opt + offset);
int opt_len = nd_opt->nd_opt_len * 8;
if (unlikely(!opt_len || opt_len > icmp_len))
return 0;
/* Store the link layer address if the appropriate
* option is provided. It is considered an error if
* the same link layer option is specified twice.
*/
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
&& opt_len == 8) {
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
goto invalid;
memcpy(key->ipv6.nd.sll,
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
&& opt_len == 8) {
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
goto invalid;
memcpy(key->ipv6.nd.tll,
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
}
icmp_len -= opt_len;
offset += opt_len;
}
}
return 0;
invalid:
memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
return 0;
}
/**
* ovs_flow_extract - extracts a flow key from an Ethernet frame.
* @skb: sk_buff that contains the frame, with skb->data pointing to the
* Ethernet header
* @in_port: port number on which @skb was received.
* @key: output flow key
* @key_lenp: length of output flow key
*
* The caller must ensure that skb->len >= ETH_HLEN.
*
* Returns 0 if successful, otherwise a negative errno value.
*
* Initializes @skb header pointers as follows:
*
* - skb->mac_header: the Ethernet header.
*
* - skb->network_header: just past the Ethernet header, or just past the
* VLAN header, to the first byte of the Ethernet payload.
*
* - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
* on output, then just past the IP header, if one is present and
* of a correct length, otherwise the same as skb->network_header.
* For other key->eth.type values it is left untouched.
*/
int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
{
int error;
struct ethhdr *eth;
memset(key, 0, sizeof(*key));
key->phy.priority = skb->priority;
if (OVS_CB(skb)->tun_key)
memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
key->phy.in_port = in_port;
key->phy.skb_mark = skb_get_mark(skb);
skb_reset_mac_header(skb);
/* Link layer. We are guaranteed to have at least the 14 byte Ethernet
* header in the linear data area.
*/
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
eth = eth_hdr(skb);
memcpy(key->eth.src, eth->h_source, ETH_ALEN);
memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
__skb_pull(skb, 2 * ETH_ALEN);
/* We are going to push all headers that we pull, so no need to
* update skb->csum here. */
if (vlan_tx_tag_present(skb))
key->eth.tci = htons(vlan_get_tci(skb));
else if (eth->h_proto == htons(ETH_P_8021Q))
if (unlikely(parse_vlan(skb, key)))
return -ENOMEM;
key->eth.type = parse_ethertype(skb);
if (unlikely(key->eth.type == htons(0)))
return -ENOMEM;
datapath: Fix handling of 802.1Q and SNAP headers. The kernel and user datapaths have code that assumes that 802.1Q headers are used only inside Ethernet II frames, not inside SNAP-encapsulated frames. But the kernel and user flow_extract() implementations would interpret 802.1Q headers inside SNAP headers as being valid VLANs. This would cause packet corruption if any VLAN-related actions were to be taken, so change the two flow_extract() implementations only to accept 802.1Q as an Ethernet II frame type, not as a SNAP-encoded frame type. 802.1Q-2005 says that this is correct anyhow: Where the ISS instance used to transmit and receive tagged frames is provided by a media access control method that can support Ethernet Type encoding directly (e.g., is an IEEE 802.3 or IEEE 802.11 MAC) or is media access method independent (e.g., 6.6), the TPID is Ethernet Type encoded, i.e., is two octets in length and comprises solely the assigned Ethernet Type value. Where the ISS instance is provided by a media access method that cannot directly support Ethernet Type encoding (e.g., is an IEEE 802.5 or FDDI MAC), the TPID is encoded according to the rule for a Subnetwork Access Protocol (Clause 10 of IEEE Std 802) that encapsulates Ethernet frames over LLC, and comprises the SNAP header (AA-AA-03) followed by the SNAP PID (00-00-00) followed by the two octets of the assigned Ethernet Type value. All of the media that OVS handles supports Ethernet Type fields, so to me that means that we don't have to handle 802.1Q-inside-SNAP. On the other hand, we *do* have to handle SNAP-inside-802.1Q, because this is actually allowed by the standards. So this commit also adds that support. I verified that, with this change, both SNAP and Ethernet packets are properly recognized both with and without 802.1Q encapsulation. I was a bit surprised to find out that Linux does not accept SNAP-encapsulated IP frames on Ethernet. Here's a summary of how frames are handled before and after this commit: Common cases ------------ Ethernet +------------+ 1. |dst|src|TYPE| +------------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 2. |dst|src| len| |aa|aa|03| |000000|TYPE| +------------+ +--------+ +-----------+ Ethernet 802.1Q +------------+ +---------+ 3. |dst|src|8100| |VLAN|TYPE| +------------+ +---------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 4. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |000000|TYPE| +------------+ +---------+ +--------+ +-----------+ Unusual cases ------------- Ethernet LLC SNAP 802.1Q +------------+ +--------+ +-----------+ +---------+ 5. |dst|src| len| |aa|aa|03| |000000|8100| |VLAN|TYPE| +------------+ +--------+ +-----------+ +---------+ Ethernet LLC +------------+ +--------+ 6. |dst|src| len| |xx|xx|xx| +------------+ +--------+ Ethernet LLC SNAP +------------+ +--------+ +-----------+ 7. |dst|src| len| |aa|aa|03| |xxxxxx|xxxx| +------------+ +--------+ +-----------+ Ethernet 802.1Q LLC +------------+ +---------+ +--------+ 8. |dst|src|8100| |VLAN| LEN| |xx|xx|xx| +------------+ +---------+ +--------+ Ethernet 802.1Q LLC SNAP +------------+ +---------+ +--------+ +-----------+ 9. |dst|src|8100| |VLAN| LEN| |aa|aa|03| |xxxxxx|xxxx| +------------+ +---------+ +--------+ +-----------+ Behavior -------- --------------- --------------- ------------------------------------- Before After this commit this commit dl_type dl_vlan dl_type dl_vlan Notes ------- ------- ------- ------- ------------------------------------- 1. TYPE ffff TYPE ffff no change 2. TYPE ffff TYPE ffff no change 3. TYPE VLAN TYPE VLAN no change 4. LEN VLAN TYPE VLAN proposal fixes behavior 5. TYPE VLAN 8100 ffff 802.1Q says this is invalid framing 6. 05ff ffff 05ff ffff no change 7. 05ff ffff 05ff ffff no change 8. LEN VLAN 05ff VLAN proposal fixes behavior 9. LEN VLAN 05ff VLAN proposal fixes behavior Signed-off-by: Ben Pfaff <blp@nicira.com>
2010-08-10 11:35:46 -07:00
skb_reset_network_header(skb);
__skb_push(skb, skb->data - skb_mac_header(skb));
/* Network layer. */
if (key->eth.type == htons(ETH_P_IP)) {
struct iphdr *nh;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
__be16 offset;
error = check_iphdr(skb);
if (unlikely(error)) {
if (error == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
}
return error;
}
nh = ip_hdr(skb);
key->ipv4.addr.src = nh->saddr;
key->ipv4.addr.dst = nh->daddr;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
key->ip.proto = nh->protocol;
key->ip.tos = nh->tos;
key->ip.ttl = nh->ttl;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
offset = nh->frag_off & htons(IP_OFFSET);
if (offset) {
key->ip.frag = OVS_FRAG_TYPE_LATER;
return 0;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
}
if (nh->frag_off & htons(IP_MF) ||
skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
key->ip.frag = OVS_FRAG_TYPE_FIRST;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
/* Transport layer. */
if (key->ip.proto == IPPROTO_TCP) {
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv4.tp.src = tcp->source;
key->ipv4.tp.dst = tcp->dest;
}
} else if (key->ip.proto == IPPROTO_UDP) {
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv4.tp.src = udp->source;
key->ipv4.tp.dst = udp->dest;
}
} else if (key->ip.proto == IPPROTO_ICMP) {
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store
* them in 16-bit network byte order. */
key->ipv4.tp.src = htons(icmp->type);
key->ipv4.tp.dst = htons(icmp->code);
}
}
} else if ((key->eth.type == htons(ETH_P_ARP) ||
key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
struct arp_eth_header *arp;
arp = (struct arp_eth_header *)skb_network_header(skb);
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff)
key->ip.proto = ntohs(arp->ar_op);
memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
}
} else if (key->eth.type == htons(ETH_P_IPV6)) {
int nh_len; /* IPv6 Header + Extensions */
nh_len = parse_ipv6hdr(skb, key);
if (unlikely(nh_len < 0)) {
if (nh_len == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
} else {
error = nh_len;
}
return error;
}
if (key->ip.frag == OVS_FRAG_TYPE_LATER)
return 0;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
key->ip.frag = OVS_FRAG_TYPE_FIRST;
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
/* Transport layer. */
if (key->ip.proto == NEXTHDR_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv6.tp.src = tcp->source;
key->ipv6.tp.dst = tcp->dest;
}
} else if (key->ip.proto == NEXTHDR_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv6.tp.src = udp->source;
key->ipv6.tp.dst = udp->dest;
}
} else if (key->ip.proto == NEXTHDR_ICMP) {
if (icmp6hdr_ok(skb)) {
error = parse_icmpv6(skb, key, nh_len);
if (error)
return error;
}
}
}
return 0;
}
static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, int key_len)
{
return jhash2((u32 *)((u8 *)key + key_start),
DIV_ROUND_UP(key_len - key_start, sizeof(u32)), 0);
}
static int flow_key_start(const struct sw_flow_key *key)
{
if (key->tun_key.ipv4_dst)
return 0;
else
return offsetof(struct sw_flow_key, phy);
}
static bool __cmp_key(const struct sw_flow_key *key1,
const struct sw_flow_key *key2, int key_start, int key_len)
{
return !memcmp((u8 *)key1 + key_start,
(u8 *)key2 + key_start, (key_len - key_start));
}
static bool __flow_cmp_key(const struct sw_flow *flow,
const struct sw_flow_key *key, int key_start, int key_len)
{
return __cmp_key(&flow->key, key, key_start, key_len);
}
static bool __flow_cmp_unmasked_key(const struct sw_flow *flow,
const struct sw_flow_key *key, int key_start, int key_len)
{
return __cmp_key(&flow->unmasked_key, key, key_start, key_len);
}
bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
const struct sw_flow_key *key, int key_len)
{
int key_start;
key_start = flow_key_start(key);
return __flow_cmp_unmasked_key(flow, key, key_start, key_len);
}
struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table,
struct sw_flow_match *match)
{
struct sw_flow_key *unmasked = match->key;
int key_len = match->range.end;
struct sw_flow *flow;
flow = ovs_flow_lookup(table, unmasked);
if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_len)))
flow = NULL;
return flow;
}
static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table,
const struct sw_flow_key *flow_key,
struct sw_flow_mask *mask)
{
struct sw_flow *flow;
struct hlist_head *head;
int key_start = mask->range.start;
int key_len = mask->range.end;
u32 hash;
struct sw_flow_key masked_key;
ovs_flow_key_mask(&masked_key, flow_key, mask);
hash = ovs_flow_hash(&masked_key, key_start, key_len);
head = find_bucket(table, hash);
datapath: hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jesse Gross <jesse@nicira.com>
2013-03-14 18:40:32 -07:00
hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
if (flow->mask == mask &&
__flow_cmp_key(flow, &masked_key, key_start, key_len))
return flow;
}
return NULL;
}
struct sw_flow *ovs_flow_lookup(struct flow_table *tbl,
const struct sw_flow_key *key)
{
struct sw_flow *flow = NULL;
struct sw_flow_mask *mask;
list_for_each_entry_rcu(mask, tbl->mask_list, list) {
flow = ovs_masked_flow_lookup(tbl, key, mask);
if (flow) /* Found */
break;
}
return flow;
}
void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow)
{
flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start,
flow->mask->range.end);
__tbl_insert(table, flow);
}
void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow)
{
BUG_ON(table->count == 0);
hlist_del_rcu(&flow->hash_node[table->node_ver]);
table->count--;
}
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
[OVS_KEY_ATTR_ENCAP] = -1,
[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
[OVS_KEY_ATTR_TUNNEL] = -1,
};
static bool is_all_zero(const u8 *fp, size_t size)
{
int i;
if (!fp)
return false;
for (i = 0; i < size; i++)
if (fp[i])
return false;
return true;
}
static int __parse_flow_nlattrs(const struct nlattr *attr,
const struct nlattr *a[],
u64 *attrsp, bool nz)
{
const struct nlattr *nla;
u64 attrs;
int rem;
attrs = *attrsp;
nla_for_each_nested(nla, attr, rem) {
u16 type = nla_type(nla);
int expected_len;
if (type > OVS_KEY_ATTR_MAX) {
OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
type, OVS_KEY_ATTR_MAX);
}
if (attrs & (1ULL << type)) {
OVS_NLERR("Duplicate key attribute (type %d).\n", type);
return -EINVAL;
}
expected_len = ovs_key_lens[type];
if (nla_len(nla) != expected_len && expected_len != -1) {
OVS_NLERR("Key attribute has unexpected length (type=%d"
", length=%d, expected=%d).\n", type,
nla_len(nla), expected_len);
return -EINVAL;
}
if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
attrs |= 1ULL << type;
a[type] = nla;
}
}
if (rem) {
OVS_NLERR("Message has %d unknown bytes.\n", rem);
return -EINVAL;
}
*attrsp = attrs;
return 0;
}
static int parse_flow_mask_nlattrs(const struct nlattr *attr,
const struct nlattr *a[], u64 *attrsp)
{
return __parse_flow_nlattrs(attr, a, attrsp, true);
}
static int parse_flow_nlattrs(const struct nlattr *attr,
const struct nlattr *a[], u64 *attrsp)
{
return __parse_flow_nlattrs(attr, a, attrsp, false);
}
int ipv4_tun_from_nlattr(const struct nlattr *attr,
struct sw_flow_match *match, bool is_mask)
{
struct nlattr *a;
int rem;
bool ttl = false;
__be16 tun_flags = 0;
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
};
if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
type, OVS_TUNNEL_KEY_ATTR_MAX);
return -EINVAL;
}
if (ovs_tunnel_key_lens[type] != nla_len(a)) {
OVS_NLERR("IPv4 tunnel attribute type has unexpected "
" legnth (type=%d, length=%d, expected=%d).\n",
type, nla_len(a), ovs_tunnel_key_lens[type]);
return -EINVAL;
}
switch (type) {
case OVS_TUNNEL_KEY_ATTR_ID:
SW_FLOW_KEY_PUT(match, tun_key.tun_id,
nla_get_be64(a), is_mask);
tun_flags |= TUNNEL_KEY;
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
nla_get_be32(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
nla_get_be32(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_TOS:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
nla_get_u8(a), is_mask);
break;
case OVS_TUNNEL_KEY_ATTR_TTL:
SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
nla_get_u8(a), is_mask);
ttl = true;
break;
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
tun_flags |= TUNNEL_DONT_FRAGMENT;
break;
case OVS_TUNNEL_KEY_ATTR_CSUM:
tun_flags |= TUNNEL_CSUM;
break;
default:
return -EINVAL;
}
}
SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
if (rem > 0) {
OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
return -EINVAL;
}
if (!match->key->tun_key.ipv4_dst) {
OVS_NLERR("IPv4 tunnel destination address is zero.\n");
return -EINVAL;
}
if (!ttl) {
OVS_NLERR("IPv4 tunnel TTL not specified.\n");
return -EINVAL;
}
return 0;
}
int ipv4_tun_to_nlattr(struct sk_buff *skb,
const struct ovs_key_ipv4_tunnel *tun_key,
const struct ovs_key_ipv4_tunnel *output)
{
struct nlattr *nla;
nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
if (!nla)
return -EMSGSIZE;
if (output->tun_flags & TUNNEL_KEY &&
nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
return -EMSGSIZE;
if (output->ipv4_src &&
nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
return -EMSGSIZE;
if (output->ipv4_dst &&
nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
return -EMSGSIZE;
if (output->ipv4_tos &&
nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
return -EMSGSIZE;
if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
return -EMSGSIZE;
if ((output->tun_flags & TUNNEL_CSUM) &&
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
return -EMSGSIZE;
nla_nest_end(skb, nla);
return 0;
}
static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
const struct nlattr **a, bool is_mask)
{
if (*attrs & (1ULL << OVS_KEY_ATTR_PRIORITY)) {
SW_FLOW_KEY_PUT(match, phy.priority,
nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_PRIORITY);
}
if (*attrs & (1ULL << OVS_KEY_ATTR_IN_PORT)) {
u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
if (!is_mask && in_port >= DP_MAX_PORTS)
return -EINVAL;
SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_IN_PORT);
} else if (!is_mask) {
SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
}
if (*attrs & (1ULL << OVS_KEY_ATTR_SKB_MARK)) {
uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) && !defined(CONFIG_NETFILTER)
if (!is_mask && mark != 0) {
OVS_NLERR("skb->mark must be zero on this kernel (mark=%d).\n", mark);
return -EINVAL;
}
#endif
SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
*attrs &= ~(1ULL << OVS_KEY_ATTR_SKB_MARK);
}
if (*attrs & (1ULL << OVS_KEY_ATTR_TUNNEL)) {
if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
is_mask))
return -EINVAL;
*attrs &= ~(1ULL << OVS_KEY_ATTR_TUNNEL);
}
return 0;
}
static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
const struct nlattr **a, bool is_mask)
{
int err;
u64 orig_attrs = attrs;
err = metadata_from_nlattrs(match, &attrs, a, is_mask);
if (err)
return err;
if (attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) {
const struct ovs_key_ethernet *eth_key;
eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
SW_FLOW_KEY_MEMCPY(match, eth.src,
eth_key->eth_src, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, eth.dst,
eth_key->eth_dst, ETH_ALEN, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERNET);
}
if (attrs & (1ULL << OVS_KEY_ATTR_VLAN)) {
__be16 tci;
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (!is_mask)
if (!(tci & htons(VLAN_TAG_PRESENT))) {
OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_VLAN);
}
if (attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)) {
__be16 eth_type;
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (!is_mask && ntohs(eth_type) < ETH_P_802_3_MIN) {
OVS_NLERR("EtherType is less than mimimum (type=%x, min=%x).\n",
ntohs(eth_type), ETH_P_802_3_MIN);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
} else if (!is_mask) {
SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
}
if (attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
const struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ip.proto,
ipv4_key->ipv4_proto, is_mask);
SW_FLOW_KEY_PUT(match, ip.tos,
ipv4_key->ipv4_tos, is_mask);
SW_FLOW_KEY_PUT(match, ip.ttl,
ipv4_key->ipv4_ttl, is_mask);
SW_FLOW_KEY_PUT(match, ip.frag,
ipv4_key->ipv4_frag, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
ipv4_key->ipv4_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
ipv4_key->ipv4_dst, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_IPV4);
}
if (attrs & (1ULL << OVS_KEY_ATTR_IPV6)) {
const struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ipv6.label,
ipv6_key->ipv6_label, is_mask);
SW_FLOW_KEY_PUT(match, ip.proto,
ipv6_key->ipv6_proto, is_mask);
SW_FLOW_KEY_PUT(match, ip.tos,
ipv6_key->ipv6_tclass, is_mask);
SW_FLOW_KEY_PUT(match, ip.ttl,
ipv6_key->ipv6_hlimit, is_mask);
SW_FLOW_KEY_PUT(match, ip.frag,
ipv6_key->ipv6_frag, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
ipv6_key->ipv6_src,
sizeof(match->key->ipv6.addr.src),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
ipv6_key->ipv6_dst,
sizeof(match->key->ipv6.addr.dst),
is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6);
}
if (attrs & (1ULL << OVS_KEY_ATTR_ARP)) {
const struct ovs_key_arp *arp_key;
arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
arp_key->arp_op);
return -EINVAL;
}
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
arp_key->arp_sip, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
arp_key->arp_tip, is_mask);
SW_FLOW_KEY_PUT(match, ip.proto,
ntohs(arp_key->arp_op), is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
arp_key->arp_sha, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
arp_key->arp_tha, ETH_ALEN, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_ARP);
}
if (attrs & (1ULL << OVS_KEY_ATTR_TCP)) {
const struct ovs_key_tcp *tcp_key;
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
if (orig_attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
tcp_key->tcp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
tcp_key->tcp_dst, is_mask);
} else {
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
tcp_key->tcp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
tcp_key->tcp_dst, is_mask);
}
attrs &= ~(1ULL << OVS_KEY_ATTR_TCP);
}
if (attrs & (1ULL << OVS_KEY_ATTR_UDP)) {
const struct ovs_key_udp *udp_key;
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
if (orig_attrs & (1ULL << OVS_KEY_ATTR_IPV4)) {
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
udp_key->udp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
udp_key->udp_dst, is_mask);
} else {
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
udp_key->udp_src, is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
udp_key->udp_dst, is_mask);
}
attrs &= ~(1ULL << OVS_KEY_ATTR_UDP);
}
if (attrs & (1ULL << OVS_KEY_ATTR_ICMP)) {
const struct ovs_key_icmp *icmp_key;
icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
SW_FLOW_KEY_PUT(match, ipv4.tp.src,
htons(icmp_key->icmp_type), is_mask);
SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
htons(icmp_key->icmp_code), is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_ICMP);
}
if (attrs & (1ULL << OVS_KEY_ATTR_ICMPV6)) {
const struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
SW_FLOW_KEY_PUT(match, ipv6.tp.src,
htons(icmpv6_key->icmpv6_type), is_mask);
SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
htons(icmpv6_key->icmpv6_code), is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_ICMPV6);
}
if (attrs & (1ULL << OVS_KEY_ATTR_ND)) {
const struct ovs_key_nd *nd_key;
nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
nd_key->nd_target,
sizeof(match->key->ipv6.nd.target),
is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
nd_key->nd_sll, ETH_ALEN, is_mask);
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
nd_key->nd_tll, ETH_ALEN, is_mask);
attrs &= ~(1ULL << OVS_KEY_ATTR_ND);
}
if (attrs != 0)
return -EINVAL;
return 0;
}
/**
* ovs_match_from_nlattrs - parses Netlink attributes into a flow key and
* mask. In case the 'mask' is NULL, the flow is treated as exact match
* flow. Otherwise, it is treated as a wildcarded flow, except the mask
* does not include any don't care bit.
* @match: receives the extracted flow match information.
* @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence. The fields should of the packet that triggered the creation
* of this flow.
* @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
* attribute specifies the mask field of the wildcarded flow.
*/
int ovs_match_from_nlattrs(struct sw_flow_match *match,
const struct nlattr *key,
const struct nlattr *mask)
{
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
const struct nlattr *encap;
u64 key_attrs = 0;
u64 mask_attrs = 0;
bool encap_valid = false;
int err;
err = parse_flow_nlattrs(key, a, &key_attrs);
if (err)
return err;
if (key_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
encap = a[OVS_KEY_ATTR_ENCAP];
key_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
if (nla_len(encap)) {
__be16 eth_type = 0; /* ETH_P_8021Q */
if (a[OVS_KEY_ATTR_ETHERTYPE])
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if ((eth_type == htons(ETH_P_8021Q)) && (a[OVS_KEY_ATTR_VLAN])) {
encap_valid = true;
key_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
err = parse_flow_nlattrs(encap, a, &key_attrs);
} else {
OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
err = -EINVAL;
}
if (err)
return err;
}
}
err = ovs_key_from_nlattrs(match, key_attrs, a, false);
if (err)
return err;
if (mask) {
err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
if (err)
return err;
if ((mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) && encap_valid) {
__be16 eth_type = 0;
mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ENCAP);
if (a[OVS_KEY_ATTR_ETHERTYPE])
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (eth_type == htons(0xffff)) {
mask_attrs &= ~(1ULL << OVS_KEY_ATTR_ETHERTYPE);
encap = a[OVS_KEY_ATTR_ENCAP];
err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
} else {
OVS_NLERR("VLAN frames must have an exact match"
" on the TPID (mask=%x).\n",
ntohs(eth_type));
err = -EINVAL;
}
if (err)
return err;
}
err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
if (err)
return err;
} else {
/* Populate exact match flow's key mask. */
if (match->mask)
ovs_sw_flow_mask_set(match->mask, &match->range, 0xff);
}
if (!ovs_match_validate(match, key_attrs, mask_attrs))
return -EINVAL;
return 0;
}
/**
* ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
* @flow: Receives extracted in_port, priority, tun_key and skb_mark.
* @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence.
*
* This parses a series of Netlink attributes that form a flow key, which must
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
* get the metadata, that is, the parts of the flow key that cannot be
* extracted from the packet itself.
*/
int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow,
const struct nlattr *attr)
{
struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
u64 attrs = 0;
int err;
struct sw_flow_match match;
flow->key.phy.in_port = DP_MAX_PORTS;
flow->key.phy.priority = 0;
flow->key.phy.skb_mark = 0;
memset(tun_key, 0, sizeof(flow->key.tun_key));
err = parse_flow_nlattrs(attr, a, &attrs);
if (err)
return -EINVAL;
memset(&match, 0, sizeof(match));
match.key = &flow->key;
err = metadata_from_nlattrs(&match, &attrs, a, false);
if (err)
return err;
return 0;
}
int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey,
const struct sw_flow_key *output, struct sk_buff *skb)
{
struct ovs_key_ethernet *eth_key;
struct nlattr *nla, *encap;
if (output->phy.priority &&
nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
goto nla_put_failure;
if (swkey->tun_key.ipv4_dst &&
ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
goto nla_put_failure;
if (swkey->phy.in_port == DP_MAX_PORTS) {
if ((swkey != output) && (output->phy.in_port == 0xffff))
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
goto nla_put_failure;
} else {
u16 upper_u16;
upper_u16 = (swkey == output) ? 0 : 0xffff;
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
(upper_u16 << 16) | output->phy.in_port))
goto nla_put_failure;
}
if (output->phy.skb_mark &&
nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
goto nla_put_failure;
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
if (!nla)
goto nla_put_failure;
eth_key = nla_data(nla);
memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
__be16 eth_type;
eth_type = (swkey == output) ? htons(ETH_P_8021Q) : htons(0xffff) ;
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
goto nla_put_failure;
encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
if (!swkey->eth.tci)
goto unencap;
} else
encap = NULL;
if (swkey->eth.type == htons(ETH_P_802_2)) {
/*
* Ethertype 802.2 is represented in the netlink with omitted
* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
* 0xffff in the mask attribute. Ethertype can also
* be wildcarded.
*/
if (swkey != output && output->eth.type)
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
output->eth.type))
goto nla_put_failure;
goto unencap;
}
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
goto nla_put_failure;
if (swkey->eth.type == htons(ETH_P_IP)) {
struct ovs_key_ipv4 *ipv4_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
if (!nla)
goto nla_put_failure;
ipv4_key = nla_data(nla);
ipv4_key->ipv4_src = output->ipv4.addr.src;
ipv4_key->ipv4_dst = output->ipv4.addr.dst;
ipv4_key->ipv4_proto = output->ip.proto;
ipv4_key->ipv4_tos = output->ip.tos;
ipv4_key->ipv4_ttl = output->ip.ttl;
ipv4_key->ipv4_frag = output->ip.frag;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
struct ovs_key_ipv6 *ipv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
if (!nla)
goto nla_put_failure;
ipv6_key = nla_data(nla);
memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
sizeof(ipv6_key->ipv6_src));
memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
sizeof(ipv6_key->ipv6_dst));
ipv6_key->ipv6_label = output->ipv6.label;
ipv6_key->ipv6_proto = output->ip.proto;
ipv6_key->ipv6_tclass = output->ip.tos;
ipv6_key->ipv6_hlimit = output->ip.ttl;
ipv6_key->ipv6_frag = output->ip.frag;
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
swkey->eth.type == htons(ETH_P_RARP)) {
struct ovs_key_arp *arp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
if (!nla)
goto nla_put_failure;
arp_key = nla_data(nla);
memset(arp_key, 0, sizeof(struct ovs_key_arp));
arp_key->arp_sip = output->ipv4.addr.src;
arp_key->arp_tip = output->ipv4.addr.dst;
arp_key->arp_op = htons(output->ip.proto);
memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
}
Implement new fragment handling policy. Until now, OVS has handled IP fragments more awkwardly than necessary. It has not been possible to match on L4 headers, even in fragments with offset 0 where they are actually present. This means that there was no way to implement ACLs that treat, say, different TCP ports differently, on fragmented traffic; instead, all decisions for fragment forwarding had to be made on the basis of L2 and L3 headers alone. This commit improves the situation significantly. It is still not possible to match on L4 headers in fragments with nonzero offset, because that information is simply not present in such fragments, but this commit adds the ability to match on L4 headers for fragments with zero offset. This means that it becomes possible to implement ACLs that drop such "first fragments" on the basis of L4 headers. In practice, that effectively blocks even fragmented traffic on an L4 basis, because the receiving IP stack cannot reassemble a full packet when the first fragment is missing. This commit works by adding a new "fragment type" to the kernel flow match and making it available through OpenFlow as a new NXM field named NXM_NX_IP_FRAG. Because OpenFlow 1.0 explicitly says that the L4 fields are always 0 for IP fragments, it adds a new OpenFlow fragment handling mode that fills in the L4 fields for "first fragments". It also enhances ovs-ofctl to allow users to configure this new fragment handling mode and to parse the new field. Signed-off-by: Ben Pfaff <blp@nicira.com> Bug #7557.
2011-10-19 21:33:44 -07:00
if ((swkey->eth.type == htons(ETH_P_IP) ||
swkey->eth.type == htons(ETH_P_IPV6)) &&
swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
if (swkey->ip.proto == IPPROTO_TCP) {
struct ovs_key_tcp *tcp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
if (!nla)
goto nla_put_failure;
tcp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
tcp_key->tcp_src = output->ipv4.tp.src;
tcp_key->tcp_dst = output->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
tcp_key->tcp_src = output->ipv6.tp.src;
tcp_key->tcp_dst = output->ipv6.tp.dst;
}
} else if (swkey->ip.proto == IPPROTO_UDP) {
struct ovs_key_udp *udp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
if (!nla)
goto nla_put_failure;
udp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
udp_key->udp_src = output->ipv4.tp.src;
udp_key->udp_dst = output->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
udp_key->udp_src = output->ipv6.tp.src;
udp_key->udp_dst = output->ipv6.tp.dst;
}
} else if (swkey->eth.type == htons(ETH_P_IP) &&
swkey->ip.proto == IPPROTO_ICMP) {
struct ovs_key_icmp *icmp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
if (!nla)
goto nla_put_failure;
icmp_key = nla_data(nla);
icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
swkey->ip.proto == IPPROTO_ICMPV6) {
struct ovs_key_icmpv6 *icmpv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
sizeof(*icmpv6_key));
if (!nla)
goto nla_put_failure;
icmpv6_key = nla_data(nla);
icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
struct ovs_key_nd *nd_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
if (!nla)
goto nla_put_failure;
nd_key = nla_data(nla);
memcpy(nd_key->nd_target, &output->ipv6.nd.target,
sizeof(nd_key->nd_target));
memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
}
}
}
unencap:
if (encap)
nla_nest_end(skb, encap);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int ovs_flow_init(void)
{
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
return 0;
}
/* Uninitializes the flow module. */
void ovs_flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}
struct sw_flow_mask *ovs_sw_flow_mask_alloc(void)
{
struct sw_flow_mask *mask;
mask = kmalloc(sizeof(*mask), GFP_KERNEL);
if (mask)
mask->ref_count = 0;
return mask;
}
void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask)
{
mask->ref_count++;
}
static void rcu_free_sw_flow_mask_cb(struct rcu_head *rcu)
{
struct sw_flow_mask *mask = container_of(rcu, struct sw_flow_mask, rcu);
kfree(mask);
}
void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred)
{
if (!mask)
return;
BUG_ON(!mask->ref_count);
mask->ref_count--;
if (!mask->ref_count) {
list_del_rcu(&mask->list);
if (deferred)
call_rcu(&mask->rcu, rcu_free_sw_flow_mask_cb);
else
kfree(mask);
}
}
static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a,
const struct sw_flow_mask *b)
{
u8 *a_ = (u8 *)&a->key + a->range.start;
u8 *b_ = (u8 *)&b->key + b->range.start;
return (a->range.end == b->range.end)
&& (a->range.start == b->range.start)
&& (memcmp(a_, b_, ovs_sw_flow_mask_actual_size(a)) == 0);
}
struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl,
const struct sw_flow_mask *mask)
{
struct list_head *ml;
list_for_each(ml, tbl->mask_list) {
struct sw_flow_mask *m;
m = container_of(ml, struct sw_flow_mask, list);
if (ovs_sw_flow_mask_equal(mask, m))
return m;
}
return NULL;
}
/**
* add a new mask into the mask list.
* The caller needs to make sure that 'mask' is not the same
* as any masks that are already on the list.
*/
void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask)
{
list_add_rcu(&mask->list, tbl->mask_list);
}
/**
* Set 'range' fields in the mask to the value of 'val'.
*/
static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
struct sw_flow_key_range *range, u8 val)
{
u8 *m = (u8 *)&mask->key + range->start;
mask->range = *range;
memset(m, val, ovs_sw_flow_mask_size_roundup(mask));
}