2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-23 14:57:06 +00:00
Files
openvswitch/datapath/vport.c

645 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010, 2011 Nicira Networks.
* Distributed under the terms of the GNU GPL version 2.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include <linux/dcache.h>
#include <linux/etherdevice.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/rtnetlink.h>
#include <linux/compat.h>
#include <linux/version.h>
#include "vport.h"
#include "vport-internal_dev.h"
/* List of statically compiled vport implementations. Don't forget to also
* add yours to the list at the bottom of vport.h. */
static const struct vport_ops *base_vport_ops_list[] = {
&netdev_vport_ops,
&internal_vport_ops,
&patch_vport_ops,
&gre_vport_ops,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
&capwap_vport_ops,
#endif
};
static const struct vport_ops **vport_ops_list;
static int n_vport_types;
/* Protected by RCU read lock for reading, RTNL lock for writing. */
static struct hlist_head *dev_table;
#define VPORT_HASH_BUCKETS 1024
/**
* vport_init - initialize vport subsystem
*
* Called at module load time to initialize the vport subsystem and any
* compiled in vport types.
*/
int vport_init(void)
{
int err;
int i;
dev_table = kzalloc(VPORT_HASH_BUCKETS * sizeof(struct hlist_head),
GFP_KERNEL);
if (!dev_table) {
err = -ENOMEM;
goto error;
}
vport_ops_list = kmalloc(ARRAY_SIZE(base_vport_ops_list) *
sizeof(struct vport_ops *), GFP_KERNEL);
if (!vport_ops_list) {
err = -ENOMEM;
goto error_dev_table;
}
for (i = 0; i < ARRAY_SIZE(base_vport_ops_list); i++) {
const struct vport_ops *new_ops = base_vport_ops_list[i];
if (new_ops->init)
err = new_ops->init();
else
err = 0;
if (!err)
vport_ops_list[n_vport_types++] = new_ops;
else if (new_ops->flags & VPORT_F_REQUIRED) {
vport_exit();
goto error;
}
}
return 0;
error_dev_table:
kfree(dev_table);
error:
return err;
}
/**
* vport_exit - shutdown vport subsystem
*
* Called at module exit time to shutdown the vport subsystem and any
* initialized vport types.
*/
void vport_exit(void)
{
int i;
for (i = 0; i < n_vport_types; i++) {
if (vport_ops_list[i]->exit)
vport_ops_list[i]->exit();
}
kfree(vport_ops_list);
kfree(dev_table);
}
static struct hlist_head *hash_bucket(const char *name)
{
unsigned int hash = full_name_hash(name, strlen(name));
return &dev_table[hash & (VPORT_HASH_BUCKETS - 1)];
}
/**
* vport_locate - find a port that has already been created
*
* @name: name of port to find
*
* Must be called with RTNL or RCU read lock.
*/
struct vport *vport_locate(const char *name)
{
struct hlist_head *bucket = hash_bucket(name);
struct vport *vport;
struct hlist_node *node;
hlist_for_each_entry_rcu(vport, node, bucket, hash_node)
if (!strcmp(name, vport_get_name(vport)))
return vport;
return NULL;
}
static void release_vport(struct kobject *kobj)
{
struct vport *p = container_of(kobj, struct vport, kobj);
kfree(p);
}
static struct kobj_type brport_ktype = {
#ifdef CONFIG_SYSFS
.sysfs_ops = &brport_sysfs_ops,
#endif
.release = release_vport
};
/**
* vport_alloc - allocate and initialize new vport
*
* @priv_size: Size of private data area to allocate.
* @ops: vport device ops
*
* Allocate and initialize a new vport defined by @ops. The vport will contain
* a private data area of size @priv_size that can be accessed using
* vport_priv(). vports that are no longer needed should be released with
* vport_free().
*/
struct vport *vport_alloc(int priv_size, const struct vport_ops *ops, const struct vport_parms *parms)
{
struct vport *vport;
size_t alloc_size;
alloc_size = sizeof(struct vport);
if (priv_size) {
alloc_size = ALIGN(alloc_size, VPORT_ALIGN);
alloc_size += priv_size;
}
vport = kzalloc(alloc_size, GFP_KERNEL);
if (!vport)
return ERR_PTR(-ENOMEM);
vport->dp = parms->dp;
vport->port_no = parms->port_no;
vport->upcall_pid = parms->upcall_pid;
vport->ops = ops;
/* Initialize kobject for bridge. This will be added as
* /sys/class/net/<devname>/brport later, if sysfs is enabled. */
vport->kobj.kset = NULL;
kobject_init(&vport->kobj, &brport_ktype);
vport->percpu_stats = alloc_percpu(struct vport_percpu_stats);
if (!vport->percpu_stats)
return ERR_PTR(-ENOMEM);
spin_lock_init(&vport->stats_lock);
return vport;
}
/**
* vport_free - uninitialize and free vport
*
* @vport: vport to free
*
* Frees a vport allocated with vport_alloc() when it is no longer needed.
*
* The caller must ensure that an RCU grace period has passed since the last
* time @vport was in a datapath.
*/
void vport_free(struct vport *vport)
{
free_percpu(vport->percpu_stats);
kobject_put(&vport->kobj);
}
/**
* vport_add - add vport device (for kernel callers)
*
* @parms: Information about new vport.
*
* Creates a new vport with the specified configuration (which is dependent on
* device type). RTNL lock must be held.
*/
struct vport *vport_add(const struct vport_parms *parms)
{
struct vport *vport;
int err = 0;
int i;
ASSERT_RTNL();
for (i = 0; i < n_vport_types; i++) {
if (vport_ops_list[i]->type == parms->type) {
vport = vport_ops_list[i]->create(parms);
if (IS_ERR(vport)) {
err = PTR_ERR(vport);
goto out;
}
hlist_add_head_rcu(&vport->hash_node,
hash_bucket(vport_get_name(vport)));
return vport;
}
}
err = -EAFNOSUPPORT;
out:
return ERR_PTR(err);
}
/**
* vport_set_options - modify existing vport device (for kernel callers)
*
* @vport: vport to modify.
* @port: New configuration.
*
* Modifies an existing device with the specified configuration (which is
* dependent on device type). RTNL lock must be held.
*/
int vport_set_options(struct vport *vport, struct nlattr *options)
{
ASSERT_RTNL();
if (!vport->ops->set_options)
return -EOPNOTSUPP;
return vport->ops->set_options(vport, options);
}
/**
* vport_del - delete existing vport device
*
* @vport: vport to delete.
*
* Detaches @vport from its datapath and destroys it. It is possible to fail
* for reasons such as lack of memory. RTNL lock must be held.
*/
void vport_del(struct vport *vport)
{
ASSERT_RTNL();
hlist_del_rcu(&vport->hash_node);
vport->ops->destroy(vport);
}
/**
* vport_set_addr - set device Ethernet address (for kernel callers)
*
* @vport: vport on which to set Ethernet address.
* @addr: New address.
*
* Sets the Ethernet address of the given device. Some devices may not support
* setting the Ethernet address, in which case the result will always be
* -EOPNOTSUPP. RTNL lock must be held.
*/
int vport_set_addr(struct vport *vport, const unsigned char *addr)
{
ASSERT_RTNL();
if (!is_valid_ether_addr(addr))
return -EADDRNOTAVAIL;
if (vport->ops->set_addr)
return vport->ops->set_addr(vport, addr);
else
return -EOPNOTSUPP;
}
/**
* vport_set_stats - sets offset device stats
*
* @vport: vport on which to set stats
* @stats: stats to set
*
* Provides a set of transmit, receive, and error stats to be added as an
* offset to the collect data when stats are retreived. Some devices may not
* support setting the stats, in which case the result will always be
* -EOPNOTSUPP.
*
* Must be called with RTNL lock.
*/
void vport_set_stats(struct vport *vport, struct ovs_vport_stats *stats)
{
ASSERT_RTNL();
spin_lock_bh(&vport->stats_lock);
vport->offset_stats = *stats;
spin_unlock_bh(&vport->stats_lock);
}
/**
* vport_get_name - retrieve device name
*
* @vport: vport from which to retrieve the name.
*
* Retrieves the name of the given device. Either RTNL lock or rcu_read_lock
* must be held for the entire duration that the name is in use.
*/
const char *vport_get_name(const struct vport *vport)
{
return vport->ops->get_name(vport);
}
/**
* vport_get_type - retrieve device type
*
* @vport: vport from which to retrieve the type.
*
* Retrieves the type of the given device.
*/
enum ovs_vport_type vport_get_type(const struct vport *vport)
{
return vport->ops->type;
}
/**
* vport_get_addr - retrieve device Ethernet address (for kernel callers)
*
* @vport: vport from which to retrieve the Ethernet address.
*
* Retrieves the Ethernet address of the given device. Either RTNL lock or
* rcu_read_lock must be held for the entire duration that the Ethernet address
* is in use.
*/
const unsigned char *vport_get_addr(const struct vport *vport)
{
return vport->ops->get_addr(vport);
}
/**
* vport_get_kobj - retrieve associated kobj
*
* @vport: vport from which to retrieve the associated kobj
*
* Retrieves the associated kobj or null if no kobj. The returned kobj is
* valid for as long as the vport exists.
*/
struct kobject *vport_get_kobj(const struct vport *vport)
{
if (vport->ops->get_kobj)
return vport->ops->get_kobj(vport);
else
return NULL;
}
/**
* vport_get_stats - retrieve device stats
*
* @vport: vport from which to retrieve the stats
* @stats: location to store stats
*
* Retrieves transmit, receive, and error stats for the given device.
*
* Must be called with RTNL lock or rcu_read_lock.
*/
void vport_get_stats(struct vport *vport, struct ovs_vport_stats *stats)
{
int i;
/* We potentially have 3 sources of stats that need to be
* combined: those we have collected (split into err_stats and
* percpu_stats), offset_stats from set_stats(), and device
* error stats from netdev->get_stats() (for errors that happen
* downstream and therefore aren't reported through our
* vport_record_error() function).
* Stats from first two sources are merged and reported by ovs over
* OVS_VPORT_ATTR_STATS.
* netdev-stats can be directly read over netlink-ioctl.
*/
spin_lock_bh(&vport->stats_lock);
*stats = vport->offset_stats;
stats->rx_errors += vport->err_stats.rx_errors;
stats->tx_errors += vport->err_stats.tx_errors;
stats->tx_dropped += vport->err_stats.tx_dropped;
stats->rx_dropped += vport->err_stats.rx_dropped;
spin_unlock_bh(&vport->stats_lock);
for_each_possible_cpu(i) {
const struct vport_percpu_stats *percpu_stats;
struct vport_percpu_stats local_stats;
unsigned seqcount;
percpu_stats = per_cpu_ptr(vport->percpu_stats, i);
do {
seqcount = read_seqcount_begin(&percpu_stats->seqlock);
local_stats = *percpu_stats;
} while (read_seqcount_retry(&percpu_stats->seqlock, seqcount));
stats->rx_bytes += local_stats.rx_bytes;
stats->rx_packets += local_stats.rx_packets;
stats->tx_bytes += local_stats.tx_bytes;
stats->tx_packets += local_stats.tx_packets;
}
}
/**
* vport_get_flags - retrieve device flags
*
* @vport: vport from which to retrieve the flags
*
* Retrieves the flags of the given device.
*
* Must be called with RTNL lock or rcu_read_lock.
*/
unsigned vport_get_flags(const struct vport *vport)
{
return vport->ops->get_dev_flags(vport);
}
/**
* vport_get_flags - check whether device is running
*
* @vport: vport on which to check status.
*
* Checks whether the given device is running.
*
* Must be called with RTNL lock or rcu_read_lock.
*/
int vport_is_running(const struct vport *vport)
{
return vport->ops->is_running(vport);
}
/**
* vport_get_flags - retrieve device operating state
*
* @vport: vport from which to check status
*
* Retrieves the RFC2863 operstate of the given device.
*
* Must be called with RTNL lock or rcu_read_lock.
*/
unsigned char vport_get_operstate(const struct vport *vport)
{
return vport->ops->get_operstate(vport);
}
/**
* vport_get_ifindex - retrieve device system interface index
*
* @vport: vport from which to retrieve index
*
* Retrieves the system interface index of the given device or 0 if
* the device does not have one (in the case of virtual ports).
* Returns a negative index on error.
*
* Must be called with RTNL lock or rcu_read_lock.
*/
int vport_get_ifindex(const struct vport *vport)
{
if (vport->ops->get_ifindex)
return vport->ops->get_ifindex(vport);
else
return 0;
}
/**
* vport_get_mtu - retrieve device MTU
*
* @vport: vport from which to retrieve MTU
*
datapath: Consider tunnels to have no MTU, fixing jumbo frame support. Until now, tunnel vports have had a specific MTU, in the same way that ordinary network devices have an MTU, but treating them this way does not always make sense. For example, consider a datapath that has three ports: the local port, a GRE tunnel to another host, and a physical port. If the physical port is configured with a jumbo MTU, it should be possible to send jumbo packets across the tunnel: the tunnel can do fragmentation or the physical port traversed by the tunnel might have a jumbo MTU. However, until now, tunnels always had a 1500-byte MTU by default. It could be adjusted using ODP_VPORT_MTU_SET, but nothing actually did this. One alternative would be to make ovs-vswitchd able to set the vport's MTU. This commit, however, takes a different approach, of dropping the concept of MTU entirely for tunnel vports. This also solves the problem described above, without making any additional work for anyone. I tested that, without this change, I could not send 1600-byte "pings" between two machines whose NICs had 2000-byte MTUs that were connected to vswitches that were in turn connected over GRE tunnels with the default 1500-byte MTU. With this change, it worked OK, regardless of the MTU of the network traversed by the GRE tunnel. This patch also makes "patch" ports MTU-less. It might make sense to remove vport_set_mtu() and the associated callback now, since ordinary network devices are the only vports that support it now. Signed-off-by: Ben Pfaff <blp@nicira.com> Suggested-by: Jesse Gross <jesse@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com> Bug #3728.
2011-02-01 11:32:06 -08:00
* Retrieves the MTU of the given device. Returns 0 if @vport does not have an
* MTU (as e.g. some tunnels do not). Either RTNL lock or rcu_read_lock must
* be held.
*/
int vport_get_mtu(const struct vport *vport)
{
datapath: Consider tunnels to have no MTU, fixing jumbo frame support. Until now, tunnel vports have had a specific MTU, in the same way that ordinary network devices have an MTU, but treating them this way does not always make sense. For example, consider a datapath that has three ports: the local port, a GRE tunnel to another host, and a physical port. If the physical port is configured with a jumbo MTU, it should be possible to send jumbo packets across the tunnel: the tunnel can do fragmentation or the physical port traversed by the tunnel might have a jumbo MTU. However, until now, tunnels always had a 1500-byte MTU by default. It could be adjusted using ODP_VPORT_MTU_SET, but nothing actually did this. One alternative would be to make ovs-vswitchd able to set the vport's MTU. This commit, however, takes a different approach, of dropping the concept of MTU entirely for tunnel vports. This also solves the problem described above, without making any additional work for anyone. I tested that, without this change, I could not send 1600-byte "pings" between two machines whose NICs had 2000-byte MTUs that were connected to vswitches that were in turn connected over GRE tunnels with the default 1500-byte MTU. With this change, it worked OK, regardless of the MTU of the network traversed by the GRE tunnel. This patch also makes "patch" ports MTU-less. It might make sense to remove vport_set_mtu() and the associated callback now, since ordinary network devices are the only vports that support it now. Signed-off-by: Ben Pfaff <blp@nicira.com> Suggested-by: Jesse Gross <jesse@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com> Bug #3728.
2011-02-01 11:32:06 -08:00
if (!vport->ops->get_mtu)
return 0;
return vport->ops->get_mtu(vport);
}
/**
* vport_get_options - retrieve device options
*
* @vport: vport from which to retrieve the options.
* @skb: sk_buff where options should be appended.
*
* Retrieves the configuration of the given device, appending an
* %OVS_VPORT_ATTR_OPTIONS attribute that in turn contains nested
* vport-specific attributes to @skb.
*
* Returns 0 if successful, -EMSGSIZE if @skb has insufficient room, or another
* negative error code if a real error occurred. If an error occurs, @skb is
* left unmodified.
*
* Must be called with RTNL lock or rcu_read_lock.
*/
int vport_get_options(const struct vport *vport, struct sk_buff *skb)
{
struct nlattr *nla;
nla = nla_nest_start(skb, OVS_VPORT_ATTR_OPTIONS);
if (!nla)
return -EMSGSIZE;
if (vport->ops->get_options) {
int err = vport->ops->get_options(vport, skb);
if (err) {
nla_nest_cancel(skb, nla);
return err;
}
}
nla_nest_end(skb, nla);
return 0;
}
/**
* vport_receive - pass up received packet to the datapath for processing
*
* @vport: vport that received the packet
* @skb: skb that was received
*
* Must be called with rcu_read_lock. The packet cannot be shared and
* skb->data should point to the Ethernet header. The caller must have already
* called compute_ip_summed() to initialize the checksumming fields.
*/
void vport_receive(struct vport *vport, struct sk_buff *skb)
{
struct vport_percpu_stats *stats;
local_bh_disable();
stats = per_cpu_ptr(vport->percpu_stats, smp_processor_id());
write_seqcount_begin(&stats->seqlock);
stats->rx_packets++;
stats->rx_bytes += skb->len;
write_seqcount_end(&stats->seqlock);
local_bh_enable();
if (!(vport->ops->flags & VPORT_F_FLOW))
OVS_CB(skb)->flow = NULL;
if (!(vport->ops->flags & VPORT_F_TUN_ID))
OVS_CB(skb)->tun_id = 0;
dp_process_received_packet(vport, skb);
}
/**
* vport_send - send a packet on a device
*
* @vport: vport on which to send the packet
* @skb: skb to send
*
* Sends the given packet and returns the length of data sent. Either RTNL
* lock or rcu_read_lock must be held.
*/
int vport_send(struct vport *vport, struct sk_buff *skb)
{
struct vport_percpu_stats *stats;
int sent = vport->ops->send(vport, skb);
local_bh_disable();
stats = per_cpu_ptr(vport->percpu_stats, smp_processor_id());
write_seqcount_begin(&stats->seqlock);
stats->tx_packets++;
stats->tx_bytes += sent;
write_seqcount_end(&stats->seqlock);
local_bh_enable();
datapath: Detect and suppress flows that are implicated in loops. In-kernel loops need to be suppressed; otherwise, they cause high CPU consumption, even to the point that the machine becomes unusable. Ideally these flows should never be added to the Open vSwitch flow table, but it is fairly easy for a buggy controller to create them given the menagerie of tunnels, patches, etc. that OVS makes available. Commit ecbb6953b "datapath: Add loop checking" did the initial work toward suppressing loops, by dropping packets that recursed more than 5 times. This at least prevented the kernel stack from overflowing and thereby OOPSing the machine. But even with this commit, it is still possible to waste a lot of CPU time due to loops. The problem is not limited to 5 recursive calls per packet: any packet can be sent to multiple destinations, which in turn can themselves be sent to multiple destinations, and so on. We have actually seen in practice a case where each packet was, apparently, sent to at least 2 destinations per hop, so that each packet actually consumed CPU time for 2**5 == 32 packets, possibly more. This commit takes loop suppression a step further, by clearing the actions of flows that are implicated in loops. Thus, after the first packet in such a flow, later packets for either the "root" flow or for flows that it ends up looping through are simply discarded, saving a huge amount of CPU time. This version of the commit just clears the actions from the flows that a part of the loop. Probably, there should be some additional action to tell ovs-vswitchd that a loop has been detected, so that it can in turn inform the controller one way or another. My test case was this: ovs-controller -H --max-idle=permanent punix:/tmp/controller ovs-vsctl -- \ set-controller br0 unix:/tmp/controller -- \ add-port br0 patch00 -- \ add-port br0 patch01 -- \ add-port br0 patch10 -- \ add-port br0 patch11 -- \ add-port br0 patch20 -- \ add-port br0 patch21 -- \ add-port br0 patch30 -- \ add-port br0 patch31 -- \ set Interface patch00 type=patch options:peer=patch01 -- \ set Interface patch01 type=patch options:peer=patch00 -- \ set Interface patch10 type=patch options:peer=patch11 -- \ set Interface patch11 type=patch options:peer=patch10 -- \ set Interface patch20 type=patch options:peer=patch21 -- \ set Interface patch21 type=patch options:peer=patch20 -- \ set Interface patch30 type=patch options:peer=patch31 -- \ set Interface patch31 type=patch options:peer=patch30 followed by sending a single "ping" packet from an attached Ethernet port into the bridge. After this, without this commit the vswitch userspace and kernel consume 50-75% of the machine's CPU (in my KVM test setup on a single physical host); with this commit, some CPU is consumed initially but it converges on 0% quickly. A more challenging test sends a series of packets in multiple flows; I used "hping3" with its default options. Without this commit, the vswitch consumes 100% of the machine's CPU, most of which is in the kernel. With this commit, the vswitch consumes "only" 33-50% CPU, most of which is in userspace, so the machine is more responsive. A refinement on this commit would be to pass the loop counter down to userspace as part of the odp_msg struct and then back up as part of the ODP_EXECUTE command arguments. This would, presumably, reduce the CPU requirements, since it would allow loop detection to happen earlier, during initial setup of flows, instead of just on the second and subsequent packets of flows.
2010-08-03 14:40:29 -07:00
return sent;
}
/**
* vport_record_error - indicate device error to generic stats layer
*
* @vport: vport that encountered the error
* @err_type: one of enum vport_err_type types to indicate the error type
*
* If using the vport generic stats layer indicate that an error of the given
* type has occured.
*/
void vport_record_error(struct vport *vport, enum vport_err_type err_type)
{
spin_lock_bh(&vport->stats_lock);
switch (err_type) {
case VPORT_E_RX_DROPPED:
vport->err_stats.rx_dropped++;
break;
case VPORT_E_RX_ERROR:
vport->err_stats.rx_errors++;
break;
case VPORT_E_TX_DROPPED:
vport->err_stats.tx_dropped++;
break;
case VPORT_E_TX_ERROR:
vport->err_stats.tx_errors++;
break;
};
spin_unlock_bh(&vport->stats_lock);
}