2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-13 14:07:02 +00:00
Files
openvswitch/datapath/tunnel.c

1609 lines
41 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010, 2011 Nicira Networks.
* Distributed under the terms of the GNU GPL version 2.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/in_route.h>
#include <linux/jhash.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/workqueue.h>
#include <net/dsfield.h>
#include <net/dst.h>
#include <net/icmp.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
#include <net/ipv6.h>
#endif
#include <net/route.h>
#include <net/xfrm.h>
#include "actions.h"
#include "checksum.h"
#include "datapath.h"
#include "table.h"
#include "tunnel.h"
#include "vport.h"
#include "vport-generic.h"
#include "vport-internal_dev.h"
#ifdef NEED_CACHE_TIMEOUT
/*
* On kernels where we can't quickly detect changes in the rest of the system
* we use an expiration time to invalidate the cache. A shorter expiration
* reduces the length of time that we may potentially blackhole packets while
* a longer time increases performance by reducing the frequency that the
* cache needs to be rebuilt. A variety of factors may cause the cache to be
* invalidated before the expiration time but this is the maximum. The time
* is expressed in jiffies.
*/
#define MAX_CACHE_EXP HZ
#endif
/*
* Interval to check for and remove caches that are no longer valid. Caches
* are checked for validity before they are used for packet encapsulation and
* old caches are removed at that time. However, if no packets are sent through
* the tunnel then the cache will never be destroyed. Since it holds
* references to a number of system objects, the cache will continue to use
* system resources by not allowing those objects to be destroyed. The cache
* cleaner is periodically run to free invalid caches. It does not
* significantly affect system performance. A lower interval will release
* resources faster but will itself consume resources by requiring more frequent
* checks. A longer interval may result in messages being printed to the kernel
* message buffer about unreleased resources. The interval is expressed in
* jiffies.
*/
#define CACHE_CLEANER_INTERVAL (5 * HZ)
#define CACHE_DATA_ALIGN 16
static struct tbl __rcu *port_table __read_mostly;
static void cache_cleaner(struct work_struct *work);
static DECLARE_DELAYED_WORK(cache_cleaner_wq, cache_cleaner);
/*
* These are just used as an optimization: they don't require any kind of
* synchronization because we could have just as easily read the value before
* the port change happened.
*/
static unsigned int key_local_remote_ports __read_mostly;
static unsigned int key_remote_ports __read_mostly;
static unsigned int local_remote_ports __read_mostly;
static unsigned int remote_ports __read_mostly;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36)
#define rt_dst(rt) (rt->dst)
#else
#define rt_dst(rt) (rt->u.dst)
#endif
static inline struct vport *tnl_vport_to_vport(const struct tnl_vport *tnl_vport)
{
return vport_from_priv(tnl_vport);
}
static inline struct tnl_vport *tnl_vport_table_cast(const struct tbl_node *node)
{
return container_of(node, struct tnl_vport, tbl_node);
}
/* This is analogous to rtnl_dereference for the tunnel cache. It checks that
* cache_lock is held, so it is only for update side code.
*/
static inline struct tnl_cache *cache_dereference(struct tnl_vport *tnl_vport)
{
return rcu_dereference_protected(tnl_vport->cache,
lockdep_is_held(&tnl_vport->cache_lock));
}
static inline void schedule_cache_cleaner(void)
{
schedule_delayed_work(&cache_cleaner_wq, CACHE_CLEANER_INTERVAL);
}
static void free_cache(struct tnl_cache *cache)
{
if (!cache)
return;
flow_put(cache->flow);
ip_rt_put(cache->rt);
kfree(cache);
}
static void free_config_rcu(struct rcu_head *rcu)
{
struct tnl_mutable_config *c = container_of(rcu, struct tnl_mutable_config, rcu);
kfree(c);
}
static void free_cache_rcu(struct rcu_head *rcu)
{
struct tnl_cache *c = container_of(rcu, struct tnl_cache, rcu);
free_cache(c);
}
static void assign_config_rcu(struct vport *vport,
struct tnl_mutable_config *new_config)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct tnl_mutable_config *old_config;
old_config = rtnl_dereference(tnl_vport->mutable);
rcu_assign_pointer(tnl_vport->mutable, new_config);
call_rcu(&old_config->rcu, free_config_rcu);
}
static void assign_cache_rcu(struct vport *vport, struct tnl_cache *new_cache)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct tnl_cache *old_cache;
old_cache = cache_dereference(tnl_vport);
rcu_assign_pointer(tnl_vport->cache, new_cache);
if (old_cache)
call_rcu(&old_cache->rcu, free_cache_rcu);
}
static unsigned int *find_port_pool(const struct tnl_mutable_config *mutable)
{
if (mutable->flags & TNL_F_IN_KEY_MATCH) {
if (mutable->saddr)
return &local_remote_ports;
else
return &remote_ports;
} else {
if (mutable->saddr)
return &key_local_remote_ports;
else
return &key_remote_ports;
}
}
struct port_lookup_key {
const struct tnl_mutable_config *mutable;
__be64 key;
u32 tunnel_type;
__be32 saddr;
__be32 daddr;
};
/*
* Modifies 'target' to store the rcu_dereferenced pointer that was used to do
* the comparision.
*/
static int port_cmp(const struct tbl_node *node, void *target)
{
const struct tnl_vport *tnl_vport = tnl_vport_table_cast(node);
struct port_lookup_key *lookup = target;
lookup->mutable = rcu_dereference_rtnl(tnl_vport->mutable);
return (lookup->mutable->tunnel_type == lookup->tunnel_type &&
lookup->mutable->daddr == lookup->daddr &&
lookup->mutable->in_key == lookup->key &&
lookup->mutable->saddr == lookup->saddr);
}
static u32 port_hash(struct port_lookup_key *k)
{
u32 x = jhash_3words((__force u32)k->saddr, (__force u32)k->daddr,
k->tunnel_type, 0);
return jhash_2words((__force u64)k->key >> 32, (__force u32)k->key, x);
}
static u32 mutable_hash(const struct tnl_mutable_config *mutable)
{
struct port_lookup_key lookup;
lookup.saddr = mutable->saddr;
lookup.daddr = mutable->daddr;
lookup.key = mutable->in_key;
lookup.tunnel_type = mutable->tunnel_type;
return port_hash(&lookup);
}
static void check_table_empty(void)
{
struct tbl *old_table = rtnl_dereference(port_table);
if (tbl_count(old_table) == 0) {
cancel_delayed_work_sync(&cache_cleaner_wq);
rcu_assign_pointer(port_table, NULL);
tbl_deferred_destroy(old_table, NULL);
}
}
static int add_port(struct vport *vport)
{
struct tbl *cur_table = rtnl_dereference(port_table);
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
int err;
if (!port_table) {
struct tbl *new_table;
new_table = tbl_create(TBL_MIN_BUCKETS);
if (!new_table)
return -ENOMEM;
rcu_assign_pointer(port_table, new_table);
schedule_cache_cleaner();
} else if (tbl_count(cur_table) > tbl_n_buckets(cur_table)) {
struct tbl *new_table;
new_table = tbl_expand(cur_table);
if (IS_ERR(new_table))
return PTR_ERR(new_table);
rcu_assign_pointer(port_table, new_table);
tbl_deferred_destroy(cur_table, NULL);
}
err = tbl_insert(rtnl_dereference(port_table), &tnl_vport->tbl_node,
mutable_hash(rtnl_dereference(tnl_vport->mutable)));
if (err) {
check_table_empty();
return err;
}
(*find_port_pool(rtnl_dereference(tnl_vport->mutable)))++;
return 0;
}
static int move_port(struct vport *vport, struct tnl_mutable_config *new_mutable)
{
int err;
struct tbl *cur_table = rtnl_dereference(port_table);
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
u32 hash;
hash = mutable_hash(new_mutable);
if (hash == tnl_vport->tbl_node.hash)
goto table_updated;
/*
* Ideally we should make this move atomic to avoid having gaps in
* finding tunnels or the possibility of failure. However, if we do
* find a tunnel it will always be consistent.
*/
err = tbl_remove(cur_table, &tnl_vport->tbl_node);
if (err)
return err;
err = tbl_insert(cur_table, &tnl_vport->tbl_node, hash);
if (err) {
(*find_port_pool(rtnl_dereference(tnl_vport->mutable)))--;
check_table_empty();
return err;
}
table_updated:
(*find_port_pool(rtnl_dereference(tnl_vport->mutable)))--;
assign_config_rcu(vport, new_mutable);
(*find_port_pool(rtnl_dereference(tnl_vport->mutable)))++;
return 0;
}
static int del_port(struct vport *vport)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
int err;
err = tbl_remove(rtnl_dereference(port_table), &tnl_vport->tbl_node);
if (err)
return err;
check_table_empty();
(*find_port_pool(rtnl_dereference(tnl_vport->mutable)))--;
return 0;
}
struct vport *tnl_find_port(__be32 saddr, __be32 daddr, __be64 key,
int tunnel_type,
const struct tnl_mutable_config **mutable)
{
struct port_lookup_key lookup;
struct tbl *table = rcu_dereference_rtnl(port_table);
struct tbl_node *tbl_node;
if (unlikely(!table))
return NULL;
lookup.saddr = saddr;
lookup.daddr = daddr;
if (tunnel_type & TNL_T_KEY_EXACT) {
lookup.key = key;
lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_MATCH;
if (key_local_remote_ports) {
tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
if (tbl_node)
goto found;
}
if (key_remote_ports) {
lookup.saddr = 0;
tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
if (tbl_node)
goto found;
lookup.saddr = saddr;
}
}
if (tunnel_type & TNL_T_KEY_MATCH) {
lookup.key = 0;
lookup.tunnel_type = tunnel_type & ~TNL_T_KEY_EXACT;
if (local_remote_ports) {
tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
if (tbl_node)
goto found;
}
if (remote_ports) {
lookup.saddr = 0;
tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp);
if (tbl_node)
goto found;
}
}
return NULL;
found:
*mutable = lookup.mutable;
return tnl_vport_to_vport(tnl_vport_table_cast(tbl_node));
}
static inline void ecn_decapsulate(struct sk_buff *skb)
{
/* This is accessing the outer IP header of the tunnel, which we've
* already validated to be OK. skb->data is currently set to the start
* of the inner Ethernet header, and we've validated ETH_HLEN.
*/
if (unlikely(INET_ECN_is_ce(ip_hdr(skb)->tos))) {
__be16 protocol = skb->protocol;
skb_set_network_header(skb, ETH_HLEN);
if (skb->protocol == htons(ETH_P_8021Q)) {
if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
return;
protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
skb_set_network_header(skb, VLAN_ETH_HLEN);
}
if (protocol == htons(ETH_P_IP)) {
if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
+ sizeof(struct iphdr))))
return;
IP_ECN_set_ce(ip_hdr(skb));
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (protocol == htons(ETH_P_IPV6)) {
if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
+ sizeof(struct ipv6hdr))))
return;
IP6_ECN_set_ce(ipv6_hdr(skb));
}
#endif
}
}
/* Called with rcu_read_lock. */
void tnl_rcv(struct vport *vport, struct sk_buff *skb)
{
/* Packets received by this function are in the following state:
* - skb->data points to the inner Ethernet header.
* - The inner Ethernet header is in the linear data area.
* - skb->csum does not include the inner Ethernet header.
* - The layer pointers point at the outer headers.
*/
struct ethhdr *eh = (struct ethhdr *)skb->data;
if (likely(ntohs(eh->h_proto) >= 1536))
skb->protocol = eh->h_proto;
else
skb->protocol = htons(ETH_P_802_2);
skb_dst_drop(skb);
nf_reset(skb);
secpath_reset(skb);
ecn_decapsulate(skb);
compute_ip_summed(skb, false);
vport_receive(vport, skb);
}
static bool check_ipv4_address(__be32 addr)
{
if (ipv4_is_multicast(addr) || ipv4_is_lbcast(addr)
|| ipv4_is_loopback(addr) || ipv4_is_zeronet(addr))
return false;
return true;
}
static bool ipv4_should_icmp(struct sk_buff *skb)
{
struct iphdr *old_iph = ip_hdr(skb);
/* Don't respond to L2 broadcast. */
if (is_multicast_ether_addr(eth_hdr(skb)->h_dest))
return false;
/* Don't respond to L3 broadcast or invalid addresses. */
if (!check_ipv4_address(old_iph->daddr) ||
!check_ipv4_address(old_iph->saddr))
return false;
/* Only respond to the first fragment. */
if (old_iph->frag_off & htons(IP_OFFSET))
return false;
/* Don't respond to ICMP error messages. */
if (old_iph->protocol == IPPROTO_ICMP) {
u8 icmp_type, *icmp_typep;
icmp_typep = skb_header_pointer(skb, (u8 *)old_iph +
(old_iph->ihl << 2) +
offsetof(struct icmphdr, type) -
skb->data, sizeof(icmp_type),
&icmp_type);
if (!icmp_typep)
return false;
if (*icmp_typep > NR_ICMP_TYPES
|| (*icmp_typep <= ICMP_PARAMETERPROB
&& *icmp_typep != ICMP_ECHOREPLY
&& *icmp_typep != ICMP_ECHO))
return false;
}
return true;
}
static void ipv4_build_icmp(struct sk_buff *skb, struct sk_buff *nskb,
unsigned int mtu, unsigned int payload_length)
{
struct iphdr *iph, *old_iph = ip_hdr(skb);
struct icmphdr *icmph;
u8 *payload;
iph = (struct iphdr *)skb_put(nskb, sizeof(struct iphdr));
icmph = (struct icmphdr *)skb_put(nskb, sizeof(struct icmphdr));
payload = skb_put(nskb, payload_length);
/* IP */
iph->version = 4;
iph->ihl = sizeof(struct iphdr) >> 2;
iph->tos = (old_iph->tos & IPTOS_TOS_MASK) |
IPTOS_PREC_INTERNETCONTROL;
iph->tot_len = htons(sizeof(struct iphdr)
+ sizeof(struct icmphdr)
+ payload_length);
get_random_bytes(&iph->id, sizeof(iph->id));
iph->frag_off = 0;
iph->ttl = IPDEFTTL;
iph->protocol = IPPROTO_ICMP;
iph->daddr = old_iph->saddr;
iph->saddr = old_iph->daddr;
ip_send_check(iph);
/* ICMP */
icmph->type = ICMP_DEST_UNREACH;
icmph->code = ICMP_FRAG_NEEDED;
icmph->un.gateway = htonl(mtu);
icmph->checksum = 0;
nskb->csum = csum_partial((u8 *)icmph, sizeof(struct icmphdr), 0);
nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_iph - skb->data,
payload, payload_length,
nskb->csum);
icmph->checksum = csum_fold(nskb->csum);
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
static bool ipv6_should_icmp(struct sk_buff *skb)
{
struct ipv6hdr *old_ipv6h = ipv6_hdr(skb);
int addr_type;
int payload_off = (u8 *)(old_ipv6h + 1) - skb->data;
u8 nexthdr = ipv6_hdr(skb)->nexthdr;
/* Check source address is valid. */
addr_type = ipv6_addr_type(&old_ipv6h->saddr);
if (addr_type & IPV6_ADDR_MULTICAST || addr_type == IPV6_ADDR_ANY)
return false;
/* Don't reply to unspecified addresses. */
if (ipv6_addr_type(&old_ipv6h->daddr) == IPV6_ADDR_ANY)
return false;
/* Don't respond to ICMP error messages. */
payload_off = ipv6_skip_exthdr(skb, payload_off, &nexthdr);
if (payload_off < 0)
return false;
if (nexthdr == NEXTHDR_ICMP) {
u8 icmp_type, *icmp_typep;
icmp_typep = skb_header_pointer(skb, payload_off +
offsetof(struct icmp6hdr,
icmp6_type),
sizeof(icmp_type), &icmp_type);
if (!icmp_typep || !(*icmp_typep & ICMPV6_INFOMSG_MASK))
return false;
}
return true;
}
static void ipv6_build_icmp(struct sk_buff *skb, struct sk_buff *nskb,
unsigned int mtu, unsigned int payload_length)
{
struct ipv6hdr *ipv6h, *old_ipv6h = ipv6_hdr(skb);
struct icmp6hdr *icmp6h;
u8 *payload;
ipv6h = (struct ipv6hdr *)skb_put(nskb, sizeof(struct ipv6hdr));
icmp6h = (struct icmp6hdr *)skb_put(nskb, sizeof(struct icmp6hdr));
payload = skb_put(nskb, payload_length);
/* IPv6 */
ipv6h->version = 6;
ipv6h->priority = 0;
memset(&ipv6h->flow_lbl, 0, sizeof(ipv6h->flow_lbl));
ipv6h->payload_len = htons(sizeof(struct icmp6hdr)
+ payload_length);
ipv6h->nexthdr = NEXTHDR_ICMP;
ipv6h->hop_limit = IPV6_DEFAULT_HOPLIMIT;
ipv6_addr_copy(&ipv6h->daddr, &old_ipv6h->saddr);
ipv6_addr_copy(&ipv6h->saddr, &old_ipv6h->daddr);
/* ICMPv6 */
icmp6h->icmp6_type = ICMPV6_PKT_TOOBIG;
icmp6h->icmp6_code = 0;
icmp6h->icmp6_cksum = 0;
icmp6h->icmp6_mtu = htonl(mtu);
nskb->csum = csum_partial((u8 *)icmp6h, sizeof(struct icmp6hdr), 0);
nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_ipv6h - skb->data,
payload, payload_length,
nskb->csum);
icmp6h->icmp6_cksum = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
sizeof(struct icmp6hdr)
+ payload_length,
ipv6h->nexthdr, nskb->csum);
}
#endif /* IPv6 */
bool tnl_frag_needed(struct vport *vport, const struct tnl_mutable_config *mutable,
struct sk_buff *skb, unsigned int mtu, __be64 flow_key)
{
unsigned int eth_hdr_len = ETH_HLEN;
unsigned int total_length = 0, header_length = 0, payload_length;
struct ethhdr *eh, *old_eh = eth_hdr(skb);
struct sk_buff *nskb;
/* Sanity check */
if (skb->protocol == htons(ETH_P_IP)) {
if (mtu < IP_MIN_MTU)
return false;
if (!ipv4_should_icmp(skb))
return true;
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (skb->protocol == htons(ETH_P_IPV6)) {
if (mtu < IPV6_MIN_MTU)
return false;
/*
* In theory we should do PMTUD on IPv6 multicast messages but
* we don't have an address to send from so just fragment.
*/
if (ipv6_addr_type(&ipv6_hdr(skb)->daddr) & IPV6_ADDR_MULTICAST)
return false;
if (!ipv6_should_icmp(skb))
return true;
}
#endif
else
return false;
/* Allocate */
if (old_eh->h_proto == htons(ETH_P_8021Q))
eth_hdr_len = VLAN_ETH_HLEN;
payload_length = skb->len - eth_hdr_len;
if (skb->protocol == htons(ETH_P_IP)) {
header_length = sizeof(struct iphdr) + sizeof(struct icmphdr);
total_length = min_t(unsigned int, header_length +
payload_length, 576);
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else {
header_length = sizeof(struct ipv6hdr) +
sizeof(struct icmp6hdr);
total_length = min_t(unsigned int, header_length +
payload_length, IPV6_MIN_MTU);
}
#endif
total_length = min(total_length, mutable->mtu);
payload_length = total_length - header_length;
nskb = dev_alloc_skb(NET_IP_ALIGN + eth_hdr_len + header_length +
payload_length);
if (!nskb)
return false;
skb_reserve(nskb, NET_IP_ALIGN);
/* Ethernet / VLAN */
eh = (struct ethhdr *)skb_put(nskb, eth_hdr_len);
memcpy(eh->h_dest, old_eh->h_source, ETH_ALEN);
memcpy(eh->h_source, mutable->eth_addr, ETH_ALEN);
nskb->protocol = eh->h_proto = old_eh->h_proto;
if (old_eh->h_proto == htons(ETH_P_8021Q)) {
struct vlan_ethhdr *vh = (struct vlan_ethhdr *)eh;
vh->h_vlan_TCI = vlan_eth_hdr(skb)->h_vlan_TCI;
vh->h_vlan_encapsulated_proto = skb->protocol;
}
skb_reset_mac_header(nskb);
/* Protocol */
if (skb->protocol == htons(ETH_P_IP))
ipv4_build_icmp(skb, nskb, mtu, payload_length);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else
ipv6_build_icmp(skb, nskb, mtu, payload_length);
#endif
/*
* Assume that flow based keys are symmetric with respect to input
* and output and use the key that we were going to put on the
* outgoing packet for the fake received packet. If the keys are
* not symmetric then PMTUD needs to be disabled since we won't have
* any way of synthesizing packets.
*/
if ((mutable->flags & (TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION)) ==
(TNL_F_IN_KEY_MATCH | TNL_F_OUT_KEY_ACTION))
OVS_CB(nskb)->tun_id = flow_key;
compute_ip_summed(nskb, false);
vport_receive(vport, nskb);
return true;
}
static bool check_mtu(struct sk_buff *skb,
struct vport *vport,
const struct tnl_mutable_config *mutable,
const struct rtable *rt, __be16 *frag_offp)
{
int mtu;
__be16 frag_off;
frag_off = (mutable->flags & TNL_F_PMTUD) ? htons(IP_DF) : 0;
if (frag_off)
mtu = dst_mtu(&rt_dst(rt))
- ETH_HLEN
- mutable->tunnel_hlen
- (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
else
mtu = mutable->mtu;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *old_iph = ip_hdr(skb);
frag_off |= old_iph->frag_off & htons(IP_DF);
mtu = max(mtu, IP_MIN_MTU);
if ((old_iph->frag_off & htons(IP_DF)) &&
mtu < ntohs(old_iph->tot_len)) {
if (tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id))
goto drop;
}
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (skb->protocol == htons(ETH_P_IPV6)) {
unsigned int packet_length = skb->len - ETH_HLEN
- (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0);
mtu = max(mtu, IPV6_MIN_MTU);
/* IPv6 requires PMTUD if the packet is above the minimum MTU. */
if (packet_length > IPV6_MIN_MTU)
frag_off = htons(IP_DF);
if (mtu < packet_length) {
if (tnl_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id))
goto drop;
}
}
#endif
*frag_offp = frag_off;
return true;
drop:
*frag_offp = 0;
return false;
}
static void create_tunnel_header(const struct vport *vport,
const struct tnl_mutable_config *mutable,
const struct rtable *rt, void *header)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct iphdr *iph = header;
iph->version = 4;
iph->ihl = sizeof(struct iphdr) >> 2;
iph->frag_off = htons(IP_DF);
iph->protocol = tnl_vport->tnl_ops->ipproto;
iph->tos = mutable->tos;
iph->daddr = rt->rt_dst;
iph->saddr = rt->rt_src;
iph->ttl = mutable->ttl;
if (!iph->ttl)
iph->ttl = dst_metric(&rt_dst(rt), RTAX_HOPLIMIT);
tnl_vport->tnl_ops->build_header(vport, mutable, iph + 1);
}
static inline void *get_cached_header(const struct tnl_cache *cache)
{
return (void *)cache + ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN);
}
static inline bool check_cache_valid(const struct tnl_cache *cache,
const struct tnl_mutable_config *mutable)
{
return cache &&
#ifdef NEED_CACHE_TIMEOUT
time_before(jiffies, cache->expiration) &&
#endif
#ifdef HAVE_RT_GENID
atomic_read(&init_net.ipv4.rt_genid) == cache->rt->rt_genid &&
#endif
#ifdef HAVE_HH_SEQ
rt_dst(cache->rt).hh->hh_lock.sequence == cache->hh_seq &&
#endif
mutable->seq == cache->mutable_seq &&
(!is_internal_dev(rt_dst(cache->rt).dev) ||
(cache->flow && !cache->flow->dead));
}
static int cache_cleaner_cb(struct tbl_node *tbl_node, void *aux)
{
struct tnl_vport *tnl_vport = tnl_vport_table_cast(tbl_node);
const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable);
const struct tnl_cache *cache = rcu_dereference(tnl_vport->cache);
if (cache && !check_cache_valid(cache, mutable) &&
spin_trylock_bh(&tnl_vport->cache_lock)) {
assign_cache_rcu(tnl_vport_to_vport(tnl_vport), NULL);
spin_unlock_bh(&tnl_vport->cache_lock);
}
return 0;
}
static void cache_cleaner(struct work_struct *work)
{
schedule_cache_cleaner();
rcu_read_lock();
tbl_foreach(rcu_dereference(port_table), cache_cleaner_cb, NULL);
rcu_read_unlock();
}
static inline void create_eth_hdr(struct tnl_cache *cache,
const struct rtable *rt)
{
void *cache_data = get_cached_header(cache);
int hh_len = rt_dst(rt).hh->hh_len;
int hh_off = HH_DATA_ALIGN(rt_dst(rt).hh->hh_len) - hh_len;
#ifdef HAVE_HH_SEQ
unsigned hh_seq;
do {
hh_seq = read_seqbegin(&rt_dst(rt).hh->hh_lock);
memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len);
} while (read_seqretry(&rt_dst(rt).hh->hh_lock, hh_seq));
cache->hh_seq = hh_seq;
#else
read_lock_bh(&rt_dst(rt).hh->hh_lock);
memcpy(cache_data, (void *)rt_dst(rt).hh->hh_data + hh_off, hh_len);
read_unlock_bh(&rt_dst(rt).hh->hh_lock);
#endif
}
static struct tnl_cache *build_cache(struct vport *vport,
const struct tnl_mutable_config *mutable,
struct rtable *rt)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct tnl_cache *cache;
void *cache_data;
int cache_len;
if (!(mutable->flags & TNL_F_HDR_CACHE))
return NULL;
/*
* If there is no entry in the ARP cache or if this device does not
* support hard header caching just fall back to the IP stack.
*/
if (!rt_dst(rt).hh)
return NULL;
/*
* If lock is contended fall back to directly building the header.
* We're not going to help performance by sitting here spinning.
*/
if (!spin_trylock_bh(&tnl_vport->cache_lock))
return NULL;
cache = cache_dereference(tnl_vport);
if (check_cache_valid(cache, mutable))
goto unlock;
else
cache = NULL;
cache_len = rt_dst(rt).hh->hh_len + mutable->tunnel_hlen;
cache = kzalloc(ALIGN(sizeof(struct tnl_cache), CACHE_DATA_ALIGN) +
cache_len, GFP_ATOMIC);
if (!cache)
goto unlock;
cache->len = cache_len;
create_eth_hdr(cache, rt);
cache_data = get_cached_header(cache) + rt_dst(rt).hh->hh_len;
create_tunnel_header(vport, mutable, rt, cache_data);
cache->mutable_seq = mutable->seq;
cache->rt = rt;
#ifdef NEED_CACHE_TIMEOUT
cache->expiration = jiffies + tnl_vport->cache_exp_interval;
#endif
if (is_internal_dev(rt_dst(rt).dev)) {
struct sw_flow_key flow_key;
struct tbl_node *flow_node;
struct vport *dst_vport;
struct sk_buff *skb;
bool is_frag;
int err;
dst_vport = internal_dev_get_vport(rt_dst(rt).dev);
if (!dst_vport)
goto done;
skb = alloc_skb(cache->len, GFP_ATOMIC);
if (!skb)
goto done;
__skb_put(skb, cache->len);
memcpy(skb->data, get_cached_header(cache), cache->len);
err = flow_extract(skb, dst_vport->port_no, &flow_key, &is_frag);
kfree_skb(skb);
if (err || is_frag)
goto done;
flow_node = tbl_lookup(rcu_dereference(dst_vport->dp->table),
&flow_key, flow_hash(&flow_key),
flow_cmp);
if (flow_node) {
struct sw_flow *flow = flow_cast(flow_node);
cache->flow = flow;
flow_hold(flow);
}
}
done:
assign_cache_rcu(vport, cache);
unlock:
spin_unlock_bh(&tnl_vport->cache_lock);
return cache;
}
static struct rtable *find_route(struct vport *vport,
const struct tnl_mutable_config *mutable,
u8 tos, struct tnl_cache **cache)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct tnl_cache *cur_cache = rcu_dereference(tnl_vport->cache);
*cache = NULL;
tos = RT_TOS(tos);
if (likely(tos == mutable->tos && check_cache_valid(cur_cache, mutable))) {
*cache = cur_cache;
return cur_cache->rt;
} else {
struct rtable *rt;
struct flowi fl = { .nl_u = { .ip4_u =
{ .daddr = mutable->daddr,
.saddr = mutable->saddr,
.tos = tos } },
.proto = tnl_vport->tnl_ops->ipproto };
if (unlikely(ip_route_output_key(&init_net, &rt, &fl)))
return NULL;
if (likely(tos == mutable->tos))
*cache = build_cache(vport, mutable, rt);
return rt;
}
}
static struct sk_buff *check_headroom(struct sk_buff *skb, int headroom)
{
if (skb_headroom(skb) < headroom || skb_header_cloned(skb)) {
struct sk_buff *nskb = skb_realloc_headroom(skb, headroom + 16);
if (unlikely(!nskb)) {
kfree_skb(skb);
return ERR_PTR(-ENOMEM);
}
set_skb_csum_bits(skb, nskb);
if (skb->sk)
skb_set_owner_w(nskb, skb->sk);
kfree_skb(skb);
return nskb;
}
return skb;
}
static inline bool need_linearize(const struct sk_buff *skb)
{
int i;
if (unlikely(skb_shinfo(skb)->frag_list))
return true;
/*
* Generally speaking we should linearize if there are paged frags.
* However, if all of the refcounts are 1 we know nobody else can
* change them from underneath us and we can skip the linearization.
*/
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
if (unlikely(page_count(skb_shinfo(skb)->frags[0].page) > 1))
return true;
return false;
}
static struct sk_buff *handle_offloads(struct sk_buff *skb,
const struct tnl_mutable_config *mutable,
const struct rtable *rt)
{
int min_headroom;
int err;
forward_ip_summed(skb);
err = vswitch_skb_checksum_setup(skb);
if (unlikely(err))
goto error_free;
min_headroom = LL_RESERVED_SPACE(rt_dst(rt).dev) + rt_dst(rt).header_len
+ mutable->tunnel_hlen;
if (skb_is_gso(skb)) {
struct sk_buff *nskb;
/*
* If we are doing GSO on a pskb it is better to make sure that
* the headroom is correct now. We will only have to copy the
* portion in the linear data area and GSO will preserve
* headroom when it creates the segments. This is particularly
* beneficial on Xen where we get a lot of GSO pskbs.
* Conversely, we avoid copying if it is just to get our own
* writable clone because GSO will do the copy for us.
*/
if (skb_headroom(skb) < min_headroom) {
skb = check_headroom(skb, min_headroom);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
goto error;
}
}
nskb = skb_gso_segment(skb, 0);
kfree_skb(skb);
if (IS_ERR(nskb)) {
err = PTR_ERR(nskb);
goto error;
}
skb = nskb;
} else {
skb = check_headroom(skb, min_headroom);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
goto error;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
/*
* Pages aren't locked and could change at any time.
* If this happens after we compute the checksum, the
* checksum will be wrong. We linearize now to avoid
* this problem.
*/
if (unlikely(need_linearize(skb))) {
err = __skb_linearize(skb);
if (unlikely(err))
goto error_free;
}
err = skb_checksum_help(skb);
if (unlikely(err))
goto error_free;
} else if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
}
return skb;
error_free:
kfree_skb(skb);
error:
return ERR_PTR(err);
}
static int send_frags(struct sk_buff *skb,
const struct tnl_mutable_config *mutable)
{
int sent_len;
int err;
sent_len = 0;
while (skb) {
struct sk_buff *next = skb->next;
int frag_len = skb->len - mutable->tunnel_hlen;
skb->next = NULL;
memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
err = ip_local_out(skb);
if (likely(net_xmit_eval(err) == 0))
sent_len += frag_len;
else {
skb = next;
goto free_frags;
}
skb = next;
}
return sent_len;
free_frags:
/*
* There's no point in continuing to send fragments once one has been
* dropped so just free the rest. This may help improve the congestion
* that caused the first packet to be dropped.
*/
tnl_free_linked_skbs(skb);
return sent_len;
}
int tnl_send(struct vport *vport, struct sk_buff *skb)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
const struct tnl_mutable_config *mutable = rcu_dereference(tnl_vport->mutable);
enum vport_err_type err = VPORT_E_TX_ERROR;
struct rtable *rt;
struct dst_entry *unattached_dst = NULL;
struct tnl_cache *cache;
int sent_len = 0;
__be16 frag_off;
u8 ttl;
u8 inner_tos;
u8 tos;
/* Validate the protocol headers before we try to use them. */
if (skb->protocol == htons(ETH_P_8021Q)) {
if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
goto error_free;
skb->protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
skb_set_network_header(skb, VLAN_ETH_HLEN);
}
if (skb->protocol == htons(ETH_P_IP)) {
if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
+ sizeof(struct iphdr))))
skb->protocol = 0;
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (skb->protocol == htons(ETH_P_IPV6)) {
if (unlikely(!pskb_may_pull(skb, skb_network_offset(skb)
+ sizeof(struct ipv6hdr))))
skb->protocol = 0;
}
#endif
/* ToS */
if (skb->protocol == htons(ETH_P_IP))
inner_tos = ip_hdr(skb)->tos;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (skb->protocol == htons(ETH_P_IPV6))
inner_tos = ipv6_get_dsfield(ipv6_hdr(skb));
#endif
else
inner_tos = 0;
if (mutable->flags & TNL_F_TOS_INHERIT)
tos = inner_tos;
else
tos = mutable->tos;
tos = INET_ECN_encapsulate(tos, inner_tos);
/* Route lookup */
rt = find_route(vport, mutable, tos, &cache);
if (unlikely(!rt))
goto error_free;
if (unlikely(!cache))
unattached_dst = &rt_dst(rt);
/* Reset SKB */
nf_reset(skb);
secpath_reset(skb);
skb_dst_drop(skb);
/* Offloading */
skb = handle_offloads(skb, mutable, rt);
if (IS_ERR(skb))
goto error;
/* MTU */
if (unlikely(!check_mtu(skb, vport, mutable, rt, &frag_off))) {
err = VPORT_E_TX_DROPPED;
goto error_free;
}
/*
* If we are over the MTU, allow the IP stack to handle fragmentation.
* Fragmentation is a slow path anyways.
*/
if (unlikely(skb->len + mutable->tunnel_hlen > dst_mtu(&rt_dst(rt)) &&
cache)) {
unattached_dst = &rt_dst(rt);
dst_hold(unattached_dst);
cache = NULL;
}
/* TTL */
ttl = mutable->ttl;
if (!ttl)
ttl = dst_metric(&rt_dst(rt), RTAX_HOPLIMIT);
if (mutable->flags & TNL_F_TTL_INHERIT) {
if (skb->protocol == htons(ETH_P_IP))
ttl = ip_hdr(skb)->ttl;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
else if (skb->protocol == htons(ETH_P_IPV6))
ttl = ipv6_hdr(skb)->hop_limit;
#endif
}
while (skb) {
struct iphdr *iph;
struct sk_buff *next_skb = skb->next;
skb->next = NULL;
if (likely(cache)) {
skb_push(skb, cache->len);
memcpy(skb->data, get_cached_header(cache), cache->len);
skb_reset_mac_header(skb);
skb_set_network_header(skb, rt_dst(rt).hh->hh_len);
} else {
skb_push(skb, mutable->tunnel_hlen);
create_tunnel_header(vport, mutable, rt, skb->data);
skb_reset_network_header(skb);
if (next_skb)
skb_dst_set(skb, dst_clone(unattached_dst));
else {
skb_dst_set(skb, unattached_dst);
unattached_dst = NULL;
}
}
skb_set_transport_header(skb, skb_network_offset(skb) + sizeof(struct iphdr));
iph = ip_hdr(skb);
iph->tos = tos;
iph->ttl = ttl;
iph->frag_off = frag_off;
ip_select_ident(iph, &rt_dst(rt), NULL);
skb = tnl_vport->tnl_ops->update_header(vport, mutable, &rt_dst(rt), skb);
if (unlikely(!skb))
goto next;
if (likely(cache)) {
int orig_len = skb->len - cache->len;
struct vport *cache_vport = internal_dev_get_vport(rt_dst(rt).dev);
skb->protocol = htons(ETH_P_IP);
iph = ip_hdr(skb);
iph->tot_len = htons(skb->len - skb_network_offset(skb));
ip_send_check(iph);
if (cache_vport) {
OVS_CB(skb)->flow = cache->flow;
compute_ip_summed(skb, true);
vport_receive(cache_vport, skb);
sent_len += orig_len;
} else {
int xmit_err;
skb->dev = rt_dst(rt).dev;
xmit_err = dev_queue_xmit(skb);
if (likely(net_xmit_eval(xmit_err) == 0))
sent_len += orig_len;
}
} else
sent_len += send_frags(skb, mutable);
next:
skb = next_skb;
}
if (unlikely(sent_len == 0))
vport_record_error(vport, VPORT_E_TX_DROPPED);
goto out;
error_free:
tnl_free_linked_skbs(skb);
error:
dst_release(unattached_dst);
vport_record_error(vport, err);
out:
return sent_len;
}
static const struct nla_policy tnl_policy[ODP_TUNNEL_ATTR_MAX + 1] = {
[ODP_TUNNEL_ATTR_FLAGS] = { .type = NLA_U32 },
[ODP_TUNNEL_ATTR_DST_IPV4] = { .type = NLA_U32 },
[ODP_TUNNEL_ATTR_SRC_IPV4] = { .type = NLA_U32 },
[ODP_TUNNEL_ATTR_OUT_KEY] = { .type = NLA_U64 },
[ODP_TUNNEL_ATTR_IN_KEY] = { .type = NLA_U64 },
[ODP_TUNNEL_ATTR_TOS] = { .type = NLA_U8 },
[ODP_TUNNEL_ATTR_TTL] = { .type = NLA_U8 },
};
/* Sets ODP_TUNNEL_ATTR_* fields in 'mutable', which must initially be zeroed. */
static int tnl_set_config(struct nlattr *options, const struct tnl_ops *tnl_ops,
const struct vport *cur_vport,
struct tnl_mutable_config *mutable)
{
const struct vport *old_vport;
const struct tnl_mutable_config *old_mutable;
struct nlattr *a[ODP_TUNNEL_ATTR_MAX + 1];
int err;
if (!options)
return -EINVAL;
err = nla_parse_nested(a, ODP_TUNNEL_ATTR_MAX, options, tnl_policy);
if (err)
return err;
if (!a[ODP_TUNNEL_ATTR_FLAGS] || !a[ODP_TUNNEL_ATTR_DST_IPV4])
return -EINVAL;
mutable->flags = nla_get_u32(a[ODP_TUNNEL_ATTR_FLAGS]) & TNL_F_PUBLIC;
if (a[ODP_TUNNEL_ATTR_SRC_IPV4])
mutable->saddr = nla_get_be32(a[ODP_TUNNEL_ATTR_SRC_IPV4]);
mutable->daddr = nla_get_be32(a[ODP_TUNNEL_ATTR_DST_IPV4]);
if (a[ODP_TUNNEL_ATTR_TOS]) {
mutable->tos = nla_get_u8(a[ODP_TUNNEL_ATTR_TOS]);
if (mutable->tos != RT_TOS(mutable->tos))
return -EINVAL;
}
if (a[ODP_TUNNEL_ATTR_TTL])
mutable->ttl = nla_get_u8(a[ODP_TUNNEL_ATTR_TTL]);
mutable->tunnel_hlen = tnl_ops->hdr_len(mutable);
if (mutable->tunnel_hlen < 0)
return mutable->tunnel_hlen;
mutable->tunnel_hlen += sizeof(struct iphdr);
mutable->tunnel_type = tnl_ops->tunnel_type;
if (!a[ODP_TUNNEL_ATTR_IN_KEY]) {
mutable->tunnel_type |= TNL_T_KEY_MATCH;
mutable->flags |= TNL_F_IN_KEY_MATCH;
} else {
mutable->tunnel_type |= TNL_T_KEY_EXACT;
mutable->in_key = nla_get_be64(a[ODP_TUNNEL_ATTR_IN_KEY]);
}
if (!a[ODP_TUNNEL_ATTR_OUT_KEY])
mutable->flags |= TNL_F_OUT_KEY_ACTION;
else
mutable->out_key = nla_get_be64(a[ODP_TUNNEL_ATTR_OUT_KEY]);
old_vport = tnl_find_port(mutable->saddr, mutable->daddr,
mutable->in_key, mutable->tunnel_type,
&old_mutable);
if (old_vport && old_vport != cur_vport)
return -EEXIST;
return 0;
}
struct vport *tnl_create(const struct vport_parms *parms,
const struct vport_ops *vport_ops,
const struct tnl_ops *tnl_ops)
{
struct vport *vport;
struct tnl_vport *tnl_vport;
struct tnl_mutable_config *mutable;
int initial_frag_id;
int err;
vport = vport_alloc(sizeof(struct tnl_vport), vport_ops, parms);
if (IS_ERR(vport)) {
err = PTR_ERR(vport);
goto error;
}
tnl_vport = tnl_vport_priv(vport);
strcpy(tnl_vport->name, parms->name);
tnl_vport->tnl_ops = tnl_ops;
mutable = kzalloc(sizeof(struct tnl_mutable_config), GFP_KERNEL);
if (!mutable) {
err = -ENOMEM;
goto error_free_vport;
}
vport_gen_rand_ether_addr(mutable->eth_addr);
mutable->mtu = ETH_DATA_LEN;
get_random_bytes(&initial_frag_id, sizeof(int));
atomic_set(&tnl_vport->frag_id, initial_frag_id);
err = tnl_set_config(parms->options, tnl_ops, NULL, mutable);
if (err)
goto error_free_mutable;
spin_lock_init(&tnl_vport->cache_lock);
#ifdef NEED_CACHE_TIMEOUT
tnl_vport->cache_exp_interval = MAX_CACHE_EXP -
(net_random() % (MAX_CACHE_EXP / 2));
#endif
rcu_assign_pointer(tnl_vport->mutable, mutable);
err = add_port(vport);
if (err)
goto error_free_mutable;
return vport;
error_free_mutable:
kfree(mutable);
error_free_vport:
vport_free(vport);
error:
return ERR_PTR(err);
}
int tnl_set_options(struct vport *vport, struct nlattr *options)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
const struct tnl_mutable_config *old_mutable;
struct tnl_mutable_config *mutable;
int err;
mutable = kzalloc(sizeof(struct tnl_mutable_config), GFP_KERNEL);
if (!mutable) {
err = -ENOMEM;
goto error;
}
/* Copy fields whose values should be retained. */
old_mutable = rtnl_dereference(tnl_vport->mutable);
mutable->seq = old_mutable->seq + 1;
memcpy(mutable->eth_addr, old_mutable->eth_addr, ETH_ALEN);
mutable->mtu = old_mutable->mtu;
/* Parse the others configured by userspace. */
err = tnl_set_config(options, tnl_vport->tnl_ops, vport, mutable);
if (err)
goto error_free;
err = move_port(vport, mutable);
if (err)
goto error_free;
return 0;
error_free:
kfree(mutable);
error:
return err;
}
int tnl_get_options(const struct vport *vport, struct sk_buff *skb)
{
const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
const struct tnl_mutable_config *mutable = rcu_dereference_rtnl(tnl_vport->mutable);
NLA_PUT_U32(skb, ODP_TUNNEL_ATTR_FLAGS, mutable->flags & TNL_F_PUBLIC);
NLA_PUT_BE32(skb, ODP_TUNNEL_ATTR_DST_IPV4, mutable->daddr);
if (!(mutable->flags & TNL_F_IN_KEY_MATCH))
NLA_PUT_BE64(skb, ODP_TUNNEL_ATTR_IN_KEY, mutable->in_key);
if (!(mutable->flags & TNL_F_OUT_KEY_ACTION))
NLA_PUT_BE64(skb, ODP_TUNNEL_ATTR_OUT_KEY, mutable->out_key);
if (mutable->saddr)
NLA_PUT_BE32(skb, ODP_TUNNEL_ATTR_SRC_IPV4, mutable->saddr);
if (mutable->tos)
NLA_PUT_U8(skb, ODP_TUNNEL_ATTR_TOS, mutable->tos);
if (mutable->ttl)
NLA_PUT_U8(skb, ODP_TUNNEL_ATTR_TTL, mutable->ttl);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static void free_port_rcu(struct rcu_head *rcu)
{
struct tnl_vport *tnl_vport = container_of(rcu,
struct tnl_vport, rcu);
free_cache((struct tnl_cache __force *)tnl_vport->cache);
kfree((struct tnl_mutable __force *)tnl_vport->mutable);
vport_free(tnl_vport_to_vport(tnl_vport));
}
int tnl_destroy(struct vport *vport)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
const struct tnl_mutable_config *mutable, *old_mutable;
mutable = rtnl_dereference(tnl_vport->mutable);
if (vport == tnl_find_port(mutable->saddr, mutable->daddr,
mutable->in_key, mutable->tunnel_type,
&old_mutable))
del_port(vport);
call_rcu(&tnl_vport->rcu, free_port_rcu);
return 0;
}
int tnl_set_mtu(struct vport *vport, int mtu)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct tnl_mutable_config *mutable;
mutable = kmemdup(rtnl_dereference(tnl_vport->mutable),
sizeof(struct tnl_mutable_config), GFP_KERNEL);
if (!mutable)
return -ENOMEM;
mutable->mtu = mtu;
assign_config_rcu(vport, mutable);
return 0;
}
int tnl_set_addr(struct vport *vport, const unsigned char *addr)
{
struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
struct tnl_mutable_config *mutable;
mutable = kmemdup(rtnl_dereference(tnl_vport->mutable),
sizeof(struct tnl_mutable_config), GFP_KERNEL);
if (!mutable)
return -ENOMEM;
memcpy(mutable->eth_addr, addr, ETH_ALEN);
assign_config_rcu(vport, mutable);
return 0;
}
const char *tnl_get_name(const struct vport *vport)
{
const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
return tnl_vport->name;
}
const unsigned char *tnl_get_addr(const struct vport *vport)
{
const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
return rcu_dereference_rtnl(tnl_vport->mutable)->eth_addr;
}
int tnl_get_mtu(const struct vport *vport)
{
const struct tnl_vport *tnl_vport = tnl_vport_priv(vport);
return rcu_dereference_rtnl(tnl_vport->mutable)->mtu;
}
void tnl_free_linked_skbs(struct sk_buff *skb)
{
if (unlikely(!skb))
return;
while (skb) {
struct sk_buff *next = skb->next;
kfree_skb(skb);
skb = next;
}
}