MSVC does not support zero-size arrays except as the last member of a
defined structure.
The error is hit only on MSVC 64 bit because the size of uint64_t is equal
with sizeof(struct tun_table *).
Reported-by: Alin Gabriel Serdean <aserdean@cloudbasesolutions.com>
Signed-off-by: Ben Pfaff <blp@nicira.com>
Acked-by: Jesse Gross <jesse@nicira.com>
In cases where we don't have a map of tunnel metadata options (such
as with ovs-ofctl) we dynamically allocate them as part of the match.
However, dynamic allocation brings the possibility of errors such as
duplicate entries or running out of space. Up until now, anything that
would cause an error was silently ignored. Since that is not very user
friendly, this adds a mechanism for reporting these types of errors.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
Sometimes it is useful to match only on whether a Geneve option
is present even if the specific value is unimportant. A special
case of this is zero length options where there is no value at all
and the only information conveyed is whether the option was included
in the packet.
This operation was partially supported before but it was not consistent -
in particular, options were never serialized through NXM/OXM unless
they had a non-zero mask. Furthermore, zero length options were rejected
altogether when they were installed through the Geneve map OpenFlow
command.
This adds support for these types of matches by making any NXM/OXM for
tunnel metadata force a match on that field. In the case of a zero length
option, both the value and mask of the NXM are ignored.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
The kernel implementation of Geneve options stores the TLV option
data in the flow exactly as received, without any further parsing.
This is then translated to known options for the purposes of matching
on flow setup (which will then install a datapath flow in the form
the kernel is expecting).
The userspace implementation behaves a little bit differently - it
looks up known options as each packet is received. The reason for this
is there is a much tighter coupling between datapath and flow translation
and the representation is generally expected to be the same. This works
but it incurs work on a per-packet basis that could be done per-flow
instead.
This introduces a small translation step for Geneve packets between
datapath and flow lookup for the userspace datapath in order to
allow the same kind of processing that the kernel does. A side effect
of this is that unknown options are now shown when flows dumped via
ovs-appctl dpif/dump-flows, similar to the kernel.
There is a second benefit to this as well: for some operations it is
preferable to keep the options exactly as they were received on the wire,
which this enables. One example is that for packets that are executed from
ofproto-dpif-upcall to the datapath, this avoids the translation of
Geneve metadata. Since this conversion is potentially lossy (for unknown
options), keeping everything in the same format removes the possibility
of dropping options if the packet comes back up to userspace and the
Geneve option translation table has changed. To help with these types of
operations, most functions can understand both formats of data and seamlessly
do the right thing.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Jarno Rajahalme <jrajahalme@nicira.com>
The addition of Geneve options to packet metadata significantly
expanded its size. It was reported that this can decrease performance
for DPDK ports by up to 25% since we need to initialize the whole
structure on each packet receive.
It is not really necessary to zero out the entire structure because
miniflow_extract() only copies the tunnel metadata when particular
fields indicate that it is valid. Therefore, as long as we zero out
these fields when the metadata is initialized and ensure that the
rest of the structure is correctly set in the presence of a tunnel,
we can avoid touching the tunnel fields on packet reception.
Reported-by: Ciara Loftus <ciara.loftus@intel.com>
Tested-by: Ciara Loftus <ciara.loftus@intel.com>
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
Currently the userspace datapath only supports Geneve in a
basic mode - without options - since the rest of userspace
previously didn't support options either. This enables the
userspace datapath to send and receive options as well.
The receive path for extracting the tunnel options isn't entirely
optimal because it does a lookup on the options on a per-packet
basis, rather than per-flow like the kernel does. This is not
as straightforward to do in the userspace datapath since there
is no translation step between packet formats used in packet vs.
flow lookup. This can be optimized in the future and in the
meantime option support is still useful for testing and simulation.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
The current support for Geneve in OVS is exactly equivalent to VXLAN:
it is possible to set and match on the VNI but not on any options
contained in the header. This patch enables the use of options.
The goal for Geneve support is not to add support for any particular option
but to allow end users or controllers to specify what they would like to
match. That is, the full range of Geneve's capabilities should be exposed
without modifying the code (the one exception being options that require
per-packet computation in the fast path).
The main issue with supporting Geneve options is how to integrate the
fields into the existing OpenFlow pipeline. All existing operations
are referred to by their NXM/OXM field name - matches, action generation,
arithmetic operations (i.e. tranfer to a register). However, the Geneve
option space is exactly the same as the OXM space, so a direct mapping
is not feasible. Instead, we create a pool of 64 NXMs that are then
dynamically mapped on Geneve option TLVs using OpenFlow. Once mapped,
these fields become first-class citizens in the OpenFlow pipeline.
An example of how to use Geneve options:
ovs-ofctl add-geneve-map br0 {class=0xffff,type=0,len=4}->tun_metadata0
ovs-ofctl add-flow br0 in_port=LOCAL,actions=set_field:0xffffffff->tun_metadata0,1
This will add a 4 bytes option (filled will all 1's) to all packets
coming from the LOCAL port and then send then out to port 1.
A limitation of this patch is that although the option table is specified
for a particular switch over OpenFlow, it is currently global to all
switches. This will be addressed in a future patch.
Based on work originally done by Madhu Challa. Ben Pfaff also significantly
improved the comments.
Signed-off-by: Madhu Challa <challa@noironetworks.com>
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
In order to work with Geneve options, we need to maintain a mapping
table between an option (defined by <class, type, length>) and
an NXM field that can be operated on for the purposes of matches,
actions, etc. This mapping must be explicitly specified by the
user.
Conceptually, this table could be communicated using either OpenFlow
or OVSDB. Using OVSDB requires less code and definition of extensions
than OpenFlow but introduces the possibility that mapping table
updates and flow modifications are desynchronized from each other.
This is dangerous because the mapping table signifcantly impacts the
way that flows using Geneve options are installed and processed by
OVS. Therefore, the mapping table is maintained using OpenFlow commands
instead, which opens the possibility of using synchronization between
table changes and flow modifications through barriers, bundles, etc.
There are two primary groups of OpenFlow messages that are introduced
as Nicira extensions: modification commands (add, delete, clear mappings)
and table status request/reply to dump the current table along with switch
information.
Note that mappings should not be changed while they are in active use by
a flow. The result of doing so is undefined.
This only adds the OpenFlow infrastructure but doesn't actually
do anything with the information yet after the messages have been
decoded.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>