/* * Copyright (c) 2009, 2012, 2014 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #undef NDEBUG #include "hash.h" #include #include #include #include #include #include "jhash.h" #include "ovstest.h" static void set_bit(uint32_t array[3], int bit) { assert(bit >= 0 && bit <= 96); memset(array, 0, sizeof(uint32_t) * 3); if (bit < 96) { array[bit / 32] = UINT32_C(1) << (bit % 32); } } static void set_bit128(ovs_u128 array[16], int bit) { assert(bit >= 0 && bit <= 2048); memset(array, 0, sizeof(ovs_u128) * 16); if (bit < 2048) { int b = bit % 128; if (b < 64) { array[bit / 128].u64.lo = UINT64_C(1) << (b % 64); } else { array[bit / 128].u64.hi = UINT64_C(1) << (b % 64); } } } static uint32_t hash_words_cb(uint32_t input) { return hash_words(&input, 1, 0); } static uint32_t jhash_words_cb(uint32_t input) { return jhash_words(&input, 1, 0); } static uint32_t hash_int_cb(uint32_t input) { return hash_int(input, 0); } static uint32_t hash_bytes128_cb(uint32_t input) { ovs_u128 hash; hash_bytes128(&input, sizeof input, 0, &hash); return hash.u64.lo; } static void check_word_hash(uint32_t (*hash)(uint32_t), const char *name, int min_unique) { int i, j; for (i = 0; i <= 32; i++) { uint32_t in1 = i < 32 ? UINT32_C(1) << i : 0; for (j = i + 1; j <= 32; j++) { uint32_t in2 = j < 32 ? UINT32_C(1) << j : 0; uint32_t out1 = hash(in1); uint32_t out2 = hash(in2); const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1; int ofs; for (ofs = 0; ofs < 32 - min_unique; ofs++) { uint32_t bits1 = (out1 >> ofs) & unique_mask; uint32_t bits2 = (out2 >> ofs) & unique_mask; if (bits1 == bits2) { printf("Partial collision for '%s':\n", name); printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in1, out1); printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in2, out2); printf("%d bits of output starting at bit %d " "are both 0x%"PRIx32"\n", min_unique, ofs, bits1); exit(1); } } } } } static void check_3word_hash(uint32_t (*hash)(const uint32_t[], size_t, uint32_t), const char *name) { int i, j; for (i = 0; i <= 96; i++) { for (j = i + 1; j <= 96; j++) { uint32_t in0[3], in1[3], in2[3]; uint32_t out0,out1, out2; const int min_unique = 12; const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1; set_bit(in0, i); set_bit(in1, i); set_bit(in2, j); out0 = hash(in0, 3, 0); out1 = hash(in1, 3, 0); out2 = hash(in2, 3, 0); if (out0 != out1) { printf("%s hash not the same for non-64 aligned data " "%08"PRIx32" != %08"PRIx32"\n", name, out0, out1); } if ((out1 & unique_mask) == (out2 & unique_mask)) { printf("%s has a partial collision:\n", name); printf("hash(1 << %d) == %08"PRIx32"\n", i, out1); printf("hash(1 << %d) == %08"PRIx32"\n", j, out2); printf("The low-order %d bits of output are both " "0x%"PRIx32"\n", min_unique, out1 & unique_mask); } } } } static void check_256byte_hash(void (*hash)(const void *, size_t, uint32_t, ovs_u128 *), const char *name, const int min_unique) { const uint64_t unique_mask = (UINT64_C(1) << min_unique) - 1; const int n_bits = 256 * 8; int i, j; for (i = 0; i < n_bits; i++) { for (j = i + 1; j < n_bits; j++) { OVS_PACKED(struct offset_ovs_u128 { uint32_t a; ovs_u128 b[16]; }) in0_data; ovs_u128 *in0, in1[16], in2[16]; ovs_u128 out0, out1, out2; in0 = in0_data.b; set_bit128(in0, i); set_bit128(in1, i); set_bit128(in2, j); hash(in0, sizeof(ovs_u128) * 16, 0, &out0); hash(in1, sizeof(ovs_u128) * 16, 0, &out1); hash(in2, sizeof(ovs_u128) * 16, 0, &out2); if (!ovs_u128_equal(&out0, &out1)) { printf("%s hash not the same for non-64 aligned data " "%016"PRIx64"%016"PRIx64" != %016"PRIx64"%016"PRIx64"\n", name, out0.u64.lo, out0.u64.hi, out1.u64.lo, out1.u64.hi); } if ((out1.u64.lo & unique_mask) == (out2.u64.lo & unique_mask)) { printf("%s has a partial collision:\n", name); printf("hash(1 << %4d) == %016"PRIx64"%016"PRIx64"\n", i, out1.u64.hi, out1.u64.lo); printf("hash(1 << %4d) == %016"PRIx64"%016"PRIx64"\n", j, out2.u64.hi, out2.u64.lo); printf("The low-order %d bits of output are both " "0x%"PRIx64"\n", min_unique, out1.u64.lo & unique_mask); } } } } static void test_hash_main(int argc OVS_UNUSED, char *argv[] OVS_UNUSED) { /* Check that all hashes computed with hash_words with one 1-bit (or no * 1-bits) set within a single 32-bit word have different values in all * 11-bit consecutive runs. * * Given a random distribution, the probability of at least one collision * in any set of 11 bits is approximately * * 1 - (proportion of same_bits) * **(binomial_coefficient(n_bits_in_data + 1, 2)) * == 1 - ((2**11 - 1)/2**11)**C(33,2) * == 1 - (2047/2048)**528 * =~ 0.22 * * There are 21 ways to pick 11 consecutive bits in a 32-bit word, so if we * assumed independence then the chance of having no collisions in any of * those 11-bit runs would be (1-0.22)**21 =~ .0044. Obviously * independence must be a bad assumption :-) */ check_word_hash(hash_words_cb, "hash_words", 11); check_word_hash(jhash_words_cb, "jhash_words", 11); /* Check that all hash functions of with one 1-bit (or no 1-bits) set * within three 32-bit words have different values in their lowest 12 * bits. * * Given a random distribution, the probability of at least one collision * in 12 bits is approximately * * 1 - ((2**12 - 1)/2**12)**C(97,2) * == 1 - (4095/4096)**4656 * =~ 0.68 * * so we are doing pretty well to not have any collisions in 12 bits. */ check_3word_hash(hash_words, "hash_words"); check_3word_hash(jhash_words, "jhash_words"); /* Check that all hashes computed with hash_int with one 1-bit (or no * 1-bits) set within a single 32-bit word have different values in all * 12-bit consecutive runs. * * Given a random distribution, the probability of at least one collision * in any set of 12 bits is approximately * * 1 - ((2**12 - 1)/2**12)**C(33,2) * == 1 - (4,095/4,096)**528 * =~ 0.12 * * There are 20 ways to pick 12 consecutive bits in a 32-bit word, so if we * assumed independence then the chance of having no collisions in any of * those 12-bit runs would be (1-0.12)**20 =~ 0.078. This refutes our * assumption of independence, which makes it seem like a good hash * function. */ check_word_hash(hash_int_cb, "hash_int", 12); check_word_hash(hash_bytes128_cb, "hash_bytes128", 12); /* Check that all hashes computed with hash_bytes128 with 1-bit (or no * 1-bits) set within 16 128-bit words have different values in their * lowest 23 bits. * * Given a random distribution, the probability of at least one collision * in any set of 23 bits is approximately * * 1 - ((2**23 - 1)/2**23)**C(2049,2) * == 1 - (8,388,607/8,388,608)**2,098,176 * =~ 0.22 * * so we are doing pretty well to not have any collisions in 23 bits. */ check_256byte_hash(hash_bytes128, "hash_bytes128", 23); } OVSTEST_REGISTER("test-hash", test_hash_main);