2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-23 14:57:06 +00:00
Files
openvswitch/lib/classifier-private.h
Jarno Rajahalme 361d808dd9 flow: Split miniflow's map.
Use two maps in miniflow to allow for expansion of struct flow past
512 bytes.  We now have one map for tunnel related fields, and another
for the rest of the packet metadata and actual packet header fields.
This split has the benefit that for non-tunneled packets the overhead
should be minimal.

Some miniflow utilities now exist in two variants, new ones operating
over all the data, and the old ones operating only on a single 64-bit
map at a time.  The old ones require doubling of code but should
execute faster, so those are used in the datapath and classifier's
lookup path.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
2015-07-17 15:18:43 -07:00

464 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CLASSIFIER_PRIVATE_H
#define CLASSIFIER_PRIVATE_H 1
#include "cmap.h"
#include "flow.h"
#include "hash.h"
#include "rculist.h"
#include "tag.h"
/* Classifier internal definitions, subject to change at any time. */
/* A set of rules that all have the same fields wildcarded. */
struct cls_subtable {
struct cmap_node cmap_node; /* Within classifier's 'subtables_map'. */
/* These fields are only used by writers. */
int max_priority; /* Max priority of any rule in subtable. */
unsigned int max_count; /* Count of max_priority rules. */
/* Accessed by iterators. */
struct rculist rules_list; /* Unordered. */
/* Identical, but lower priority rules are not inserted to any of the
* following data structures. */
/* These fields are accessed by readers who care about wildcarding. */
const tag_type tag; /* Tag generated from mask for partitioning. */
const uint8_t n_indices; /* How many indices to use. */
const uint8_t index_ofs[CLS_MAX_INDICES]; /* u64 segment boundaries. */
unsigned int trie_plen[CLS_MAX_TRIES]; /* Trie prefix length in 'mask'
* (runtime configurable). */
const int ports_mask_len;
struct cmap indices[CLS_MAX_INDICES]; /* Staged lookup indices. */
rcu_trie_ptr ports_trie; /* NULL if none. */
/* These fields are accessed by all readers. */
struct cmap rules; /* Contains 'cls_match'es. */
const struct minimask mask; /* Wildcards for fields. */
/* 'mask' must be the last field. */
};
/* Associates a metadata value (that is, a value of the OpenFlow 1.1+ metadata
* field) with tags for the "cls_subtable"s that contain rules that match that
* metadata value. */
struct cls_partition {
struct cmap_node cmap_node; /* In struct classifier's 'partitions' map. */
ovs_be64 metadata; /* metadata value for this partition. */
tag_type tags; /* OR of each flow's cls_subtable tag. */
struct tag_tracker tracker; /* Tracks the bits in 'tags'. */
};
/* Internal representation of a rule in a "struct cls_subtable".
*
* The 'next' member is an element in a singly linked, null-terminated list.
* This list links together identical "cls_match"es in order of decreasing
* priority. The classifier code maintains the invariant that at most one rule
* of a given priority is visible for any given lookup version.
*/
struct cls_match {
/* Accessed by everybody. */
OVSRCU_TYPE(struct cls_match *) next; /* Equal, lower-priority matches. */
OVSRCU_TYPE(struct cls_conjunction_set *) conj_set;
/* Accessed only by writers. */
struct cls_partition *partition;
/* Accessed by readers interested in wildcarding. */
const int priority; /* Larger numbers are higher priorities. */
struct cmap_node index_nodes[CLS_MAX_INDICES]; /* Within subtable's
* 'indices'. */
/* Accessed by all readers. */
struct cmap_node cmap_node; /* Within struct cls_subtable 'rules'. */
/* Rule versioning.
*
* CLS_NOT_REMOVED_VERSION has a special meaning for 'remove_version',
* meaningthat the rule has been added but not yet removed.
*/
const cls_version_t add_version; /* Version rule was added in. */
ATOMIC(cls_version_t) remove_version; /* Version rule is removed in. */
const struct cls_rule *cls_rule;
const struct miniflow flow; /* Matching rule. Mask is in the subtable. */
/* 'flow' must be the last field. */
};
/* Must be RCU postponed. */
void cls_match_free_cb(struct cls_match *);
static inline void
cls_match_set_remove_version(struct cls_match *rule, cls_version_t version)
{
atomic_store_relaxed(&rule->remove_version, version);
}
static inline bool
cls_match_visible_in_version(const struct cls_match *rule,
cls_version_t version)
{
cls_version_t remove_version;
/* C11 does not want to access an atomic via a const object pointer. */
atomic_read_relaxed(&CONST_CAST(struct cls_match *, rule)->remove_version,
&remove_version);
return rule->add_version <= version && version < remove_version;
}
static inline bool
cls_match_is_eventually_invisible(const struct cls_match *rule)
{
cls_version_t remove_version;
/* C11 does not want to access an atomic via a const object pointer. */
atomic_read_relaxed(&CONST_CAST(struct cls_match *, rule)->remove_version,
&remove_version);
return remove_version <= CLS_MAX_VERSION;
}
/* cls_match 'next' */
static inline const struct cls_match *
cls_match_next(const struct cls_match *rule)
{
return ovsrcu_get(struct cls_match *, &rule->next);
}
static inline struct cls_match *
cls_match_next_protected(const struct cls_match *rule)
{
return ovsrcu_get_protected(struct cls_match *, &rule->next);
}
/* Puts 'rule' in the position between 'prev' and 'next'. If 'prev' == NULL,
* then the 'rule' is the new list head, and if 'next' == NULL, the rule is the
* new list tail.
* If there are any nodes between 'prev' and 'next', they are dropped from the
* list. */
static inline void
cls_match_insert(struct cls_match *prev, struct cls_match *next,
struct cls_match *rule)
{
ovsrcu_set_hidden(&rule->next, next);
if (prev) {
ovsrcu_set(&prev->next, rule);
}
}
/* Puts 'new_rule' in the position of 'old_rule', which is the next node after
* 'prev'. If 'prev' == NULL, then the 'new_rule' is the new list head.
*
* The replaced cls_match still links to the later rules, and may still be
* referenced by other threads until all other threads quiesce. The replaced
* rule may not be re-inserted, re-initialized, or deleted until after all
* other threads have quiesced (use ovsrcu_postpone). */
static inline void
cls_match_replace(struct cls_match *prev,
struct cls_match *old_rule, struct cls_match *new_rule)
{
cls_match_insert(prev, cls_match_next_protected(old_rule), new_rule);
}
/* Removes 'rule' following 'prev' from the list. If 'prev' is NULL, then the
* 'rule' is a list head, and the caller is responsible for maintaining its
* list head pointer (if any).
*
* Afterward, the removed rule is not linked to any more, but still links to
* the following rules, and may still be referenced by other threads until all
* other threads quiesce. The removed rule may not be re-inserted,
* re-initialized, or deleted until after all other threads have quiesced (use
* ovsrcu_postpone).
*/
static inline void
cls_match_remove(struct cls_match *prev, struct cls_match *rule)
{
if (prev) {
ovsrcu_set(&prev->next, cls_match_next_protected(rule));
}
}
#define CLS_MATCH_FOR_EACH(ITER, HEAD) \
for ((ITER) = (HEAD); (ITER); (ITER) = cls_match_next(ITER))
#define CLS_MATCH_FOR_EACH_AFTER_HEAD(ITER, HEAD) \
CLS_MATCH_FOR_EACH(ITER, cls_match_next(HEAD))
/* Iterate cls_matches keeping the previous pointer for modifications. */
#define FOR_EACH_RULE_IN_LIST_PROTECTED(ITER, PREV, HEAD) \
for ((PREV) = NULL, (ITER) = (HEAD); \
(ITER); \
(PREV) = (ITER), (ITER) = cls_match_next_protected(ITER))
/* A longest-prefix match tree. */
struct trie_node {
uint32_t prefix; /* Prefix bits for this node, MSB first. */
uint8_t n_bits; /* Never zero, except for the root node. */
unsigned int n_rules; /* Number of rules that have this prefix. */
rcu_trie_ptr edges[2]; /* Both NULL if leaf. */
};
/* Max bits per node. Must fit in struct trie_node's 'prefix'.
* Also tested with 16, 8, and 5 to stress the implementation. */
#define TRIE_PREFIX_BITS 32
/* flow/miniflow/minimask/minimatch utilities.
* These are only used by the classifier, so place them here to allow
* for better optimization. */
/* Initializes 'map->tnl_map' and 'map->pkt_map' with a subset of 'miniflow'
* that includes only the portions with u64-offset 'i' such that start <= i <
* end. Does not copy any data from 'miniflow' to 'map'.
*
* TODO: Ensure that 'start' and 'end' are compile-time constants. */
static inline unsigned int /* offset */
miniflow_get_map_in_range(const struct miniflow *miniflow,
uint8_t start, uint8_t end, struct miniflow *map)
{
unsigned int offset = 0;
map->tnl_map = miniflow->tnl_map;
map->pkt_map = miniflow->pkt_map;
if (start >= FLOW_TNL_U64S) {
offset += count_1bits(map->tnl_map);
map->tnl_map = 0;
if (start > FLOW_TNL_U64S) {
/* Clear 'start - FLOW_TNL_U64S' LSBs from pkt_map. */
start -= FLOW_TNL_U64S;
uint64_t msk = (UINT64_C(1) << start) - 1;
offset += count_1bits(map->pkt_map & msk);
map->pkt_map &= ~msk;
}
} else if (start > 0) {
/* Clear 'start' LSBs from tnl_map. */
uint64_t msk = (UINT64_C(1) << start) - 1;
offset += count_1bits(map->tnl_map & msk);
map->tnl_map &= ~msk;
}
if (end <= FLOW_TNL_U64S) {
map->pkt_map = 0;
if (end < FLOW_TNL_U64S) {
/* Keep 'end' LSBs in tnl_map. */
map->tnl_map &= (UINT64_C(1) << end) - 1;
}
} else {
if (end < FLOW_U64S) {
/* Keep 'end - FLOW_TNL_U64S' LSBs in pkt_map. */
map->pkt_map &= (UINT64_C(1) << (end - FLOW_TNL_U64S)) - 1;
}
}
return offset;
}
/* Returns a hash value for the bits of 'flow' where there are 1-bits in
* 'mask', given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* miniflow_hash_in_minimask(), only the form of the arguments differ. */
static inline uint32_t
flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
uint32_t basis)
{
const uint64_t *mask_values = miniflow_get_values(&mask->masks);
const uint64_t *flow_u64 = (const uint64_t *)flow;
const uint64_t *p = mask_values;
uint32_t hash;
size_t idx;
hash = basis;
MAP_FOR_EACH_INDEX(idx, mask->masks.tnl_map) {
hash = hash_add64(hash, flow_u64[idx] & *p++);
}
flow_u64 += FLOW_TNL_U64S;
MAP_FOR_EACH_INDEX(idx, mask->masks.pkt_map) {
hash = hash_add64(hash, flow_u64[idx] & *p++);
}
return hash_finish(hash, (p - mask_values) * 8);
}
/* Returns a hash value for the bits of 'flow' where there are 1-bits in
* 'mask', given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* flow_hash_in_minimask(), only the form of the arguments differ. */
static inline uint32_t
miniflow_hash_in_minimask(const struct miniflow *flow,
const struct minimask *mask, uint32_t basis)
{
const uint64_t *mask_values = miniflow_get_values(&mask->masks);
const uint64_t *p = mask_values;
uint32_t hash = basis;
uint64_t flow_u64;
MINIFLOW_FOR_EACH_IN_TNL_MAP(flow_u64, flow, mask->masks) {
hash = hash_add64(hash, flow_u64 & *p++);
}
MINIFLOW_FOR_EACH_IN_PKT_MAP(flow_u64, flow, mask->masks) {
hash = hash_add64(hash, flow_u64 & *p++);
}
return hash_finish(hash, (p - mask_values) * 8);
}
/* Returns a hash value for the bits of range [start, end) in 'flow',
* where there are 1-bits in 'mask', given 'hash'.
*
* The hash values returned by this function are the same as those returned by
* minimatch_hash_range(), only the form of the arguments differ. */
static inline uint32_t
flow_hash_in_minimask_range(const struct flow *flow,
const struct minimask *mask,
uint8_t start, uint8_t end, uint32_t *basis)
{
const uint64_t *mask_values = miniflow_get_values(&mask->masks);
const uint64_t *flow_u64 = (const uint64_t *)flow;
unsigned int offset;
struct miniflow map;
const uint64_t *p;
uint32_t hash = *basis;
size_t idx;
offset = miniflow_get_map_in_range(&mask->masks, start, end, &map);
p = mask_values + offset;
MAP_FOR_EACH_INDEX(idx, map.tnl_map) {
hash = hash_add64(hash, flow_u64[idx] & *p++);
}
flow_u64 += FLOW_TNL_U64S;
MAP_FOR_EACH_INDEX(idx, map.pkt_map) {
hash = hash_add64(hash, flow_u64[idx] & *p++);
}
*basis = hash; /* Allow continuation from the unfinished value. */
return hash_finish(hash, (p - mask_values) * 8);
}
/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */
static inline void
flow_wildcards_fold_minimask(struct flow_wildcards *wc,
const struct minimask *mask)
{
flow_union_with_miniflow(&wc->masks, &mask->masks);
}
/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask
* in range [start, end). */
static inline void
flow_wildcards_fold_minimask_range(struct flow_wildcards *wc,
const struct minimask *mask,
uint8_t start, uint8_t end)
{
const uint64_t *p = miniflow_get_values(&mask->masks);
uint64_t *dst_u64 = (uint64_t *)&wc->masks;
struct miniflow map;
size_t idx;
p += miniflow_get_map_in_range(&mask->masks, start, end, &map);
MAP_FOR_EACH_INDEX(idx, map.tnl_map) {
dst_u64[idx] |= *p++;
}
dst_u64 += FLOW_TNL_U64S;
MAP_FOR_EACH_INDEX(idx, map.pkt_map) {
dst_u64[idx] |= *p++;
}
}
/* Returns a hash value for 'flow', given 'basis'. */
static inline uint32_t
miniflow_hash(const struct miniflow *flow, uint32_t basis)
{
const uint64_t *values = miniflow_get_values(flow);
const uint64_t *p = values;
uint32_t hash = basis;
uint64_t hash_tnl_map = 0, hash_pkt_map = 0;
uint64_t map;
for (map = flow->tnl_map; map; map = zero_rightmost_1bit(map)) {
if (*p) {
hash = hash_add64(hash, *p);
hash_tnl_map |= rightmost_1bit(map);
}
p++;
}
for (map = flow->pkt_map; map; map = zero_rightmost_1bit(map)) {
if (*p) {
hash = hash_add64(hash, *p);
hash_pkt_map |= rightmost_1bit(map);
}
p++;
}
hash = hash_add64(hash, hash_tnl_map);
hash = hash_add64(hash, hash_pkt_map);
return hash_finish(hash, p - values);
}
/* Returns a hash value for 'mask', given 'basis'. */
static inline uint32_t
minimask_hash(const struct minimask *mask, uint32_t basis)
{
return miniflow_hash(&mask->masks, basis);
}
/* Returns a hash value for 'match', given 'basis'. */
static inline uint32_t
minimatch_hash(const struct minimatch *match, uint32_t basis)
{
return miniflow_hash(match->flow, minimask_hash(match->mask, basis));
}
/* Returns a hash value for the bits of range [start, end) in 'minimatch',
* given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* flow_hash_in_minimask_range(), only the form of the arguments differ. */
static inline uint32_t
minimatch_hash_range(const struct minimatch *match, uint8_t start, uint8_t end,
uint32_t *basis)
{
const uint64_t *p = miniflow_get_values(match->flow);
const uint64_t *q = miniflow_get_values(&match->mask->masks);
unsigned int offset;
struct miniflow map;
uint32_t hash = *basis;
int n, i;
offset = miniflow_get_map_in_range(&match->mask->masks, start, end, &map);
n = miniflow_n_values(&map);
q += offset;
p += offset;
for (i = 0; i < n; i++) {
hash = hash_add64(hash, p[i] & q[i]);
}
*basis = hash; /* Allow continuation from the unfinished value. */
return hash_finish(hash, (offset + n) * 8);
}
#endif