2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-29 15:28:56 +00:00
Files
openvswitch/datapath/flow.c
Pravin Shelar 3544358aa5 datapath: Improve kernel hash table
Currently OVS uses its own hashing implmentation for hash tables
which has some problems, e.g. error case on deletion code.
Following patch replaces that with hlist based hash table which is
consistent with other kernel hash tables. As Jesse suggested, flex-array
is used for allocating hash buckets, So that we can have large
hash-table without large contiguous kernel memory.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Acked-by: Jesse Gross <jesse@nicira.com>
2011-09-09 19:09:47 -07:00

1269 lines
34 KiB
C

/*
* Distributed under the terms of the GNU GPL version 2.
* Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include "flow.h"
#include "datapath.h"
#include <asm/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include "vlan.h"
static struct kmem_cache *flow_cache;
static unsigned int hash_seed __read_mostly;
static int check_header(struct sk_buff *skb, int len)
{
if (unlikely(skb->len < len))
return -EINVAL;
if (unlikely(!pskb_may_pull(skb, len)))
return -ENOMEM;
return 0;
}
static inline bool arphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_network_offset(skb) +
sizeof(struct arp_eth_header));
}
static inline int check_iphdr(struct sk_buff *skb)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int ip_len;
int err;
err = check_header(skb, nh_ofs + sizeof(struct iphdr));
if (unlikely(err))
return err;
ip_len = ip_hdrlen(skb);
if (unlikely(ip_len < sizeof(struct iphdr) ||
skb->len < nh_ofs + ip_len))
return -EINVAL;
skb_set_transport_header(skb, nh_ofs + ip_len);
return 0;
}
static inline bool tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
int tcp_len;
if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
return false;
tcp_len = tcp_hdrlen(skb);
if (unlikely(tcp_len < sizeof(struct tcphdr) ||
skb->len < th_ofs + tcp_len))
return false;
return true;
}
static inline bool udphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct udphdr));
}
static inline bool icmphdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct icmphdr));
}
u64 flow_used_time(unsigned long flow_jiffies)
{
struct timespec cur_ts;
u64 cur_ms, idle_ms;
ktime_get_ts(&cur_ts);
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
cur_ts.tv_nsec / NSEC_PER_MSEC;
return cur_ms - idle_ms;
}
#define SW_FLOW_KEY_OFFSET(field) \
offsetof(struct sw_flow_key, field) + \
FIELD_SIZEOF(struct sw_flow_key, field)
static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
int *key_lenp)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int nh_len;
int payload_ofs;
struct ipv6hdr *nh;
uint8_t nexthdr;
int err;
*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.addr);
err = check_header(skb, nh_ofs + sizeof(*nh));
if (unlikely(err))
return err;
nh = ipv6_hdr(skb);
nexthdr = nh->nexthdr;
payload_ofs = (u8 *)(nh + 1) - skb->data;
key->ip.proto = NEXTHDR_NONE;
key->ip.tos = ipv6_get_dsfield(nh) & ~INET_ECN_MASK;
ipv6_addr_copy(&key->ipv6.addr.src, &nh->saddr);
ipv6_addr_copy(&key->ipv6.addr.dst, &nh->daddr);
payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr);
if (unlikely(payload_ofs < 0))
return -EINVAL;
nh_len = payload_ofs - nh_ofs;
skb_set_transport_header(skb, nh_ofs + nh_len);
key->ip.proto = nexthdr;
return nh_len;
}
static bool icmp6hdr_ok(struct sk_buff *skb)
{
return pskb_may_pull(skb, skb_transport_offset(skb) +
sizeof(struct icmp6hdr));
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
u8 tcp_flags = 0;
if (flow->key.eth.type == htons(ETH_P_IP) &&
flow->key.ip.proto == IPPROTO_TCP) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
spin_lock_bh(&flow->lock);
flow->used = jiffies;
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock_bh(&flow->lock);
}
struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
{
int actions_len = nla_len(actions);
struct sw_flow_actions *sfa;
/* At least DP_MAX_PORTS actions are required to be able to flood a
* packet to every port. Factor of 2 allows for setting VLAN tags,
* etc. */
if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->actions_len = actions_len;
memcpy(sfa->actions, nla_data(actions), actions_len);
return sfa;
}
struct sw_flow *flow_alloc(void)
{
struct sw_flow *flow;
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
if (!flow)
return ERR_PTR(-ENOMEM);
spin_lock_init(&flow->lock);
atomic_set(&flow->refcnt, 1);
flow->sf_acts = NULL;
flow->dead = false;
return flow;
}
static struct hlist_head __rcu *find_bucket(struct flow_table * table, u32 hash)
{
return flex_array_get(table->buckets,
(hash & (table->n_buckets - 1)));
}
static struct flex_array __rcu *alloc_buckets(unsigned int n_buckets)
{
struct flex_array __rcu * buckets;
int i, err;
buckets = flex_array_alloc(sizeof(struct hlist_head *),
n_buckets, GFP_KERNEL);
if (!buckets)
return NULL;
err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
if (err) {
flex_array_free(buckets);
return NULL;
}
for (i = 0; i < n_buckets; i++)
INIT_HLIST_HEAD((struct hlist_head *)
flex_array_get(buckets, i));
return buckets;
}
static void free_buckets(struct flex_array * buckets)
{
flex_array_free(buckets);
}
struct flow_table *flow_tbl_alloc(int new_size)
{
struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return NULL;
table->buckets = alloc_buckets(new_size);
if (!table->buckets) {
kfree(table);
return NULL;
}
table->n_buckets = new_size;
table->count = 0;
return table;
}
static void flow_free(struct sw_flow *flow)
{
flow->dead = true;
flow_put(flow);
}
void flow_tbl_destroy(struct flow_table *table)
{
int i;
if (!table)
return;
for (i = 0; i < table->n_buckets; i++) {
struct sw_flow *flow;
struct hlist_head *head = flex_array_get(table->buckets, i);
struct hlist_node *node, *n;
hlist_for_each_entry_safe(flow, node, n, head, hash_node) {
hlist_del_init_rcu(&flow->hash_node);
flow_free(flow);
}
}
free_buckets(table->buckets);
kfree(table);
}
static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
{
struct flow_table *table = container_of(rcu, struct flow_table, rcu);
flow_tbl_destroy(table);
}
void flow_tbl_deferred_destroy(struct flow_table *table)
{
if (!table)
return;
call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
}
struct sw_flow *flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
{
struct sw_flow *flow;
struct hlist_head *head;
struct hlist_node *n;
int i;
while (*bucket < table->n_buckets) {
i = 0;
head = flex_array_get(table->buckets, *bucket);
hlist_for_each_entry_rcu(flow, n, head, hash_node) {
if (i < *last) {
i++;
continue;
}
*last = i + 1;
return flow;
}
(*bucket)++;
*last = 0;
}
return NULL;
}
struct flow_table *flow_tbl_expand(struct flow_table *table)
{
struct flow_table *new_table;
int n_buckets = table->n_buckets * 2;
int i;
new_table = flow_tbl_alloc(n_buckets);
if (!new_table)
return ERR_PTR(-ENOMEM);
for (i = 0; i < table->n_buckets; i++) {
struct sw_flow *flow;
struct hlist_head *head;
struct hlist_node *n, *pos;
head = flex_array_get(table->buckets, i);
hlist_for_each_entry_safe(flow, n, pos, head, hash_node) {
hlist_del_init_rcu(&flow->hash_node);
flow_tbl_insert(new_table, flow);
}
}
return new_table;
}
/* RCU callback used by flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
flow->dead = true;
flow_put(flow);
}
/* Schedules 'flow' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free(struct sw_flow *flow)
{
call_rcu(&flow->rcu, rcu_free_flow_callback);
}
void flow_hold(struct sw_flow *flow)
{
atomic_inc(&flow->refcnt);
}
void flow_put(struct sw_flow *flow)
{
if (unlikely(!flow))
return;
if (atomic_dec_and_test(&flow->refcnt)) {
kfree((struct sf_flow_acts __force *)flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
}
/* RCU callback used by flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
struct sw_flow_actions *sf_acts = container_of(rcu,
struct sw_flow_actions, rcu);
kfree(sf_acts);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
struct qtag_prefix {
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
sizeof(__be16))))
return -ENOMEM;
qp = (struct qtag_prefix *) skb->data;
key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
__skb_pull(skb, sizeof(struct qtag_prefix));
return 0;
}
static __be16 parse_ethertype(struct sk_buff *skb)
{
struct llc_snap_hdr {
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[3];
__be16 ethertype;
};
struct llc_snap_hdr *llc;
__be16 proto;
proto = *(__be16 *) skb->data;
__skb_pull(skb, sizeof(__be16));
if (ntohs(proto) >= 1536)
return proto;
if (skb->len < sizeof(struct llc_snap_hdr))
return htons(ETH_P_802_2);
if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
return htons(0);
llc = (struct llc_snap_hdr *) skb->data;
if (llc->dsap != LLC_SAP_SNAP ||
llc->ssap != LLC_SAP_SNAP ||
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
return htons(ETH_P_802_2);
__skb_pull(skb, sizeof(struct llc_snap_hdr));
return llc->ethertype;
}
static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
int *key_lenp, int nh_len)
{
struct icmp6hdr *icmp = icmp6_hdr(skb);
int error = 0;
int key_len;
/* The ICMPv6 type and code fields use the 16-bit transport port
* fields, so we need to store them in 16-bit network byte order.
*/
key->ipv6.tp.src = htons(icmp->icmp6_type);
key->ipv6.tp.dst = htons(icmp->icmp6_code);
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
int icmp_len = skb->len - skb_transport_offset(skb);
struct nd_msg *nd;
int offset;
key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
/* In order to process neighbor discovery options, we need the
* entire packet.
*/
if (unlikely(icmp_len < sizeof(*nd)))
goto out;
if (unlikely(skb_linearize(skb))) {
error = -ENOMEM;
goto out;
}
nd = (struct nd_msg *)skb_transport_header(skb);
ipv6_addr_copy(&key->ipv6.nd.target, &nd->target);
key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
icmp_len -= sizeof(*nd);
offset = 0;
while (icmp_len >= 8) {
struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset);
int opt_len = nd_opt->nd_opt_len * 8;
if (unlikely(!opt_len || opt_len > icmp_len))
goto invalid;
/* Store the link layer address if the appropriate
* option is provided. It is considered an error if
* the same link layer option is specified twice.
*/
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
&& opt_len == 8) {
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
goto invalid;
memcpy(key->ipv6.nd.sll,
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
&& opt_len == 8) {
if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
goto invalid;
memcpy(key->ipv6.nd.tll,
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
}
icmp_len -= opt_len;
offset += opt_len;
}
}
goto out;
invalid:
memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
out:
*key_lenp = key_len;
return error;
}
/**
* flow_extract - extracts a flow key from an Ethernet frame.
* @skb: sk_buff that contains the frame, with skb->data pointing to the
* Ethernet header
* @in_port: port number on which @skb was received.
* @key: output flow key
* @key_lenp: length of output flow key
* @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
* not contain an IPv4 packet or if it is not a fragment.
*
* The caller must ensure that skb->len >= ETH_HLEN.
*
* Returns 0 if successful, otherwise a negative errno value.
*
* Initializes @skb header pointers as follows:
*
* - skb->mac_header: the Ethernet header.
*
* - skb->network_header: just past the Ethernet header, or just past the
* VLAN header, to the first byte of the Ethernet payload.
*
* - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
* on output, then just past the IP header, if one is present and
* of a correct length, otherwise the same as skb->network_header.
* For other key->dl_type values it is left untouched.
*/
int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
int *key_lenp, bool *is_frag)
{
int error = 0;
int key_len = SW_FLOW_KEY_OFFSET(eth);
struct ethhdr *eth;
memset(key, 0, sizeof(*key));
key->eth.tun_id = OVS_CB(skb)->tun_id;
key->eth.in_port = in_port;
*is_frag = false;
skb_reset_mac_header(skb);
/* Link layer. We are guaranteed to have at least the 14 byte Ethernet
* header in the linear data area.
*/
eth = eth_hdr(skb);
memcpy(key->eth.src, eth->h_source, ETH_ALEN);
memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
__skb_pull(skb, 2 * ETH_ALEN);
if (vlan_tx_tag_present(skb))
key->eth.tci = htons(vlan_get_tci(skb));
else if (eth->h_proto == htons(ETH_P_8021Q))
if (unlikely(parse_vlan(skb, key)))
return -ENOMEM;
key->eth.type = parse_ethertype(skb);
if (unlikely(key->eth.type == htons(0)))
return -ENOMEM;
skb_reset_network_header(skb);
__skb_push(skb, skb->data - skb_mac_header(skb));
/* Network layer. */
if (key->eth.type == htons(ETH_P_IP)) {
struct iphdr *nh;
key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
error = check_iphdr(skb);
if (unlikely(error)) {
if (error == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
}
goto out;
}
nh = ip_hdr(skb);
key->ipv4.addr.src = nh->saddr;
key->ipv4.addr.dst = nh->daddr;
key->ip.tos = nh->tos & ~INET_ECN_MASK;
key->ip.proto = nh->protocol;
/* Transport layer. */
if ((nh->frag_off & htons(IP_MF | IP_OFFSET)) ||
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP))
*is_frag = true;
if (key->ip.proto == IPPROTO_TCP) {
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
if (!*is_frag && tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv4.tp.src = tcp->source;
key->ipv4.tp.dst = tcp->dest;
}
} else if (key->ip.proto == IPPROTO_UDP) {
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
if (!*is_frag && udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv4.tp.src = udp->source;
key->ipv4.tp.dst = udp->dest;
}
} else if (key->ip.proto == IPPROTO_ICMP) {
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
if (!*is_frag && icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store them
* in 16-bit network byte order. */
key->ipv4.tp.src = htons(icmp->type);
key->ipv4.tp.dst = htons(icmp->code);
}
}
} else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
struct arp_eth_header *arp;
arp = (struct arp_eth_header *)skb_network_header(skb);
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff)
key->ip.proto = ntohs(arp->ar_op);
if (key->ip.proto == ARPOP_REQUEST
|| key->ip.proto == ARPOP_REPLY) {
memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
}
}
} else if (key->eth.type == htons(ETH_P_IPV6)) {
int nh_len; /* IPv6 Header + Extensions */
nh_len = parse_ipv6hdr(skb, key, &key_len);
if (unlikely(nh_len < 0)) {
if (nh_len == -EINVAL)
skb->transport_header = skb->network_header;
else
error = nh_len;
goto out;
}
/* Transport layer. */
if (key->ip.proto == NEXTHDR_TCP) {
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv6.tp.src = tcp->source;
key->ipv6.tp.dst = tcp->dest;
}
} else if (key->ip.proto == NEXTHDR_UDP) {
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv6.tp.src = udp->source;
key->ipv6.tp.dst = udp->dest;
}
} else if (key->ip.proto == NEXTHDR_ICMP) {
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (icmp6hdr_ok(skb)) {
error = parse_icmpv6(skb, key, &key_len, nh_len);
if (error < 0)
goto out;
}
}
}
out:
*key_lenp = key_len;
return error;
}
u32 flow_hash(const struct sw_flow_key *key, int key_len)
{
return jhash2((u32*)key, DIV_ROUND_UP(key_len, sizeof(u32)), hash_seed);
}
struct sw_flow * flow_tbl_lookup(struct flow_table *table,
struct sw_flow_key *key, int key_len)
{
struct sw_flow *flow;
struct hlist_node *n;
struct hlist_head *head;
u32 hash;
hash = flow_hash(key, key_len);
head = find_bucket(table, hash);
hlist_for_each_entry_rcu(flow, n, head, hash_node) {
if (flow->hash == hash &&
!memcmp(&flow->key, key, key_len)) {
return flow;
}
}
return NULL;
}
void flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
{
struct hlist_head *head;
head = find_bucket(table, flow->hash);
hlist_add_head_rcu(&flow->hash_node, head);
table->count++;
}
void flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
{
if (!hlist_unhashed(&flow->hash_node)) {
hlist_del_init_rcu(&flow->hash_node);
table->count--;
BUG_ON(table->count < 0);
}
}
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
static const u32 key_lens[OVS_KEY_ATTR_MAX + 1] = {
[OVS_KEY_ATTR_TUN_ID] = 8,
[OVS_KEY_ATTR_IN_PORT] = 4,
[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
[OVS_KEY_ATTR_8021Q] = sizeof(struct ovs_key_8021q),
[OVS_KEY_ATTR_ETHERTYPE] = 2,
[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
};
/**
* flow_from_nlattrs - parses Netlink attributes into a flow key.
* @swkey: receives the extracted flow key.
* @key_lenp: number of bytes used in @swkey.
* @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence.
*
* This state machine accepts the following forms, with [] for optional
* elements and | for alternatives:
*
* [tun_id] [in_port] ethernet [8021q] [ethertype \
* [IPv4 [TCP|UDP|ICMP] | IPv6 [TCP|UDP|ICMPv6 [ND]] | ARP]]
*/
int flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
const struct nlattr *attr)
{
int error = 0;
const struct nlattr *nla;
u16 prev_type;
int rem;
int key_len;
memset(swkey, 0, sizeof(*swkey));
swkey->eth.in_port = USHRT_MAX;
swkey->eth.type = htons(ETH_P_802_2);
key_len = SW_FLOW_KEY_OFFSET(eth);
prev_type = OVS_KEY_ATTR_UNSPEC;
nla_for_each_nested(nla, attr, rem) {
const struct ovs_key_ethernet *eth_key;
const struct ovs_key_8021q *q_key;
const struct ovs_key_ipv4 *ipv4_key;
const struct ovs_key_ipv6 *ipv6_key;
const struct ovs_key_tcp *tcp_key;
const struct ovs_key_udp *udp_key;
const struct ovs_key_icmp *icmp_key;
const struct ovs_key_icmpv6 *icmpv6_key;
const struct ovs_key_arp *arp_key;
const struct ovs_key_nd *nd_key;
int type = nla_type(nla);
if (type > OVS_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
goto invalid;
#define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE))
switch (TRANSITION(prev_type, type)) {
case TRANSITION(OVS_KEY_ATTR_UNSPEC, OVS_KEY_ATTR_TUN_ID):
swkey->eth.tun_id = nla_get_be64(nla);
break;
case TRANSITION(OVS_KEY_ATTR_UNSPEC, OVS_KEY_ATTR_IN_PORT):
case TRANSITION(OVS_KEY_ATTR_TUN_ID, OVS_KEY_ATTR_IN_PORT):
if (nla_get_u32(nla) >= DP_MAX_PORTS)
goto invalid;
swkey->eth.in_port = nla_get_u32(nla);
break;
case TRANSITION(OVS_KEY_ATTR_UNSPEC, OVS_KEY_ATTR_ETHERNET):
case TRANSITION(OVS_KEY_ATTR_TUN_ID, OVS_KEY_ATTR_ETHERNET):
case TRANSITION(OVS_KEY_ATTR_IN_PORT, OVS_KEY_ATTR_ETHERNET):
eth_key = nla_data(nla);
memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
break;
case TRANSITION(OVS_KEY_ATTR_ETHERNET, OVS_KEY_ATTR_8021Q):
q_key = nla_data(nla);
/* Only standard 0x8100 VLANs currently supported. */
if (q_key->q_tpid != htons(ETH_P_8021Q))
goto invalid;
if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
goto invalid;
swkey->eth.tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
break;
case TRANSITION(OVS_KEY_ATTR_8021Q, OVS_KEY_ATTR_ETHERTYPE):
case TRANSITION(OVS_KEY_ATTR_ETHERNET, OVS_KEY_ATTR_ETHERTYPE):
swkey->eth.type = nla_get_be16(nla);
if (ntohs(swkey->eth.type) < 1536)
goto invalid;
break;
case TRANSITION(OVS_KEY_ATTR_ETHERTYPE, OVS_KEY_ATTR_IPV4):
key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
if (swkey->eth.type != htons(ETH_P_IP))
goto invalid;
ipv4_key = nla_data(nla);
swkey->ip.proto = ipv4_key->ipv4_proto;
swkey->ip.tos = ipv4_key->ipv4_tos;
swkey->ipv4.addr.src = ipv4_key->ipv4_src;
swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
if (swkey->ip.tos & INET_ECN_MASK)
goto invalid;
break;
case TRANSITION(OVS_KEY_ATTR_ETHERTYPE, OVS_KEY_ATTR_IPV6):
key_len = SW_FLOW_KEY_OFFSET(ipv6.addr);
if (swkey->eth.type != htons(ETH_P_IPV6))
goto invalid;
ipv6_key = nla_data(nla);
swkey->ip.proto = ipv6_key->ipv6_proto;
swkey->ip.tos = ipv6_key->ipv6_tos;
memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
sizeof(swkey->ipv6.addr.src));
memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
sizeof(swkey->ipv6.addr.dst));
if (swkey->ip.tos & INET_ECN_MASK)
goto invalid;
break;
case TRANSITION(OVS_KEY_ATTR_IPV4, OVS_KEY_ATTR_TCP):
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
if (swkey->ip.proto != IPPROTO_TCP)
goto invalid;
tcp_key = nla_data(nla);
swkey->ipv4.tp.src = tcp_key->tcp_src;
swkey->ipv4.tp.dst = tcp_key->tcp_dst;
break;
case TRANSITION(OVS_KEY_ATTR_IPV6, OVS_KEY_ATTR_TCP):
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (swkey->ip.proto != IPPROTO_TCP)
goto invalid;
tcp_key = nla_data(nla);
swkey->ipv6.tp.src = tcp_key->tcp_src;
swkey->ipv6.tp.dst = tcp_key->tcp_dst;
break;
case TRANSITION(OVS_KEY_ATTR_IPV4, OVS_KEY_ATTR_UDP):
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
if (swkey->ip.proto != IPPROTO_UDP)
goto invalid;
udp_key = nla_data(nla);
swkey->ipv4.tp.src = udp_key->udp_src;
swkey->ipv4.tp.dst = udp_key->udp_dst;
break;
case TRANSITION(OVS_KEY_ATTR_IPV6, OVS_KEY_ATTR_UDP):
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (swkey->ip.proto != IPPROTO_UDP)
goto invalid;
udp_key = nla_data(nla);
swkey->ipv6.tp.src = udp_key->udp_src;
swkey->ipv6.tp.dst = udp_key->udp_dst;
break;
case TRANSITION(OVS_KEY_ATTR_IPV4, OVS_KEY_ATTR_ICMP):
key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
if (swkey->ip.proto != IPPROTO_ICMP)
goto invalid;
icmp_key = nla_data(nla);
swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
break;
case TRANSITION(OVS_KEY_ATTR_IPV6, OVS_KEY_ATTR_ICMPV6):
key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
if (swkey->ip.proto != IPPROTO_ICMPV6)
goto invalid;
icmpv6_key = nla_data(nla);
swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
break;
case TRANSITION(OVS_KEY_ATTR_ETHERTYPE, OVS_KEY_ATTR_ARP):
key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
if (swkey->eth.type != htons(ETH_P_ARP))
goto invalid;
arp_key = nla_data(nla);
swkey->ipv4.addr.src = arp_key->arp_sip;
swkey->ipv4.addr.dst = arp_key->arp_tip;
if (arp_key->arp_op & htons(0xff00))
goto invalid;
swkey->ip.proto = ntohs(arp_key->arp_op);
memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
break;
case TRANSITION(OVS_KEY_ATTR_ICMPV6, OVS_KEY_ATTR_ND):
key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
if (swkey->ipv6.tp.src != htons(NDISC_NEIGHBOUR_SOLICITATION)
&& swkey->ipv6.tp.src != htons(NDISC_NEIGHBOUR_ADVERTISEMENT))
goto invalid;
nd_key = nla_data(nla);
memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
sizeof(swkey->ipv6.nd.target));
memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
break;
default:
goto invalid;
}
prev_type = type;
}
if (rem)
goto invalid;
switch (prev_type) {
case OVS_KEY_ATTR_UNSPEC:
goto invalid;
case OVS_KEY_ATTR_TUN_ID:
case OVS_KEY_ATTR_IN_PORT:
goto invalid;
case OVS_KEY_ATTR_ETHERNET:
case OVS_KEY_ATTR_8021Q:
goto ok;
case OVS_KEY_ATTR_ETHERTYPE:
if (swkey->eth.type == htons(ETH_P_IP) ||
swkey->eth.type == htons(ETH_P_ARP))
goto invalid;
goto ok;
case OVS_KEY_ATTR_IPV4:
if (swkey->ip.proto == IPPROTO_TCP ||
swkey->ip.proto == IPPROTO_UDP ||
swkey->ip.proto == IPPROTO_ICMP)
goto invalid;
goto ok;
case OVS_KEY_ATTR_IPV6:
if (swkey->ip.proto == IPPROTO_TCP ||
swkey->ip.proto == IPPROTO_UDP ||
swkey->ip.proto == IPPROTO_ICMPV6)
goto invalid;
goto ok;
case OVS_KEY_ATTR_ICMPV6:
if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT))
goto invalid;
goto ok;
case OVS_KEY_ATTR_TCP:
case OVS_KEY_ATTR_UDP:
case OVS_KEY_ATTR_ICMP:
case OVS_KEY_ATTR_ARP:
case OVS_KEY_ATTR_ND:
goto ok;
default:
WARN_ON_ONCE(1);
}
invalid:
error = -EINVAL;
ok:
WARN_ON_ONCE(!key_len && !error);
*key_lenp = key_len;
return error;
}
/**
* flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
* @in_port: receives the extracted input port.
* @tun_id: receives the extracted tunnel ID.
* @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
* sequence.
*
* This parses a series of Netlink attributes that form a flow key, which must
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
* get the metadata, that is, the parts of the flow key that cannot be
* extracted from the packet itself.
*/
int flow_metadata_from_nlattrs(u16 *in_port, __be64 *tun_id,
const struct nlattr *attr)
{
const struct nlattr *nla;
u16 prev_type;
int rem;
*in_port = USHRT_MAX;
*tun_id = 0;
prev_type = OVS_KEY_ATTR_UNSPEC;
nla_for_each_nested(nla, attr, rem) {
int type = nla_type(nla);
if (type > OVS_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
return -EINVAL;
switch (TRANSITION(prev_type, type)) {
case TRANSITION(OVS_KEY_ATTR_UNSPEC, OVS_KEY_ATTR_TUN_ID):
*tun_id = nla_get_be64(nla);
break;
case TRANSITION(OVS_KEY_ATTR_UNSPEC, OVS_KEY_ATTR_IN_PORT):
case TRANSITION(OVS_KEY_ATTR_TUN_ID, OVS_KEY_ATTR_IN_PORT):
if (nla_get_u32(nla) >= DP_MAX_PORTS)
return -EINVAL;
*in_port = nla_get_u32(nla);
break;
default:
return 0;
}
prev_type = type;
}
if (rem)
return -EINVAL;
return 0;
}
int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
{
struct ovs_key_ethernet *eth_key;
struct nlattr *nla;
/* This is an imperfect sanity-check that FLOW_BUFSIZE doesn't need
* to be updated, but will at least raise awareness when new
* datapath key types are added. */
BUILD_BUG_ON(__OVS_KEY_ATTR_MAX != 14);
if (swkey->eth.tun_id != cpu_to_be64(0))
NLA_PUT_BE64(skb, OVS_KEY_ATTR_TUN_ID, swkey->eth.tun_id);
if (swkey->eth.in_port != USHRT_MAX)
NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->eth.in_port);
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
if (!nla)
goto nla_put_failure;
eth_key = nla_data(nla);
memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
if (swkey->eth.tci != htons(0)) {
struct ovs_key_8021q q_key;
q_key.q_tpid = htons(ETH_P_8021Q);
q_key.q_tci = swkey->eth.tci & ~htons(VLAN_TAG_PRESENT);
NLA_PUT(skb, OVS_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
}
if (swkey->eth.type == htons(ETH_P_802_2))
return 0;
NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
if (swkey->eth.type == htons(ETH_P_IP)) {
struct ovs_key_ipv4 *ipv4_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
if (!nla)
goto nla_put_failure;
ipv4_key = nla_data(nla);
memset(ipv4_key, 0, sizeof(struct ovs_key_ipv4));
ipv4_key->ipv4_src = swkey->ipv4.addr.src;
ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
ipv4_key->ipv4_proto = swkey->ip.proto;
ipv4_key->ipv4_tos = swkey->ip.tos;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
struct ovs_key_ipv6 *ipv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
if (!nla)
goto nla_put_failure;
ipv6_key = nla_data(nla);
memset(ipv6_key, 0, sizeof(struct ovs_key_ipv6));
memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
sizeof(ipv6_key->ipv6_src));
memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
sizeof(ipv6_key->ipv6_dst));
ipv6_key->ipv6_proto = swkey->ip.proto;
ipv6_key->ipv6_tos = swkey->ip.tos;
} else if (swkey->eth.type == htons(ETH_P_ARP)) {
struct ovs_key_arp *arp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
if (!nla)
goto nla_put_failure;
arp_key = nla_data(nla);
memset(arp_key, 0, sizeof(struct ovs_key_arp));
arp_key->arp_sip = swkey->ipv4.addr.src;
arp_key->arp_tip = swkey->ipv4.addr.dst;
arp_key->arp_op = htons(swkey->ip.proto);
memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
}
if (swkey->eth.type == htons(ETH_P_IP) ||
swkey->eth.type == htons(ETH_P_IPV6)) {
if (swkey->ip.proto == IPPROTO_TCP) {
struct ovs_key_tcp *tcp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
if (!nla)
goto nla_put_failure;
tcp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
tcp_key->tcp_src = swkey->ipv4.tp.src;
tcp_key->tcp_dst = swkey->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
tcp_key->tcp_src = swkey->ipv6.tp.src;
tcp_key->tcp_dst = swkey->ipv6.tp.dst;
}
} else if (swkey->ip.proto == IPPROTO_UDP) {
struct ovs_key_udp *udp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
if (!nla)
goto nla_put_failure;
udp_key = nla_data(nla);
if (swkey->eth.type == htons(ETH_P_IP)) {
udp_key->udp_src = swkey->ipv4.tp.src;
udp_key->udp_dst = swkey->ipv4.tp.dst;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
udp_key->udp_src = swkey->ipv6.tp.src;
udp_key->udp_dst = swkey->ipv6.tp.dst;
}
} else if (swkey->eth.type == htons(ETH_P_IP) &&
swkey->ip.proto == IPPROTO_ICMP) {
struct ovs_key_icmp *icmp_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
if (!nla)
goto nla_put_failure;
icmp_key = nla_data(nla);
icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
swkey->ip.proto == IPPROTO_ICMPV6) {
struct ovs_key_icmpv6 *icmpv6_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
sizeof(*icmpv6_key));
if (!nla)
goto nla_put_failure;
icmpv6_key = nla_data(nla);
icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
struct ovs_key_nd *nd_key;
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
if (!nla)
goto nla_put_failure;
nd_key = nla_data(nla);
memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
sizeof(nd_key->nd_target));
memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
}
}
}
return 0;
nla_put_failure:
return -EMSGSIZE;
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int flow_init(void)
{
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
get_random_bytes(&hash_seed, sizeof(hash_seed));
return 0;
}
/* Uninitializes the flow module. */
void flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}