2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-11 13:57:52 +00:00
Files
openvswitch/tests/test-classifier.c
Jarno Rajahalme 74ff3298c8 userspace: Define and use struct eth_addr.
Define struct eth_addr and use it instead of a uint8_t array for all
ethernet addresses in OVS userspace.  The struct is always the right
size, and it can be assigned without an explicit memcpy, which makes
code more readable.

"struct eth_addr" is a good type name for this as many utility
functions are already named accordingly.

struct eth_addr can be accessed as bytes as well as ovs_be16's, which
makes the struct 16-bit aligned.  All use seems to be 16-bit aligned,
so some algorithms on the ethernet addresses can be made a bit more
efficient making use of this fact.

As the struct fits into a register (in 64-bit systems) we pass it by
value when possible.

This patch also changes the few uses of Linux specific ETH_ALEN to
OVS's own ETH_ADDR_LEN, and removes the OFP_ETH_ALEN, as it is no
longer needed.

This work stemmed from a desire to make all struct flow members
assignable for unrelated exploration purposes.  However, I think this
might be a nice code readability improvement by itself.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-08-28 14:55:11 -07:00

1906 lines
60 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* "White box" tests for classifier.
*
* With very few exceptions, these tests obtain complete coverage of every
* basic block and every branch in the classifier implementation, e.g. a clean
* report from "gcov -b". (Covering the exceptions would require finding
* collisions in the hash function used for flow data, etc.)
*
* This test should receive a clean report from "valgrind --leak-check=full":
* it frees every heap block that it allocates.
*/
#include <config.h>
#undef NDEBUG
#include "classifier.h"
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include "byte-order.h"
#include "classifier-private.h"
#include "command-line.h"
#include "fatal-signal.h"
#include "flow.h"
#include "ofp-util.h"
#include "ovstest.h"
#include "ovs-atomic.h"
#include "ovs-thread.h"
#include "packets.h"
#include "random.h"
#include "timeval.h"
#include "unaligned.h"
#include "util.h"
static bool versioned = false;
/* Fields in a rule. */
#define CLS_FIELDS \
/* struct flow all-caps */ \
/* member name name */ \
/* ----------- -------- */ \
CLS_FIELD(tunnel.tun_id, TUN_ID) \
CLS_FIELD(metadata, METADATA) \
CLS_FIELD(nw_src, NW_SRC) \
CLS_FIELD(nw_dst, NW_DST) \
CLS_FIELD(in_port, IN_PORT) \
CLS_FIELD(vlan_tci, VLAN_TCI) \
CLS_FIELD(dl_type, DL_TYPE) \
CLS_FIELD(tp_src, TP_SRC) \
CLS_FIELD(tp_dst, TP_DST) \
CLS_FIELD(dl_src, DL_SRC) \
CLS_FIELD(dl_dst, DL_DST) \
CLS_FIELD(nw_proto, NW_PROTO) \
CLS_FIELD(nw_tos, NW_DSCP)
/* Field indexes.
*
* (These are also indexed into struct classifier's 'tables' array.) */
enum {
#define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
CLS_FIELDS
#undef CLS_FIELD
CLS_N_FIELDS
};
/* Field information. */
struct cls_field {
int ofs; /* Offset in struct flow. */
int len; /* Length in bytes. */
const char *name; /* Name (for debugging). */
};
static const struct cls_field cls_fields[CLS_N_FIELDS] = {
#define CLS_FIELD(MEMBER, NAME) \
{ offsetof(struct flow, MEMBER), \
sizeof ((struct flow *)0)->MEMBER, \
#NAME },
CLS_FIELDS
#undef CLS_FIELD
};
struct test_rule {
struct ovs_list list_node;
int aux; /* Auxiliary data. */
struct cls_rule cls_rule; /* Classifier rule data. */
};
static struct test_rule *
test_rule_from_cls_rule(const struct cls_rule *rule)
{
return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
}
static void
test_rule_destroy(struct test_rule *rule)
{
if (rule) {
cls_rule_destroy(&rule->cls_rule);
free(rule);
}
}
static struct test_rule *make_rule(int wc_fields, int priority, int value_pat);
static void free_rule(struct test_rule *);
static struct test_rule *clone_rule(const struct test_rule *);
/* Trivial (linear) classifier. */
struct tcls {
size_t n_rules;
size_t allocated_rules;
struct test_rule **rules;
};
static void
tcls_init(struct tcls *tcls)
{
tcls->n_rules = 0;
tcls->allocated_rules = 0;
tcls->rules = NULL;
}
static void
tcls_destroy(struct tcls *tcls)
{
if (tcls) {
size_t i;
for (i = 0; i < tcls->n_rules; i++) {
test_rule_destroy(tcls->rules[i]);
}
free(tcls->rules);
}
}
static bool
tcls_is_empty(const struct tcls *tcls)
{
return tcls->n_rules == 0;
}
static struct test_rule *
tcls_insert(struct tcls *tcls, const struct test_rule *rule)
{
size_t i;
for (i = 0; i < tcls->n_rules; i++) {
const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
if (cls_rule_equal(pos, &rule->cls_rule)) {
/* Exact match. */
ovsrcu_postpone(free_rule, tcls->rules[i]);
tcls->rules[i] = clone_rule(rule);
return tcls->rules[i];
} else if (pos->priority < rule->cls_rule.priority) {
break;
}
}
if (tcls->n_rules >= tcls->allocated_rules) {
tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
sizeof *tcls->rules);
}
if (i != tcls->n_rules) {
memmove(&tcls->rules[i + 1], &tcls->rules[i],
sizeof *tcls->rules * (tcls->n_rules - i));
}
tcls->rules[i] = clone_rule(rule);
tcls->n_rules++;
return tcls->rules[i];
}
static void
tcls_remove(struct tcls *cls, const struct test_rule *rule)
{
size_t i;
for (i = 0; i < cls->n_rules; i++) {
struct test_rule *pos = cls->rules[i];
if (pos == rule) {
test_rule_destroy(pos);
memmove(&cls->rules[i], &cls->rules[i + 1],
sizeof *cls->rules * (cls->n_rules - i - 1));
cls->n_rules--;
return;
}
}
OVS_NOT_REACHED();
}
static bool
match(const struct cls_rule *wild_, const struct flow *fixed)
{
struct match wild;
int f_idx;
minimatch_expand(&wild_->match, &wild);
for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
bool eq;
if (f_idx == CLS_F_IDX_NW_SRC) {
eq = !((fixed->nw_src ^ wild.flow.nw_src)
& wild.wc.masks.nw_src);
} else if (f_idx == CLS_F_IDX_NW_DST) {
eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
& wild.wc.masks.nw_dst);
} else if (f_idx == CLS_F_IDX_TP_SRC) {
eq = !((fixed->tp_src ^ wild.flow.tp_src)
& wild.wc.masks.tp_src);
} else if (f_idx == CLS_F_IDX_TP_DST) {
eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
& wild.wc.masks.tp_dst);
} else if (f_idx == CLS_F_IDX_DL_SRC) {
eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
wild.wc.masks.dl_src);
} else if (f_idx == CLS_F_IDX_DL_DST) {
eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
wild.wc.masks.dl_dst);
} else if (f_idx == CLS_F_IDX_VLAN_TCI) {
eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
& wild.wc.masks.vlan_tci);
} else if (f_idx == CLS_F_IDX_TUN_ID) {
eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
& wild.wc.masks.tunnel.tun_id);
} else if (f_idx == CLS_F_IDX_METADATA) {
eq = !((fixed->metadata ^ wild.flow.metadata)
& wild.wc.masks.metadata);
} else if (f_idx == CLS_F_IDX_NW_DSCP) {
eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
(wild.wc.masks.nw_tos & IP_DSCP_MASK));
} else if (f_idx == CLS_F_IDX_NW_PROTO) {
eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
& wild.wc.masks.nw_proto);
} else if (f_idx == CLS_F_IDX_DL_TYPE) {
eq = !((fixed->dl_type ^ wild.flow.dl_type)
& wild.wc.masks.dl_type);
} else if (f_idx == CLS_F_IDX_IN_PORT) {
eq = !((fixed->in_port.ofp_port
^ wild.flow.in_port.ofp_port)
& wild.wc.masks.in_port.ofp_port);
} else {
OVS_NOT_REACHED();
}
if (!eq) {
return false;
}
}
return true;
}
static struct cls_rule *
tcls_lookup(const struct tcls *cls, const struct flow *flow)
{
size_t i;
for (i = 0; i < cls->n_rules; i++) {
struct test_rule *pos = cls->rules[i];
if (match(&pos->cls_rule, flow)) {
return &pos->cls_rule;
}
}
return NULL;
}
static void
tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
{
size_t i;
for (i = 0; i < cls->n_rules; ) {
struct test_rule *pos = cls->rules[i];
if (!minimask_has_extra(pos->cls_rule.match.mask,
target->match.mask)) {
struct flow flow;
miniflow_expand(pos->cls_rule.match.flow, &flow);
if (match(target, &flow)) {
tcls_remove(cls, pos);
continue;
}
}
i++;
}
}
static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
CONSTANT_HTONL(0xc0a04455) };
static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
CONSTANT_HTONL(0xc0a04455) };
static ovs_be64 tun_id_values[] = {
0,
CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
static ovs_be64 metadata_values[] = {
0,
CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL };
static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
static ovs_be16 dl_type_values[]
= { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
CONSTANT_HTONS(80) };
static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
static struct eth_addr dl_src_values[] = {
{ { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 } } },
{ { { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } } } };
static struct eth_addr dl_dst_values[] = {
{ { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 } } },
{ { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } } } };
static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
static uint8_t nw_dscp_values[] = { 48, 0 };
static void *values[CLS_N_FIELDS][2];
static void
init_values(void)
{
values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
values[CLS_F_IDX_DL_SRC][0] = &dl_src_values[0];
values[CLS_F_IDX_DL_SRC][1] = &dl_src_values[1];
values[CLS_F_IDX_DL_DST][0] = &dl_dst_values[0];
values[CLS_F_IDX_DL_DST][1] = &dl_dst_values[1];
values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
}
#define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
#define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
#define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
#define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
#define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
#define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
#define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
#define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
#define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
#define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
#define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
#define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
#define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
#define N_FLOW_VALUES (N_NW_SRC_VALUES * \
N_NW_DST_VALUES * \
N_TUN_ID_VALUES * \
N_IN_PORT_VALUES * \
N_VLAN_TCI_VALUES * \
N_DL_TYPE_VALUES * \
N_TP_SRC_VALUES * \
N_TP_DST_VALUES * \
N_DL_SRC_VALUES * \
N_DL_DST_VALUES * \
N_NW_PROTO_VALUES * \
N_NW_DSCP_VALUES)
static unsigned int
get_value(unsigned int *x, unsigned n_values)
{
unsigned int rem = *x % n_values;
*x /= n_values;
return rem;
}
static void
compare_classifiers(struct classifier *cls, size_t n_invisible_rules,
cls_version_t version, struct tcls *tcls)
{
static const int confidence = 500;
unsigned int i;
assert(classifier_count(cls) == tcls->n_rules + n_invisible_rules);
for (i = 0; i < confidence; i++) {
const struct cls_rule *cr0, *cr1, *cr2;
struct flow flow;
struct flow_wildcards wc;
unsigned int x;
flow_wildcards_init_catchall(&wc);
x = random_range(N_FLOW_VALUES);
memset(&flow, 0, sizeof flow);
flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
flow.in_port.ofp_port = in_port_values[get_value(&x,
N_IN_PORT_VALUES)];
flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
flow.dl_src = dl_src_values[get_value(&x, N_DL_SRC_VALUES)];
flow.dl_dst = dl_dst_values[get_value(&x, N_DL_DST_VALUES)];
flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
/* This assertion is here to suppress a GCC 4.9 array-bounds warning */
ovs_assert(cls->n_tries <= CLS_MAX_TRIES);
cr0 = classifier_lookup(cls, version, &flow, &wc);
cr1 = tcls_lookup(tcls, &flow);
assert((cr0 == NULL) == (cr1 == NULL));
if (cr0 != NULL) {
const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
assert(cls_rule_equal(cr0, cr1));
assert(tr0->aux == tr1->aux);
/* Make sure the rule should have been visible. */
assert(cr0->cls_match);
assert(cls_match_visible_in_version(cr0->cls_match, version));
}
cr2 = classifier_lookup(cls, version, &flow, NULL);
assert(cr2 == cr0);
}
}
static void
destroy_classifier(struct classifier *cls)
{
struct test_rule *rule;
classifier_defer(cls);
CLS_FOR_EACH (rule, cls_rule, cls) {
if (classifier_remove(cls, &rule->cls_rule)) {
ovsrcu_postpone(free_rule, rule);
}
}
classifier_destroy(cls);
}
static void
pvector_verify(const struct pvector *pvec)
{
void *ptr OVS_UNUSED;
int prev_priority = INT_MAX;
PVECTOR_FOR_EACH (ptr, pvec) {
int priority = cursor__.vector[cursor__.entry_idx].priority;
if (priority > prev_priority) {
ovs_abort(0, "Priority vector is out of order (%u > %u)",
priority, prev_priority);
}
prev_priority = priority;
}
}
static unsigned int
trie_verify(const rcu_trie_ptr *trie, unsigned int ofs, unsigned int n_bits)
{
const struct trie_node *node = ovsrcu_get(struct trie_node *, trie);
if (node) {
assert(node->n_rules == 0 || node->n_bits > 0);
ofs += node->n_bits;
assert((ofs > 0 || (ofs == 0 && node->n_bits == 0)) && ofs <= n_bits);
return node->n_rules
+ trie_verify(&node->edges[0], ofs, n_bits)
+ trie_verify(&node->edges[1], ofs, n_bits);
}
return 0;
}
static void
verify_tries(struct classifier *cls)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
unsigned int n_rules = 0;
int i;
for (i = 0; i < cls->n_tries; i++) {
n_rules += trie_verify(&cls->tries[i].root, 0,
cls->tries[i].field->n_bits);
}
assert(n_rules <= cls->n_rules);
}
static void
check_tables(const struct classifier *cls, int n_tables, int n_rules,
int n_dups, int n_invisible, cls_version_t version)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
const struct cls_subtable *table;
struct test_rule *test_rule;
int found_tables = 0;
int found_tables_with_visible_rules = 0;
int found_rules = 0;
int found_dups = 0;
int found_invisible = 0;
int found_visible_but_removable = 0;
int found_rules2 = 0;
pvector_verify(&cls->subtables);
CMAP_FOR_EACH (table, cmap_node, &cls->subtables_map) {
const struct cls_match *head;
int max_priority = INT_MIN;
unsigned int max_count = 0;
bool found = false;
bool found_visible_rules = false;
const struct cls_subtable *iter;
/* Locate the subtable from 'subtables'. */
PVECTOR_FOR_EACH (iter, &cls->subtables) {
if (iter == table) {
if (found) {
ovs_abort(0, "Subtable %p duplicated in 'subtables'.",
table);
}
found = true;
}
}
if (!found) {
ovs_abort(0, "Subtable %p not found from 'subtables'.", table);
}
assert(!cmap_is_empty(&table->rules));
assert(trie_verify(&table->ports_trie, 0, table->ports_mask_len)
== (table->ports_mask_len ? cmap_count(&table->rules) : 0));
found_tables++;
CMAP_FOR_EACH (head, cmap_node, &table->rules) {
int prev_priority = INT_MAX;
cls_version_t prev_version = 0;
const struct cls_match *rule, *prev;
bool found_visible_rules_in_list = false;
assert(head->priority <= table->max_priority);
if (head->priority > max_priority) {
max_priority = head->priority;
max_count = 0;
}
FOR_EACH_RULE_IN_LIST_PROTECTED(rule, prev, head) {
cls_version_t rule_version;
const struct cls_rule *found_rule;
/* Priority may not increase. */
assert(rule->priority <= prev_priority);
if (rule->priority == max_priority) {
++max_count;
}
/* Count invisible rules and visible duplicates. */
if (!cls_match_visible_in_version(rule, version)) {
found_invisible++;
} else {
if (cls_match_is_eventually_invisible(rule)) {
found_visible_but_removable++;
}
if (found_visible_rules_in_list) {
found_dups++;
}
found_visible_rules_in_list = true;
found_visible_rules = true;
}
/* Rule must be visible in the version it was inserted. */
rule_version = rule->add_version;
assert(cls_match_visible_in_version(rule, rule_version));
/* We should always find the latest version of the rule,
* unless all rules have been marked for removal.
* Later versions must always be later in the list. */
found_rule = classifier_find_rule_exactly(cls, rule->cls_rule,
rule_version);
if (found_rule && found_rule != rule->cls_rule) {
assert(found_rule->priority == rule->priority);
/* Found rule may not have a lower version. */
assert(found_rule->cls_match->add_version >= rule_version);
/* This rule must not be visible in the found rule's
* version. */
assert(!cls_match_visible_in_version(
rule, found_rule->cls_match->add_version));
}
if (rule->priority == prev_priority) {
/* Exact duplicate rule may not have a lower version. */
assert(rule_version >= prev_version);
/* Previous rule must not be visible in rule's version. */
assert(!cls_match_visible_in_version(prev, rule_version));
}
prev_priority = rule->priority;
prev_version = rule_version;
found_rules++;
}
}
if (found_visible_rules) {
found_tables_with_visible_rules++;
}
assert(table->max_priority == max_priority);
assert(table->max_count == max_count);
}
assert(found_tables == cmap_count(&cls->subtables_map));
assert(found_tables == pvector_count(&cls->subtables));
assert(n_tables == -1 || n_tables == found_tables_with_visible_rules);
assert(n_rules == -1 || found_rules == n_rules + found_invisible);
assert(n_dups == -1 || found_dups == n_dups);
assert(found_invisible == n_invisible);
CLS_FOR_EACH (test_rule, cls_rule, cls) {
found_rules2++;
}
/* Iteration does not see removable rules. */
assert(found_rules
== found_rules2 + found_visible_but_removable + found_invisible);
}
static struct test_rule *
make_rule(int wc_fields, int priority, int value_pat)
{
const struct cls_field *f;
struct test_rule *rule;
struct match match;
match_init_catchall(&match);
for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
int f_idx = f - cls_fields;
int value_idx = (value_pat & (1u << f_idx)) != 0;
memcpy((char *) &match.flow + f->ofs,
values[f_idx][value_idx], f->len);
if (f_idx == CLS_F_IDX_NW_SRC) {
match.wc.masks.nw_src = OVS_BE32_MAX;
} else if (f_idx == CLS_F_IDX_NW_DST) {
match.wc.masks.nw_dst = OVS_BE32_MAX;
} else if (f_idx == CLS_F_IDX_TP_SRC) {
match.wc.masks.tp_src = OVS_BE16_MAX;
} else if (f_idx == CLS_F_IDX_TP_DST) {
match.wc.masks.tp_dst = OVS_BE16_MAX;
} else if (f_idx == CLS_F_IDX_DL_SRC) {
WC_MASK_FIELD(&match.wc, dl_src);
} else if (f_idx == CLS_F_IDX_DL_DST) {
WC_MASK_FIELD(&match.wc, dl_dst);
} else if (f_idx == CLS_F_IDX_VLAN_TCI) {
match.wc.masks.vlan_tci = OVS_BE16_MAX;
} else if (f_idx == CLS_F_IDX_TUN_ID) {
match.wc.masks.tunnel.tun_id = OVS_BE64_MAX;
} else if (f_idx == CLS_F_IDX_METADATA) {
match.wc.masks.metadata = OVS_BE64_MAX;
} else if (f_idx == CLS_F_IDX_NW_DSCP) {
match.wc.masks.nw_tos |= IP_DSCP_MASK;
} else if (f_idx == CLS_F_IDX_NW_PROTO) {
match.wc.masks.nw_proto = UINT8_MAX;
} else if (f_idx == CLS_F_IDX_DL_TYPE) {
match.wc.masks.dl_type = OVS_BE16_MAX;
} else if (f_idx == CLS_F_IDX_IN_PORT) {
match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
} else {
OVS_NOT_REACHED();
}
}
rule = xzalloc(sizeof *rule);
cls_rule_init(&rule->cls_rule, &match, wc_fields
? (priority == INT_MIN ? priority + 1 :
priority == INT_MAX ? priority - 1 : priority)
: 0);
return rule;
}
static struct test_rule *
clone_rule(const struct test_rule *src)
{
struct test_rule *dst;
dst = xmalloc(sizeof *dst);
dst->aux = src->aux;
cls_rule_clone(&dst->cls_rule, &src->cls_rule);
return dst;
}
static void
free_rule(struct test_rule *rule)
{
cls_rule_destroy(&rule->cls_rule);
free(rule);
}
static void
shuffle(int *p, size_t n)
{
for (; n > 1; n--, p++) {
int *q = &p[random_range(n)];
int tmp = *p;
*p = *q;
*q = tmp;
}
}
static void
shuffle_u32s(uint32_t *p, size_t n)
{
for (; n > 1; n--, p++) {
uint32_t *q = &p[random_range(n)];
uint32_t tmp = *p;
*p = *q;
*q = tmp;
}
}
/* Classifier tests. */
static enum mf_field_id trie_fields[2] = {
MFF_IPV4_DST, MFF_IPV4_SRC
};
static void
set_prefix_fields(struct classifier *cls)
{
verify_tries(cls);
classifier_set_prefix_fields(cls, trie_fields, ARRAY_SIZE(trie_fields));
verify_tries(cls);
}
/* Tests an empty classifier. */
static void
test_empty(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
struct classifier cls;
struct tcls tcls;
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
tcls_init(&tcls);
assert(classifier_is_empty(&cls));
assert(tcls_is_empty(&tcls));
compare_classifiers(&cls, 0, CLS_MIN_VERSION, &tcls);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
/* Destroys a null classifier. */
static void
test_destroy_null(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
classifier_destroy(NULL);
}
/* Tests classification with one rule at a time. */
static void
test_single_rule(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
unsigned int wc_fields; /* Hilarious. */
for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
struct classifier cls;
struct test_rule *rule, *tcls_rule;
struct tcls tcls;
rule = make_rule(wc_fields,
hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
tcls_init(&tcls);
tcls_rule = tcls_insert(&tcls, rule);
classifier_insert(&cls, &rule->cls_rule, CLS_MIN_VERSION, NULL, 0);
compare_classifiers(&cls, 0, CLS_MIN_VERSION, &tcls);
check_tables(&cls, 1, 1, 0, 0, CLS_MIN_VERSION);
classifier_remove(&cls, &rule->cls_rule);
tcls_remove(&tcls, tcls_rule);
assert(classifier_is_empty(&cls));
assert(tcls_is_empty(&tcls));
compare_classifiers(&cls, 0, CLS_MIN_VERSION, &tcls);
ovsrcu_postpone(free_rule, rule);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
/* Tests replacing one rule by another. */
static void
test_rule_replacement(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
unsigned int wc_fields;
for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
struct classifier cls;
struct test_rule *rule1;
struct test_rule *rule2;
struct tcls tcls;
rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
rule2->aux += 5;
rule2->aux += 5;
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
tcls_init(&tcls);
tcls_insert(&tcls, rule1);
classifier_insert(&cls, &rule1->cls_rule, CLS_MIN_VERSION, NULL, 0);
compare_classifiers(&cls, 0, CLS_MIN_VERSION, &tcls);
check_tables(&cls, 1, 1, 0, 0, CLS_MIN_VERSION);
tcls_destroy(&tcls);
tcls_init(&tcls);
tcls_insert(&tcls, rule2);
assert(test_rule_from_cls_rule(
classifier_replace(&cls, &rule2->cls_rule, CLS_MIN_VERSION,
NULL, 0)) == rule1);
ovsrcu_postpone(free_rule, rule1);
compare_classifiers(&cls, 0, CLS_MIN_VERSION, &tcls);
check_tables(&cls, 1, 1, 0, 0, CLS_MIN_VERSION);
classifier_defer(&cls);
classifier_remove(&cls, &rule2->cls_rule);
tcls_destroy(&tcls);
destroy_classifier(&cls);
}
}
static int
factorial(int n_items)
{
int n, i;
n = 1;
for (i = 2; i <= n_items; i++) {
n *= i;
}
return n;
}
static void
swap(int *a, int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
static void
reverse(int *a, int n)
{
int i;
for (i = 0; i < n / 2; i++) {
int j = n - (i + 1);
swap(&a[i], &a[j]);
}
}
static bool
next_permutation(int *a, int n)
{
int k;
for (k = n - 2; k >= 0; k--) {
if (a[k] < a[k + 1]) {
int l;
for (l = n - 1; ; l--) {
if (a[l] > a[k]) {
swap(&a[k], &a[l]);
reverse(a + (k + 1), n - (k + 1));
return true;
}
}
}
}
return false;
}
/* Tests classification with rules that have the same matching criteria. */
static void
test_many_rules_in_one_list (struct ovs_cmdl_context *ctx OVS_UNUSED)
{
enum { N_RULES = 3 };
int n_pris;
for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
int ops[N_RULES * 2];
int pris[N_RULES];
int n_permutations;
int i;
pris[0] = 0;
for (i = 1; i < N_RULES; i++) {
pris[i] = pris[i - 1] + (n_pris > i);
}
for (i = 0; i < N_RULES * 2; i++) {
ops[i] = i / 2;
}
n_permutations = 0;
do {
struct test_rule *rules[N_RULES];
struct test_rule *tcls_rules[N_RULES];
int pri_rules[N_RULES];
struct classifier cls;
struct tcls tcls;
cls_version_t version = CLS_MIN_VERSION;
size_t n_invisible_rules = 0;
n_permutations++;
for (i = 0; i < N_RULES; i++) {
rules[i] = make_rule(456, pris[i], 0);
tcls_rules[i] = NULL;
pri_rules[i] = -1;
}
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
tcls_init(&tcls);
for (i = 0; i < ARRAY_SIZE(ops); i++) {
struct test_rule *displaced_rule = NULL;
struct cls_rule *removable_rule = NULL;
int j = ops[i];
int m, n;
if (!tcls_rules[j]) {
tcls_rules[j] = tcls_insert(&tcls, rules[j]);
if (versioned) {
/* Insert the new rule in the next version. */
++version;
displaced_rule = test_rule_from_cls_rule(
classifier_find_rule_exactly(&cls,
&rules[j]->cls_rule,
version));
if (displaced_rule) {
/* Mark the old rule for removal after the current
* version. */
cls_rule_make_invisible_in_version(
&displaced_rule->cls_rule, version);
n_invisible_rules++;
removable_rule = &displaced_rule->cls_rule;
}
classifier_insert(&cls, &rules[j]->cls_rule, version,
NULL, 0);
} else {
displaced_rule = test_rule_from_cls_rule(
classifier_replace(&cls, &rules[j]->cls_rule,
version, NULL, 0));
}
if (pri_rules[pris[j]] >= 0) {
int k = pri_rules[pris[j]];
assert(displaced_rule != NULL);
assert(displaced_rule != rules[j]);
assert(pris[j] == displaced_rule->cls_rule.priority);
tcls_rules[k] = NULL;
} else {
assert(displaced_rule == NULL);
}
pri_rules[pris[j]] = j;
} else {
if (versioned) {
/* Mark the rule for removal after the current
* version. */
++version;
cls_rule_make_invisible_in_version(
&rules[j]->cls_rule, version);
n_invisible_rules++;
removable_rule = &rules[j]->cls_rule;
} else {
classifier_remove(&cls, &rules[j]->cls_rule);
}
tcls_remove(&tcls, tcls_rules[j]);
tcls_rules[j] = NULL;
pri_rules[pris[j]] = -1;
}
compare_classifiers(&cls, n_invisible_rules, version, &tcls);
n = 0;
for (m = 0; m < N_RULES; m++) {
n += tcls_rules[m] != NULL;
}
check_tables(&cls, n > 0, n, n - 1, n_invisible_rules,
version);
if (versioned && removable_rule) {
/* Removable rule is no longer visible. */
assert(removable_rule->cls_match);
assert(!cls_match_visible_in_version(
removable_rule->cls_match, version));
classifier_remove(&cls, removable_rule);
n_invisible_rules--;
}
}
classifier_defer(&cls);
for (i = 0; i < N_RULES; i++) {
if (classifier_remove(&cls, &rules[i]->cls_rule)) {
ovsrcu_postpone(free_rule, rules[i]);
}
}
classifier_destroy(&cls);
tcls_destroy(&tcls);
} while (next_permutation(ops, ARRAY_SIZE(ops)));
assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
}
}
static int
count_ones(unsigned long int x)
{
int n = 0;
while (x) {
x = zero_rightmost_1bit(x);
n++;
}
return n;
}
static bool
array_contains(int *array, int n, int value)
{
int i;
for (i = 0; i < n; i++) {
if (array[i] == value) {
return true;
}
}
return false;
}
/* Tests classification with two rules at a time that fall into the same
* table but different lists. */
static void
test_many_rules_in_one_table(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
int iteration;
for (iteration = 0; iteration < 50; iteration++) {
enum { N_RULES = 20 };
struct test_rule *rules[N_RULES];
struct test_rule *tcls_rules[N_RULES];
struct classifier cls;
struct tcls tcls;
cls_version_t version = CLS_MIN_VERSION;
size_t n_invisible_rules = 0;
int value_pats[N_RULES];
int value_mask;
int wcf;
int i;
do {
wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
} while ((1 << count_ones(value_mask)) < N_RULES);
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
tcls_init(&tcls);
for (i = 0; i < N_RULES; i++) {
int priority = random_range(INT_MAX);
do {
value_pats[i] = random_uint32() & value_mask;
} while (array_contains(value_pats, i, value_pats[i]));
++version;
rules[i] = make_rule(wcf, priority, value_pats[i]);
tcls_rules[i] = tcls_insert(&tcls, rules[i]);
classifier_insert(&cls, &rules[i]->cls_rule, version, NULL, 0);
compare_classifiers(&cls, n_invisible_rules, version, &tcls);
check_tables(&cls, 1, i + 1, 0, n_invisible_rules, version);
}
for (i = 0; i < N_RULES; i++) {
tcls_remove(&tcls, tcls_rules[i]);
if (versioned) {
/* Mark the rule for removal after the current version. */
++version;
cls_rule_make_invisible_in_version(&rules[i]->cls_rule,
version);
n_invisible_rules++;
} else {
classifier_remove(&cls, &rules[i]->cls_rule);
}
compare_classifiers(&cls, n_invisible_rules, version, &tcls);
check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0,
n_invisible_rules, version);
if (!versioned) {
ovsrcu_postpone(free_rule, rules[i]);
}
}
if (versioned) {
for (i = 0; i < N_RULES; i++) {
classifier_remove(&cls, &rules[i]->cls_rule);
n_invisible_rules--;
compare_classifiers(&cls, n_invisible_rules, version, &tcls);
check_tables(&cls, 0, 0, 0, n_invisible_rules, version);
ovsrcu_postpone(free_rule, rules[i]);
}
}
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
/* Tests classification with many rules at a time that fall into random lists
* in 'n' tables. */
static void
test_many_rules_in_n_tables(int n_tables)
{
enum { MAX_RULES = 50 };
int wcfs[10];
int iteration;
int i;
assert(n_tables < 10);
for (i = 0; i < n_tables; i++) {
do {
wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
} while (array_contains(wcfs, i, wcfs[i]));
}
for (iteration = 0; iteration < 30; iteration++) {
int priorities[MAX_RULES];
struct classifier cls;
struct tcls tcls;
cls_version_t version = CLS_MIN_VERSION;
size_t n_invisible_rules = 0;
struct ovs_list list = OVS_LIST_INITIALIZER(&list);
random_set_seed(iteration + 1);
for (i = 0; i < MAX_RULES; i++) {
priorities[i] = (i * 129) & INT_MAX;
}
shuffle(priorities, ARRAY_SIZE(priorities));
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
tcls_init(&tcls);
for (i = 0; i < MAX_RULES; i++) {
struct test_rule *rule;
int priority = priorities[i];
int wcf = wcfs[random_range(n_tables)];
int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
rule = make_rule(wcf, priority, value_pat);
tcls_insert(&tcls, rule);
classifier_insert(&cls, &rule->cls_rule, version, NULL, 0);
compare_classifiers(&cls, n_invisible_rules, version, &tcls);
check_tables(&cls, -1, i + 1, -1, n_invisible_rules, version);
}
while (classifier_count(&cls) - n_invisible_rules > 0) {
struct test_rule *target;
struct test_rule *rule;
size_t n_removable_rules = 0;
target = clone_rule(tcls.rules[random_range(tcls.n_rules)]);
CLS_FOR_EACH_TARGET (rule, cls_rule, &cls, &target->cls_rule,
version) {
if (versioned) {
/* Mark the rule for removal after the current version. */
cls_rule_make_invisible_in_version(&rule->cls_rule,
version + 1);
n_removable_rules++;
compare_classifiers(&cls, n_invisible_rules, version,
&tcls);
check_tables(&cls, -1, -1, -1, n_invisible_rules, version);
list_push_back(&list, &rule->list_node);
} else if (classifier_remove(&cls, &rule->cls_rule)) {
ovsrcu_postpone(free_rule, rule);
}
}
++version;
n_invisible_rules += n_removable_rules;
tcls_delete_matches(&tcls, &target->cls_rule);
free_rule(target);
compare_classifiers(&cls, n_invisible_rules, version, &tcls);
check_tables(&cls, -1, -1, -1, n_invisible_rules, version);
}
if (versioned) {
struct test_rule *rule;
/* Remove rules that are no longer visible. */
LIST_FOR_EACH_POP (rule, list_node, &list) {
classifier_remove(&cls, &rule->cls_rule);
n_invisible_rules--;
compare_classifiers(&cls, n_invisible_rules, version,
&tcls);
check_tables(&cls, -1, -1, -1, n_invisible_rules, version);
}
}
destroy_classifier(&cls);
tcls_destroy(&tcls);
}
}
static void
test_many_rules_in_two_tables(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
test_many_rules_in_n_tables(2);
}
static void
test_many_rules_in_five_tables(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
test_many_rules_in_n_tables(5);
}
/* Classifier benchmarks. */
static int n_rules; /* Number of rules to insert. */
static int n_priorities; /* Number of priorities to use. */
static int n_tables; /* Number of subtables. */
static int n_threads; /* Number of threads to search and mutate. */
static int n_lookups; /* Number of lookups each thread performs. */
static void benchmark(bool use_wc);
static int
elapsed(const struct timeval *start)
{
struct timeval end;
xgettimeofday(&end);
return timeval_to_msec(&end) - timeval_to_msec(start);
}
static void
run_benchmarks(struct ovs_cmdl_context *ctx)
{
if (ctx->argc < 5
|| (ctx->argc > 1 && !strcmp(ctx->argv[1], "--help"))) {
printf(
"usage: ovstest %s benchmark <n_rules> <n_priorities> <n_subtables> <n_threads> <n_lookups>\n"
"\n"
"where:\n"
"\n"
"<n_rules> - The number of rules to install for lookups. More rules\n"
" makes misses less likely.\n"
"<n_priorities> - How many different priorities to use. Using only 1\n"
" priority will force lookups to continue through all\n"
" subtables.\n"
"<n_subtables> - Number of subtables to use. Normally a classifier has\n"
" rules with different kinds of masks, resulting in\n"
" multiple subtables (one per mask). However, in some\n"
" special cases a table may consist of only one kind of\n"
" rules, so there will be only one subtable.\n"
"<n_threads> - How many lookup threads to use. Using one thread should\n"
" give less variance accross runs, but classifier\n"
" scaling can be tested with multiple threads.\n"
"<n_lookups> - How many lookups each thread should perform.\n"
"\n", program_name);
return;
}
n_rules = strtol(ctx->argv[1], NULL, 10);
n_priorities = strtol(ctx->argv[2], NULL, 10);
n_tables = strtol(ctx->argv[3], NULL, 10);
n_threads = strtol(ctx->argv[4], NULL, 10);
n_lookups = strtol(ctx->argv[5], NULL, 10);
printf("\nBenchmarking with:\n"
"%d rules with %d priorities in %d tables, "
"%d threads doing %d lookups each\n",
n_rules, n_priorities, n_tables, n_threads, n_lookups);
puts("\nWithout wildcards: \n");
benchmark(false);
puts("\nWith wildcards: \n");
benchmark(true);
}
struct cls_aux {
const struct classifier *cls;
size_t n_lookup_flows;
struct flow *lookup_flows;
bool use_wc;
atomic_int hits;
atomic_int misses;
};
static void *
lookup_classifier(void *aux_)
{
struct cls_aux *aux = aux_;
cls_version_t version = CLS_MIN_VERSION;
int hits = 0, old_hits;
int misses = 0, old_misses;
size_t i;
random_set_seed(1);
for (i = 0; i < n_lookups; i++) {
const struct cls_rule *cr;
struct flow_wildcards wc;
unsigned int x;
x = random_range(aux->n_lookup_flows);
if (aux->use_wc) {
flow_wildcards_init_catchall(&wc);
cr = classifier_lookup(aux->cls, version, &aux->lookup_flows[x],
&wc);
} else {
cr = classifier_lookup(aux->cls, version, &aux->lookup_flows[x],
NULL);
}
if (cr) {
hits++;
} else {
misses++;
}
}
atomic_add(&aux->hits, hits, &old_hits);
atomic_add(&aux->misses, misses, &old_misses);
return NULL;
}
/* Benchmark classification. */
static void
benchmark(bool use_wc)
{
struct classifier cls;
cls_version_t version = CLS_MIN_VERSION;
struct cls_aux aux;
int *wcfs = xmalloc(n_tables * sizeof *wcfs);
int *priorities = xmalloc(n_priorities * sizeof *priorities);
struct timeval start;
pthread_t *threads;
int i;
fatal_signal_init();
random_set_seed(1);
for (i = 0; i < n_tables; i++) {
do {
wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
} while (array_contains(wcfs, i, wcfs[i]));
}
for (i = 0; i < n_priorities; i++) {
priorities[i] = (i * 129) & INT_MAX;
}
shuffle(priorities, n_priorities);
classifier_init(&cls, flow_segment_u64s);
set_prefix_fields(&cls);
/* Create lookup flows. */
aux.use_wc = use_wc;
aux.cls = &cls;
aux.n_lookup_flows = 2 * N_FLOW_VALUES;
aux.lookup_flows = xzalloc(aux.n_lookup_flows * sizeof *aux.lookup_flows);
for (i = 0; i < aux.n_lookup_flows; i++) {
struct flow *flow = &aux.lookup_flows[i];
unsigned int x;
x = random_range(N_FLOW_VALUES);
flow->nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
flow->nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
flow->tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
flow->metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
flow->in_port.ofp_port = in_port_values[get_value(&x,
N_IN_PORT_VALUES)];
flow->vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
flow->dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
flow->tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
flow->tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
flow->dl_src = dl_src_values[get_value(&x, N_DL_SRC_VALUES)];
flow->dl_dst = dl_dst_values[get_value(&x, N_DL_DST_VALUES)];
flow->nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
flow->nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
}
atomic_init(&aux.hits, 0);
atomic_init(&aux.misses, 0);
/* Rule insertion. */
for (i = 0; i < n_rules; i++) {
struct test_rule *rule;
const struct cls_rule *old_cr;
int priority = priorities[random_range(n_priorities)];
int wcf = wcfs[random_range(n_tables)];
int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
rule = make_rule(wcf, priority, value_pat);
old_cr = classifier_find_rule_exactly(&cls, &rule->cls_rule, version);
if (!old_cr) {
classifier_insert(&cls, &rule->cls_rule, version, NULL, 0);
} else {
free_rule(rule);
}
}
/* Lookup. */
xgettimeofday(&start);
threads = xmalloc(n_threads * sizeof *threads);
for (i = 0; i < n_threads; i++) {
threads[i] = ovs_thread_create("lookups", lookup_classifier, &aux);
}
for (i = 0; i < n_threads; i++) {
xpthread_join(threads[i], NULL);
}
int elapsed_msec = elapsed(&start);
free(threads);
int hits, misses;
atomic_read(&aux.hits, &hits);
atomic_read(&aux.misses, &misses);
printf("hits: %d, misses: %d\n", hits, misses);
printf("classifier lookups: %5d ms, %"PRId64" lookups/sec\n",
elapsed_msec,
(((uint64_t)hits + misses) * 1000) / elapsed_msec);
destroy_classifier(&cls);
free(aux.lookup_flows);
free(priorities);
free(wcfs);
}
/* Miniflow tests. */
static uint32_t
random_value(void)
{
static const uint32_t values[] =
{ 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
return values[random_range(ARRAY_SIZE(values))];
}
static bool
choose(unsigned int n, unsigned int *idxp)
{
if (*idxp < n) {
return true;
} else {
*idxp -= n;
return false;
}
}
#define FLOW_U32S (FLOW_U64S * 2)
static bool
init_consecutive_values(int n_consecutive, struct flow *flow,
unsigned int *idxp)
{
uint32_t *flow_u32 = (uint32_t *) flow;
if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
int i;
for (i = 0; i < n_consecutive; i++) {
flow_u32[*idxp + i] = random_value();
}
return true;
} else {
return false;
}
}
static bool
next_random_flow(struct flow *flow, unsigned int idx)
{
uint32_t *flow_u32 = (uint32_t *) flow;
int i;
memset(flow, 0, sizeof *flow);
/* Empty flow. */
if (choose(1, &idx)) {
return true;
}
/* All flows with a small number of consecutive nonzero values. */
for (i = 1; i <= 4; i++) {
if (init_consecutive_values(i, flow, &idx)) {
return true;
}
}
/* All flows with a large number of consecutive nonzero values. */
for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
if (init_consecutive_values(i, flow, &idx)) {
return true;
}
}
/* All flows with exactly two nonconsecutive nonzero values. */
if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
int ofs1;
for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
int ofs2;
for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
if (choose(1, &idx)) {
flow_u32[ofs1] = random_value();
flow_u32[ofs2] = random_value();
return true;
}
}
}
OVS_NOT_REACHED();
}
/* 16 randomly chosen flows with N >= 3 nonzero values. */
if (choose(16 * (FLOW_U32S - 4), &idx)) {
int n = idx / 16 + 3;
int i;
for (i = 0; i < n; i++) {
flow_u32[i] = random_value();
}
shuffle_u32s(flow_u32, FLOW_U32S);
return true;
}
return false;
}
static void
any_random_flow(struct flow *flow)
{
static unsigned int max;
if (!max) {
while (next_random_flow(flow, max)) {
max++;
}
}
next_random_flow(flow, random_range(max));
}
static void
toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
{
const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
uint32_t *flow_u32 = (uint32_t *) flow;
int i;
for (i = 0; i < FLOW_U32S; i++) {
if (mask_u32[i] != 0) {
uint32_t bit;
do {
bit = 1u << random_range(32);
} while (!(bit & mask_u32[i]));
flow_u32[i] ^= bit;
}
}
}
static void
wildcard_extra_bits(struct flow_wildcards *mask)
{
uint32_t *mask_u32 = (uint32_t *) &mask->masks;
int i;
for (i = 0; i < FLOW_U32S; i++) {
if (mask_u32[i] != 0) {
uint32_t bit;
do {
bit = 1u << random_range(32);
} while (!(bit & mask_u32[i]));
mask_u32[i] &= ~bit;
}
}
}
/* Returns a copy of 'src'. The caller must eventually free the returned
* miniflow with free(). */
static struct miniflow *
miniflow_clone__(const struct miniflow *src)
{
struct miniflow *dst;
size_t data_size;
data_size = miniflow_alloc(&dst, 1, src);
miniflow_clone(dst, src, data_size / sizeof(uint64_t));
return dst;
}
/* Returns a hash value for 'flow', given 'basis'. */
static inline uint32_t
miniflow_hash__(const struct miniflow *flow, uint32_t basis)
{
const uint64_t *p = miniflow_get_values(flow);
size_t n_values = miniflow_n_values(flow);
struct flowmap hash_map = FLOWMAP_EMPTY_INITIALIZER;
uint32_t hash = basis;
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, flow->map) {
uint64_t value = *p++;
if (value) {
hash = hash_add64(hash, value);
flowmap_set(&hash_map, idx, 1);
}
}
map_t map;
FLOWMAP_FOR_EACH_MAP (map, hash_map) {
hash = hash_add64(hash, map);
}
return hash_finish(hash, n_values);
}
static void
test_miniflow(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
struct flow flow;
unsigned int idx;
random_set_seed(0xb3faca38);
for (idx = 0; next_random_flow(&flow, idx); idx++) {
const uint64_t *flow_u64 = (const uint64_t *) &flow;
struct miniflow *miniflow, *miniflow2, *miniflow3;
struct flow flow2, flow3;
struct flow_wildcards mask;
struct minimask *minimask;
int i;
/* Convert flow to miniflow. */
miniflow = miniflow_create(&flow);
/* Check that the flow equals its miniflow. */
assert(miniflow_get_vid(miniflow) == vlan_tci_to_vid(flow.vlan_tci));
for (i = 0; i < FLOW_U64S; i++) {
assert(miniflow_get(miniflow, i) == flow_u64[i]);
}
/* Check that the miniflow equals itself. */
assert(miniflow_equal(miniflow, miniflow));
/* Convert miniflow back to flow and verify that it's the same. */
miniflow_expand(miniflow, &flow2);
assert(flow_equal(&flow, &flow2));
/* Check that copying a miniflow works properly. */
miniflow2 = miniflow_clone__(miniflow);
assert(miniflow_equal(miniflow, miniflow2));
assert(miniflow_hash__(miniflow, 0) == miniflow_hash__(miniflow2, 0));
miniflow_expand(miniflow2, &flow3);
assert(flow_equal(&flow, &flow3));
/* Check that masked matches work as expected for identical flows and
* miniflows. */
do {
next_random_flow(&mask.masks, 1);
} while (flow_wildcards_is_catchall(&mask));
minimask = minimask_create(&mask);
assert(minimask_is_catchall(minimask)
== flow_wildcards_is_catchall(&mask));
assert(miniflow_equal_in_minimask(miniflow, miniflow2, minimask));
assert(miniflow_equal_flow_in_minimask(miniflow, &flow2, minimask));
assert(miniflow_hash_in_minimask(miniflow, minimask, 0x12345678) ==
flow_hash_in_minimask(&flow, minimask, 0x12345678));
assert(minimask_hash(minimask, 0) ==
miniflow_hash__(&minimask->masks, 0));
/* Check that masked matches work as expected for differing flows and
* miniflows. */
toggle_masked_flow_bits(&flow2, &mask);
assert(!miniflow_equal_flow_in_minimask(miniflow, &flow2, minimask));
miniflow3 = miniflow_create(&flow2);
assert(!miniflow_equal_in_minimask(miniflow, miniflow3, minimask));
/* Clean up. */
free(miniflow);
free(miniflow2);
free(miniflow3);
free(minimask);
}
}
static void
test_minimask_has_extra(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
struct flow_wildcards catchall;
struct minimask *minicatchall;
struct flow flow;
unsigned int idx;
flow_wildcards_init_catchall(&catchall);
minicatchall = minimask_create(&catchall);
assert(minimask_is_catchall(minicatchall));
random_set_seed(0x2ec7905b);
for (idx = 0; next_random_flow(&flow, idx); idx++) {
struct flow_wildcards mask;
struct minimask *minimask;
mask.masks = flow;
minimask = minimask_create(&mask);
assert(!minimask_has_extra(minimask, minimask));
assert(minimask_has_extra(minicatchall, minimask)
== !minimask_is_catchall(minimask));
if (!minimask_is_catchall(minimask)) {
struct minimask *minimask2;
wildcard_extra_bits(&mask);
minimask2 = minimask_create(&mask);
assert(minimask_has_extra(minimask2, minimask));
assert(!minimask_has_extra(minimask, minimask2));
free(minimask2);
}
free(minimask);
}
free(minicatchall);
}
static void
test_minimask_combine(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
struct flow_wildcards catchall;
struct minimask *minicatchall;
struct flow flow;
unsigned int idx;
flow_wildcards_init_catchall(&catchall);
minicatchall = minimask_create(&catchall);
assert(minimask_is_catchall(minicatchall));
random_set_seed(0x181bf0cd);
for (idx = 0; next_random_flow(&flow, idx); idx++) {
struct minimask *minimask, *minimask2;
struct flow_wildcards mask, mask2, combined, combined2;
struct {
struct minimask minicombined;
uint64_t storage[FLOW_U64S];
} m;
struct flow flow2;
mask.masks = flow;
minimask = minimask_create(&mask);
minimask_combine(&m.minicombined, minimask, minicatchall, m.storage);
assert(minimask_is_catchall(&m.minicombined));
any_random_flow(&flow2);
mask2.masks = flow2;
minimask2 = minimask_create(&mask2);
minimask_combine(&m.minicombined, minimask, minimask2, m.storage);
flow_wildcards_and(&combined, &mask, &mask2);
minimask_expand(&m.minicombined, &combined2);
assert(flow_wildcards_equal(&combined, &combined2));
free(minimask);
free(minimask2);
}
free(minicatchall);
}
static void help(struct ovs_cmdl_context *ctx);
static const struct ovs_cmdl_command commands[] = {
/* Classifier tests. */
{"empty", NULL, 0, 0, test_empty},
{"destroy-null", NULL, 0, 0, test_destroy_null},
{"single-rule", NULL, 0, 0, test_single_rule},
{"rule-replacement", NULL, 0, 0, test_rule_replacement},
{"many-rules-in-one-list", NULL, 0, 1, test_many_rules_in_one_list},
{"many-rules-in-one-table", NULL, 0, 1, test_many_rules_in_one_table},
{"many-rules-in-two-tables", NULL, 0, 0, test_many_rules_in_two_tables},
{"many-rules-in-five-tables", NULL, 0, 0, test_many_rules_in_five_tables},
{"benchmark", NULL, 0, 5, run_benchmarks},
/* Miniflow and minimask tests. */
{"miniflow", NULL, 0, 0, test_miniflow},
{"minimask_has_extra", NULL, 0, 0, test_minimask_has_extra},
{"minimask_combine", NULL, 0, 0, test_minimask_combine},
{"--help", NULL, 0, 0, help},
{NULL, NULL, 0, 0, NULL},
};
static void
help(struct ovs_cmdl_context *ctx OVS_UNUSED)
{
const struct ovs_cmdl_command *p;
struct ds test_names = DS_EMPTY_INITIALIZER;
const int linesize = 80;
printf("usage: ovstest %s TEST [TESTARGS]\n"
"where TEST is one of the following:\n\n",
program_name);
for (p = commands; p->name != NULL; p++) {
if (*p->name != '-') { /* Skip internal commands */
if (test_names.length > 1
&& test_names.length + strlen(p->name) + 1 >= linesize) {
test_names.length -= 1;
printf ("%s\n", ds_cstr(&test_names));
ds_clear(&test_names);
}
ds_put_format(&test_names, "%s, ", p->name);
}
}
if (test_names.length > 2) {
test_names.length -= 2;
printf("%s\n", ds_cstr(&test_names));
}
ds_destroy(&test_names);
}
static void
test_classifier_main(int argc, char *argv[])
{
struct ovs_cmdl_context ctx = {
.argc = argc - 1,
.argv = argv + 1,
};
set_program_name(argv[0]);
if (argc > 1 && !strcmp(argv[1], "--versioned")) {
versioned = true;
ctx.argc--;
ctx.argv++;
}
init_values();
ovs_cmdl_run_command(&ctx, commands);
}
OVSTEST_REGISTER("test-classifier", test_classifier_main);