2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-19 14:37:21 +00:00
Files
openvswitch/lib/dpif-provider.h
Joe Stringer 58df55ce45 dpif: Update documentation for RCU-protected actions.
The userspace datapath returns RCU-protected actions from flow_get() and
flow_dump_next(). This doesn't cause any trouble for current users of
these functions, but it imposes additional constraints on their use.
This patch makes the dpif documentation more explicit about how the
results of these functions can be used.

Signed-off-by: Joe Stringer <joestringer@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
2014-07-16 13:59:22 +12:00

424 lines
19 KiB
C

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DPIF_PROVIDER_H
#define DPIF_PROVIDER_H 1
/* Provider interface to dpifs, which provide an interface to an Open vSwitch
* datapath. A datapath is a collection of physical or virtual ports that are
* exposed over OpenFlow as a single switch. Datapaths and the collections of
* ports that they contain may be fixed or dynamic. */
#include "openflow/openflow.h"
#include "dpif.h"
#include "util.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Open vSwitch datapath interface.
*
* This structure should be treated as opaque by dpif implementations. */
struct dpif {
const struct dpif_class *dpif_class;
char *base_name;
char *full_name;
uint8_t netflow_engine_type;
uint8_t netflow_engine_id;
};
void dpif_init(struct dpif *, const struct dpif_class *, const char *name,
uint8_t netflow_engine_type, uint8_t netflow_engine_id);
void dpif_uninit(struct dpif *dpif, bool close);
static inline void dpif_assert_class(const struct dpif *dpif,
const struct dpif_class *dpif_class)
{
ovs_assert(dpif->dpif_class == dpif_class);
}
struct dpif_flow_dump {
struct dpif *dpif;
};
static inline void
dpif_flow_dump_init(struct dpif_flow_dump *dump, const struct dpif *dpif)
{
dump->dpif = CONST_CAST(struct dpif *, dpif);
}
struct dpif_flow_dump_thread {
struct dpif *dpif;
};
static inline void
dpif_flow_dump_thread_init(struct dpif_flow_dump_thread *thread,
struct dpif_flow_dump *dump)
{
thread->dpif = dump->dpif;
}
/* Datapath interface class structure, to be defined by each implementation of
* a datapath interface.
*
* These functions return 0 if successful or a positive errno value on failure,
* except where otherwise noted.
*
* These functions are expected to execute synchronously, that is, to block as
* necessary to obtain a result. Thus, they may not return EAGAIN or
* EWOULDBLOCK or EINPROGRESS. We may relax this requirement in the future if
* and when we encounter performance problems. */
struct dpif_class {
/* Type of dpif in this class, e.g. "system", "netdev", etc.
*
* One of the providers should supply a "system" type, since this is
* the type assumed if no type is specified when opening a dpif. */
const char *type;
/* Enumerates the names of all known created datapaths (of class
* 'dpif_class'), if possible, into 'all_dps'. The caller has already
* initialized 'all_dps' and other dpif classes might already have added
* names to it.
*
* This is used by the vswitch at startup, so that it can delete any
* datapaths that are not configured.
*
* Some kinds of datapaths might not be practically enumerable, in which
* case this function may be a null pointer. */
int (*enumerate)(struct sset *all_dps, const struct dpif_class *dpif_class);
/* Returns the type to pass to netdev_open() when a dpif of class
* 'dpif_class' has a port of type 'type', for a few special cases
* when a netdev type differs from a port type. For example, when
* using the userspace datapath, a port of type "internal" needs to
* be opened as "tap".
*
* Returns either 'type' itself or a string literal, which must not
* be freed. */
const char *(*port_open_type)(const struct dpif_class *dpif_class,
const char *type);
/* Attempts to open an existing dpif called 'name', if 'create' is false,
* or to open an existing dpif or create a new one, if 'create' is true.
*
* 'dpif_class' is the class of dpif to open.
*
* If successful, stores a pointer to the new dpif in '*dpifp', which must
* have class 'dpif_class'. On failure there are no requirements on what
* is stored in '*dpifp'. */
int (*open)(const struct dpif_class *dpif_class,
const char *name, bool create, struct dpif **dpifp);
/* Closes 'dpif' and frees associated memory. */
void (*close)(struct dpif *dpif);
/* Attempts to destroy the dpif underlying 'dpif'.
*
* If successful, 'dpif' will not be used again except as an argument for
* the 'close' member function. */
int (*destroy)(struct dpif *dpif);
/* Performs periodic work needed by 'dpif', if any is necessary. */
void (*run)(struct dpif *dpif);
/* Arranges for poll_block() to wake up if the "run" member function needs
* to be called for 'dpif'. */
void (*wait)(struct dpif *dpif);
/* Retrieves statistics for 'dpif' into 'stats'. */
int (*get_stats)(const struct dpif *dpif, struct dpif_dp_stats *stats);
/* Adds 'netdev' as a new port in 'dpif'. If '*port_no' is not
* UINT32_MAX, attempts to use that as the port's port number.
*
* If port is successfully added, sets '*port_no' to the new port's
* port number. Returns EBUSY if caller attempted to choose a port
* number, and it was in use. */
int (*port_add)(struct dpif *dpif, struct netdev *netdev,
odp_port_t *port_no);
/* Removes port numbered 'port_no' from 'dpif'. */
int (*port_del)(struct dpif *dpif, odp_port_t port_no);
/* Queries 'dpif' for a port with the given 'port_no' or 'devname'.
* If 'port' is not null, stores information about the port into
* '*port' if successful.
*
* If 'port' is not null, the caller takes ownership of data in
* 'port' and must free it with dpif_port_destroy() when it is no
* longer needed. */
int (*port_query_by_number)(const struct dpif *dpif, odp_port_t port_no,
struct dpif_port *port);
int (*port_query_by_name)(const struct dpif *dpif, const char *devname,
struct dpif_port *port);
/* Returns the Netlink PID value to supply in OVS_ACTION_ATTR_USERSPACE
* actions as the OVS_USERSPACE_ATTR_PID attribute's value, for use in
* flows whose packets arrived on port 'port_no'. In the case where the
* provider allocates multiple Netlink PIDs to a single port, it may use
* 'hash' to spread load among them. The caller need not use a particular
* hash function; a 5-tuple hash is suitable.
*
* (The datapath implementation might use some different hash function for
* distributing packets received via flow misses among PIDs. This means
* that packets received via flow misses might be reordered relative to
* packets received via userspace actions. This is not ordinarily a
* problem.)
*
* A 'port_no' of UINT32_MAX should be treated as a special case. The
* implementation should return a reserved PID, not allocated to any port,
* that the client may use for special purposes.
*
* The return value only needs to be meaningful when DPIF_UC_ACTION has
* been enabled in the 'dpif''s listen mask, and it is allowed to change
* when DPIF_UC_ACTION is disabled and then re-enabled.
*
* A dpif provider that doesn't have meaningful Netlink PIDs can use NULL
* for this function. This is equivalent to always returning 0. */
uint32_t (*port_get_pid)(const struct dpif *dpif, odp_port_t port_no,
uint32_t hash);
/* Attempts to begin dumping the ports in a dpif. On success, returns 0
* and initializes '*statep' with any data needed for iteration. On
* failure, returns a positive errno value. */
int (*port_dump_start)(const struct dpif *dpif, void **statep);
/* Attempts to retrieve another port from 'dpif' for 'state', which was
* initialized by a successful call to the 'port_dump_start' function for
* 'dpif'. On success, stores a new dpif_port into 'port' and returns 0.
* Returns EOF if the end of the port table has been reached, or a positive
* errno value on error. This function will not be called again once it
* returns nonzero once for a given iteration (but the 'port_dump_done'
* function will be called afterward).
*
* The dpif provider retains ownership of the data stored in 'port'. It
* must remain valid until at least the next call to 'port_dump_next' or
* 'port_dump_done' for 'state'. */
int (*port_dump_next)(const struct dpif *dpif, void *state,
struct dpif_port *port);
/* Releases resources from 'dpif' for 'state', which was initialized by a
* successful call to the 'port_dump_start' function for 'dpif'. */
int (*port_dump_done)(const struct dpif *dpif, void *state);
/* Polls for changes in the set of ports in 'dpif'. If the set of ports in
* 'dpif' has changed, then this function should do one of the
* following:
*
* - Preferably: store the name of the device that was added to or deleted
* from 'dpif' in '*devnamep' and return 0. The caller is responsible
* for freeing '*devnamep' (with free()) when it no longer needs it.
*
* - Alternatively: return ENOBUFS, without indicating the device that was
* added or deleted.
*
* Occasional 'false positives', in which the function returns 0 while
* indicating a device that was not actually added or deleted or returns
* ENOBUFS without any change, are acceptable.
*
* If the set of ports in 'dpif' has not changed, returns EAGAIN. May also
* return other positive errno values to indicate that something has gone
* wrong. */
int (*port_poll)(const struct dpif *dpif, char **devnamep);
/* Arranges for the poll loop to wake up when 'port_poll' will return a
* value other than EAGAIN. */
void (*port_poll_wait)(const struct dpif *dpif);
/* Queries 'dpif' for a flow entry. The flow is specified by the Netlink
* attributes with types OVS_KEY_ATTR_* in the 'key_len' bytes starting at
* 'key'.
*
* Returns 0 if successful. If no flow matches, returns ENOENT. On other
* failure, returns a positive errno value.
*
* On success, '*bufp' will be set to an ofpbuf owned by the caller that
* contains the response for 'maskp' and/or 'actionsp'. The caller must
* supply a valid pointer, and must free the ofpbuf (with ofpbuf_delete())
* when it is no longer needed.
*
* If 'maskp' is nonnull, then on success '*maskp' will point to the
* Netlink attributes for the flow's mask. '*mask_len' will be set to the
* length of the mask attributes. Implementations may opt to point 'maskp'
* at RCU-protected data rather than making a copy in '*bufp'.
*
* If 'actionsp' is nonnull, then on success '*actionsp' will point to the
* Netlink attributes for the flow's actions. '*actions_len' will be set to
* the length of the actions attributes. Implementations may opt to point
* 'actionsp' at RCU-protected data rather than making a copy in '*bufp'.
*
* If 'stats' is nonnull, then on success it must be updated with the
* flow's statistics. */
int (*flow_get)(const struct dpif *dpif,
const struct nlattr *key, size_t key_len,
struct ofpbuf **bufp,
struct nlattr **maskp, size_t *mask_len,
struct nlattr **actionsp, size_t *acts_len,
struct dpif_flow_stats *stats);
/* Adds or modifies a flow in 'dpif'. The flow is specified by the Netlink
* attributes with types OVS_KEY_ATTR_* in the 'put->key_len' bytes
* starting at 'put->key'. The associated actions are specified by the
* Netlink attributes with types OVS_ACTION_ATTR_* in the
* 'put->actions_len' bytes starting at 'put->actions'.
*
* - If the flow's key does not exist in 'dpif', then the flow will be
* added if 'put->flags' includes DPIF_FP_CREATE. Otherwise the
* operation will fail with ENOENT.
*
* If the operation succeeds, then 'put->stats', if nonnull, must be
* zeroed.
*
* - If the flow's key does exist in 'dpif', then the flow's actions will
* be updated if 'put->flags' includes DPIF_FP_MODIFY. Otherwise the
* operation will fail with EEXIST. If the flow's actions are updated,
* then its statistics will be zeroed if 'put->flags' includes
* DPIF_FP_ZERO_STATS, and left as-is otherwise.
*
* If the operation succeeds, then 'put->stats', if nonnull, must be set
* to the flow's statistics before the update.
*/
int (*flow_put)(struct dpif *dpif, const struct dpif_flow_put *put);
/* Deletes a flow from 'dpif' and returns 0, or returns ENOENT if 'dpif'
* does not contain such a flow. The flow is specified by the Netlink
* attributes with types OVS_KEY_ATTR_* in the 'del->key_len' bytes
* starting at 'del->key'.
*
* If the operation succeeds, then 'del->stats', if nonnull, must be set to
* the flow's statistics before its deletion. */
int (*flow_del)(struct dpif *dpif, const struct dpif_flow_del *del);
/* Deletes all flows from 'dpif' and clears all of its queues of received
* packets. */
int (*flow_flush)(struct dpif *dpif);
/* Flow dumping interface.
*
* This is the back-end for the flow dumping interface described in
* dpif.h. Please read the comments there first, because this code
* closely follows it.
*
* 'flow_dump_create' and 'flow_dump_thread_create' must always return an
* initialized and usable data structure and defer error return until
* flow_dump_destroy(). This hasn't been a problem for the dpifs that
* exist so far.
*
* 'flow_dump_create' and 'flow_dump_thread_create' must initialize the
* structures that they return with dpif_flow_dump_init() and
* dpif_flow_dump_thread_init(), respectively. */
struct dpif_flow_dump *(*flow_dump_create)(const struct dpif *dpif);
int (*flow_dump_destroy)(struct dpif_flow_dump *dump);
struct dpif_flow_dump_thread *(*flow_dump_thread_create)(
struct dpif_flow_dump *dump);
void (*flow_dump_thread_destroy)(struct dpif_flow_dump_thread *thread);
int (*flow_dump_next)(struct dpif_flow_dump_thread *thread,
struct dpif_flow *flows, int max_flows);
/* Performs the 'execute->actions_len' bytes of actions in
* 'execute->actions' on the Ethernet frame in 'execute->packet'
* and on the packet metadata in 'execute->md'.
* May modify both packet and metadata. */
int (*execute)(struct dpif *dpif, struct dpif_execute *execute);
/* Executes each of the 'n_ops' operations in 'ops' on 'dpif', in the order
* in which they are specified, placing each operation's results in the
* "output" members documented in comments.
*
* This function is optional. It is only worthwhile to implement it if
* 'dpif' can perform operations in batch faster than individually. */
void (*operate)(struct dpif *dpif, struct dpif_op **ops, size_t n_ops);
/* Enables or disables receiving packets with dpif_recv() for 'dpif'.
* Turning packet receive off and then back on is allowed to change Netlink
* PID assignments (see ->port_get_pid()). The client is responsible for
* updating flows as necessary if it does this. */
int (*recv_set)(struct dpif *dpif, bool enable);
/* Refreshes the poll loops and Netlink sockets associated to each port,
* when the number of upcall handlers (upcall receiving thread) is changed
* to 'n_handlers' and receiving packets for 'dpif' is enabled by
* recv_set().
*
* Since multiple upcall handlers can read upcalls simultaneously from
* 'dpif', each port can have multiple Netlink sockets, one per upcall
* handler. So, handlers_set() is responsible for the following tasks:
*
* When receiving upcall is enabled, extends or creates the
* configuration to support:
*
* - 'n_handlers' Netlink sockets for each port.
*
* - 'n_handlers' poll loops, one for each upcall handler.
*
* - registering the Netlink sockets for the same upcall handler to
* the corresponding poll loop.
* */
int (*handlers_set)(struct dpif *dpif, uint32_t n_handlers);
/* Translates OpenFlow queue ID 'queue_id' (in host byte order) into a
* priority value used for setting packet priority. */
int (*queue_to_priority)(const struct dpif *dpif, uint32_t queue_id,
uint32_t *priority);
/* Polls for an upcall from 'dpif' for an upcall handler. Since there
* can be multiple poll loops (see ->handlers_set()), 'handler_id' is
* needed as index to identify the corresponding poll loop. If
* successful, stores the upcall into '*upcall', using 'buf' for
* storage. Should only be called if 'recv_set' has been used to enable
* receiving packets from 'dpif'.
*
* The implementation should point 'upcall->key' and 'upcall->userdata'
* (if any) into data in the caller-provided 'buf'. The implementation may
* also use 'buf' for storing the data of 'upcall->packet'. If necessary
* to make room, the implementation may reallocate the data in 'buf'.
*
* The caller owns the data of 'upcall->packet' and may modify it. If
* packet's headroom is exhausted as it is manipulated, 'upcall->packet'
* will be reallocated. This requires the data of 'upcall->packet' to be
* released with ofpbuf_uninit() before 'upcall' is destroyed. However,
* when an error is returned, the 'upcall->packet' may be uninitialized
* and should not be released.
*
* This function must not block. If no upcall is pending when it is
* called, it should return EAGAIN without blocking. */
int (*recv)(struct dpif *dpif, uint32_t handler_id,
struct dpif_upcall *upcall, struct ofpbuf *buf);
/* Arranges for the poll loop for an upcall handler to wake up when 'dpif'
* has a message queued to be received with the recv member functions.
* Since there can be multiple poll loops (see ->handlers_set()),
* 'handler_id' is needed as index to identify the corresponding poll loop.
* */
void (*recv_wait)(struct dpif *dpif, uint32_t handler_id);
/* Throws away any queued upcalls that 'dpif' currently has ready to
* return. */
void (*recv_purge)(struct dpif *dpif);
};
extern const struct dpif_class dpif_linux_class;
extern const struct dpif_class dpif_netdev_class;
#ifdef __cplusplus
}
#endif
#endif /* dpif-provider.h */