2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-19 14:37:21 +00:00
Files
openvswitch/datapath/flow.c
2009-06-15 15:11:30 -07:00

305 lines
7.9 KiB
C

/*
* Distributed under the terms of the GNU GPL version 2.
* Copyright (c) 2007, 2008, 2009 Nicira Networks.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include "flow.h"
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <net/ip.h>
#include "compat.h"
struct kmem_cache *flow_cache;
static inline int iphdr_ok(struct sk_buff *skb)
{
int nh_ofs = skb_network_offset(skb);
if (skb->len >= nh_ofs + sizeof(struct iphdr)) {
int ip_len = ip_hdrlen(skb);
return (ip_len >= sizeof(struct iphdr)
&& pskb_may_pull(skb, nh_ofs + ip_len));
}
return 0;
}
static inline int tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
if (pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))) {
int tcp_len = tcp_hdrlen(skb);
return (tcp_len >= sizeof(struct tcphdr)
&& skb->len >= th_ofs + tcp_len);
}
return 0;
}
static inline int udphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
return pskb_may_pull(skb, th_ofs + sizeof(struct udphdr));
}
static inline int icmphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
return pskb_may_pull(skb, th_ofs + sizeof(struct icmphdr));
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
static inline struct ovs_tcphdr *ovs_tcp_hdr(const struct sk_buff *skb)
{
return (struct ovs_tcphdr *)skb_transport_header(skb);
}
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
unsigned long flags;
u8 tcp_flags = 0;
if (flow->key.dl_type == htons(ETH_P_IP) && iphdr_ok(skb)) {
struct iphdr *nh = ip_hdr(skb);
flow->ip_tos = nh->tos;
if (flow->key.nw_proto == IPPROTO_TCP && tcphdr_ok(skb)) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
}
spin_lock_irqsave(&flow->lock, flags);
getnstimeofday(&flow->used);
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock_irqrestore(&flow->lock, flags);
}
struct sw_flow_actions *flow_actions_alloc(size_t n_actions)
{
struct sw_flow_actions *sfa;
if (n_actions > (PAGE_SIZE - sizeof *sfa) / sizeof(union odp_action))
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof *sfa + n_actions * sizeof(union odp_action),
GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->n_actions = n_actions;
return sfa;
}
/* Frees 'flow' immediately. */
void flow_free(struct sw_flow *flow)
{
if (unlikely(!flow))
return;
kfree(flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
/* RCU callback used by flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
flow_free(flow);
}
/* Schedules 'flow' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free(struct sw_flow *flow)
{
call_rcu(&flow->rcu, rcu_free_flow_callback);
}
/* RCU callback used by flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
struct sw_flow_actions *sf_acts = container_of(rcu,
struct sw_flow_actions, rcu);
kfree(sf_acts);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}
#define SNAP_OUI_LEN 3
struct eth_snap_hdr
{
struct ethhdr eth;
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[SNAP_OUI_LEN];
u16 ethertype;
} __attribute__ ((packed));
static int is_snap(const struct eth_snap_hdr *esh)
{
return (esh->dsap == LLC_SAP_SNAP
&& esh->ssap == LLC_SAP_SNAP
&& !memcmp(esh->oui, "\0\0\0", 3));
}
/* Parses the Ethernet frame in 'skb', which was received on 'in_port',
* and initializes 'key' to match. Returns 1 if 'skb' contains an IP
* fragment, 0 otherwise. */
int flow_extract(struct sk_buff *skb, u16 in_port, struct odp_flow_key *key)
{
struct ethhdr *eth;
struct eth_snap_hdr *esh;
int retval = 0;
int nh_ofs;
memset(key, 0, sizeof *key);
key->dl_vlan = htons(ODP_VLAN_NONE);
key->in_port = in_port;
if (skb->len < sizeof *eth)
return 0;
if (!pskb_may_pull(skb, skb->len >= 64 ? 64 : skb->len)) {
return 0;
}
skb_reset_mac_header(skb);
eth = eth_hdr(skb);
esh = (struct eth_snap_hdr *) eth;
nh_ofs = sizeof *eth;
if (likely(ntohs(eth->h_proto) >= ODP_DL_TYPE_ETH2_CUTOFF))
key->dl_type = eth->h_proto;
else if (skb->len >= sizeof *esh && is_snap(esh)) {
key->dl_type = esh->ethertype;
nh_ofs = sizeof *esh;
} else {
key->dl_type = htons(ODP_DL_TYPE_NOT_ETH_TYPE);
if (skb->len >= nh_ofs + sizeof(struct llc_pdu_un)) {
nh_ofs += sizeof(struct llc_pdu_un);
}
}
/* Check for a VLAN tag */
if (key->dl_type == htons(ETH_P_8021Q) &&
skb->len >= nh_ofs + sizeof(struct vlan_hdr)) {
struct vlan_hdr *vh = (struct vlan_hdr*)(skb->data + nh_ofs);
key->dl_type = vh->h_vlan_encapsulated_proto;
key->dl_vlan = vh->h_vlan_TCI & htons(VLAN_VID_MASK);
nh_ofs += sizeof(struct vlan_hdr);
}
memcpy(key->dl_src, eth->h_source, ETH_ALEN);
memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
skb_set_network_header(skb, nh_ofs);
/* Network layer. */
if (key->dl_type == htons(ETH_P_IP) && iphdr_ok(skb)) {
struct iphdr *nh = ip_hdr(skb);
int th_ofs = nh_ofs + nh->ihl * 4;
key->nw_src = nh->saddr;
key->nw_dst = nh->daddr;
key->nw_proto = nh->protocol;
skb_set_transport_header(skb, th_ofs);
/* Transport layer. */
if (!(nh->frag_off & htons(IP_MF | IP_OFFSET))) {
if (key->nw_proto == IPPROTO_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->tp_src = tcp->source;
key->tp_dst = tcp->dest;
} else {
/* Avoid tricking other code into
* thinking that this packet has an L4
* header. */
key->nw_proto = 0;
}
} else if (key->nw_proto == IPPROTO_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->tp_src = udp->source;
key->tp_dst = udp->dest;
} else {
/* Avoid tricking other code into
* thinking that this packet has an L4
* header. */
key->nw_proto = 0;
}
} else if (key->nw_proto == IPPROTO_ICMP) {
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store them
* in 16-bit network byte order. */
key->tp_src = htons(icmp->type);
key->tp_dst = htons(icmp->code);
} else {
/* Avoid tricking other code into
* thinking that this packet has an L4
* header. */
key->nw_proto = 0;
}
}
} else {
retval = 1;
}
} else {
skb_reset_transport_header(skb);
}
return retval;
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int flow_init(void)
{
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
return 0;
}
/* Uninitializes the flow module. */
void flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}
void print_flow(const struct odp_flow_key *key)
{
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAC_ARG(x) ((u8*)(x))[0],((u8*)(x))[1],((u8*)(x))[2],((u8*)(x))[3],((u8*)(x))[4],((u8*)(x))[5]
printk("port%04x:vlan%d mac"MAC_FMT"->"MAC_FMT" "
"type%04x proto%d ip%x->%x port%d->%d\n",
key->in_port, ntohs(key->dl_vlan),
MAC_ARG(key->dl_src), MAC_ARG(key->dl_dst),
ntohs(key->dl_type), key->nw_proto,
key->nw_src, key->nw_dst,
ntohs(key->tp_src), ntohs(key->tp_dst));
}