mirror of
https://github.com/openvswitch/ovs
synced 2025-10-15 14:17:18 +00:00
OpenFlow 1.0 doesn't allow matching on the ARP source and target hardware address. This has caused us to introduce hacks such as the Drop Spoofed ARP action. Now that we have extensible match, we can match on more fields within ARP: - Source Hardware Address (arp_sha) - Target Hardware Address (arp_tha) Signed-off-by: Justin Pettit <jpettit@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com> Acked-by: Ben Pfaff <blp@nicira.com>
701 lines
19 KiB
C
701 lines
19 KiB
C
/*
|
|
* Distributed under the terms of the GNU GPL version 2.
|
|
* Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
|
|
*
|
|
* Significant portions of this file may be copied from parts of the Linux
|
|
* kernel, by Linus Torvalds and others.
|
|
*/
|
|
|
|
#include "flow.h"
|
|
#include "datapath.h"
|
|
#include <asm/uaccess.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/llc_pdu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/llc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/in.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/ip.h>
|
|
|
|
static struct kmem_cache *flow_cache;
|
|
static unsigned int hash_seed __read_mostly;
|
|
|
|
static inline bool arphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header);
|
|
}
|
|
|
|
static inline int check_iphdr(struct sk_buff *skb)
|
|
{
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int ip_len;
|
|
|
|
if (skb->len < nh_ofs + sizeof(struct iphdr))
|
|
return -EINVAL;
|
|
|
|
ip_len = ip_hdrlen(skb);
|
|
if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Pull enough header bytes to account for the IP header plus the
|
|
* longest transport header that we parse, currently 20 bytes for TCP.
|
|
*/
|
|
if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len)))
|
|
return -ENOMEM;
|
|
|
|
skb_set_transport_header(skb, nh_ofs + ip_len);
|
|
return 0;
|
|
}
|
|
|
|
static inline bool tcphdr_ok(struct sk_buff *skb)
|
|
{
|
|
int th_ofs = skb_transport_offset(skb);
|
|
if (skb->len >= th_ofs + sizeof(struct tcphdr)) {
|
|
int tcp_len = tcp_hdrlen(skb);
|
|
return (tcp_len >= sizeof(struct tcphdr)
|
|
&& skb->len >= th_ofs + tcp_len);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool udphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr);
|
|
}
|
|
|
|
static inline bool icmphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr);
|
|
}
|
|
|
|
u64 flow_used_time(unsigned long flow_jiffies)
|
|
{
|
|
struct timespec cur_ts;
|
|
u64 cur_ms, idle_ms;
|
|
|
|
ktime_get_ts(&cur_ts);
|
|
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
|
|
cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
|
|
cur_ts.tv_nsec / NSEC_PER_MSEC;
|
|
|
|
return cur_ms - idle_ms;
|
|
}
|
|
|
|
|
|
#define TCP_FLAGS_OFFSET 13
|
|
#define TCP_FLAG_MASK 0x3f
|
|
|
|
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
|
|
{
|
|
u8 tcp_flags = 0;
|
|
|
|
if (flow->key.dl_type == htons(ETH_P_IP) &&
|
|
flow->key.nw_proto == IPPROTO_TCP) {
|
|
u8 *tcp = (u8 *)tcp_hdr(skb);
|
|
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
|
|
}
|
|
|
|
spin_lock_bh(&flow->lock);
|
|
flow->used = jiffies;
|
|
flow->packet_count++;
|
|
flow->byte_count += skb->len;
|
|
flow->tcp_flags |= tcp_flags;
|
|
spin_unlock_bh(&flow->lock);
|
|
}
|
|
|
|
struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
|
|
{
|
|
int actions_len = nla_len(actions);
|
|
struct sw_flow_actions *sfa;
|
|
|
|
/* At least DP_MAX_PORTS actions are required to be able to flood a
|
|
* packet to every port. Factor of 2 allows for setting VLAN tags,
|
|
* etc. */
|
|
if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
|
|
if (!sfa)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sfa->actions_len = actions_len;
|
|
memcpy(sfa->actions, nla_data(actions), actions_len);
|
|
return sfa;
|
|
}
|
|
|
|
struct sw_flow *flow_alloc(void)
|
|
{
|
|
struct sw_flow *flow;
|
|
|
|
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
|
|
if (!flow)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
spin_lock_init(&flow->lock);
|
|
atomic_set(&flow->refcnt, 1);
|
|
flow->dead = false;
|
|
|
|
return flow;
|
|
}
|
|
|
|
void flow_free_tbl(struct tbl_node *node)
|
|
{
|
|
struct sw_flow *flow = flow_cast(node);
|
|
|
|
flow->dead = true;
|
|
flow_put(flow);
|
|
}
|
|
|
|
/* RCU callback used by flow_deferred_free. */
|
|
static void rcu_free_flow_callback(struct rcu_head *rcu)
|
|
{
|
|
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
|
|
|
|
flow->dead = true;
|
|
flow_put(flow);
|
|
}
|
|
|
|
/* Schedules 'flow' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void flow_deferred_free(struct sw_flow *flow)
|
|
{
|
|
call_rcu(&flow->rcu, rcu_free_flow_callback);
|
|
}
|
|
|
|
void flow_hold(struct sw_flow *flow)
|
|
{
|
|
atomic_inc(&flow->refcnt);
|
|
}
|
|
|
|
void flow_put(struct sw_flow *flow)
|
|
{
|
|
if (unlikely(!flow))
|
|
return;
|
|
|
|
if (atomic_dec_and_test(&flow->refcnt)) {
|
|
kfree((struct sf_flow_acts __force *)flow->sf_acts);
|
|
kmem_cache_free(flow_cache, flow);
|
|
}
|
|
}
|
|
|
|
/* RCU callback used by flow_deferred_free_acts. */
|
|
static void rcu_free_acts_callback(struct rcu_head *rcu)
|
|
{
|
|
struct sw_flow_actions *sf_acts = container_of(rcu,
|
|
struct sw_flow_actions, rcu);
|
|
kfree(sf_acts);
|
|
}
|
|
|
|
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
|
|
{
|
|
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
|
|
}
|
|
|
|
static void parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
struct qtag_prefix {
|
|
__be16 eth_type; /* ETH_P_8021Q */
|
|
__be16 tci;
|
|
};
|
|
struct qtag_prefix *qp;
|
|
|
|
if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))
|
|
return;
|
|
|
|
qp = (struct qtag_prefix *) skb->data;
|
|
key->dl_tci = qp->tci | htons(VLAN_TAG_PRESENT);
|
|
__skb_pull(skb, sizeof(struct qtag_prefix));
|
|
}
|
|
|
|
static __be16 parse_ethertype(struct sk_buff *skb)
|
|
{
|
|
struct llc_snap_hdr {
|
|
u8 dsap; /* Always 0xAA */
|
|
u8 ssap; /* Always 0xAA */
|
|
u8 ctrl;
|
|
u8 oui[3];
|
|
__be16 ethertype;
|
|
};
|
|
struct llc_snap_hdr *llc;
|
|
__be16 proto;
|
|
|
|
proto = *(__be16 *) skb->data;
|
|
__skb_pull(skb, sizeof(__be16));
|
|
|
|
if (ntohs(proto) >= 1536)
|
|
return proto;
|
|
|
|
if (unlikely(skb->len < sizeof(struct llc_snap_hdr)))
|
|
return htons(ETH_P_802_2);
|
|
|
|
llc = (struct llc_snap_hdr *) skb->data;
|
|
if (llc->dsap != LLC_SAP_SNAP ||
|
|
llc->ssap != LLC_SAP_SNAP ||
|
|
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
|
|
return htons(ETH_P_802_2);
|
|
|
|
__skb_pull(skb, sizeof(struct llc_snap_hdr));
|
|
return llc->ethertype;
|
|
}
|
|
|
|
/**
|
|
* flow_extract - extracts a flow key from an Ethernet frame.
|
|
* @skb: sk_buff that contains the frame, with skb->data pointing to the
|
|
* Ethernet header
|
|
* @in_port: port number on which @skb was received.
|
|
* @key: output flow key
|
|
* @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
|
|
* not contain an IPv4 packet or if it is not a fragment.
|
|
*
|
|
* The caller must ensure that skb->len >= ETH_HLEN.
|
|
*
|
|
* Returns 0 if successful, otherwise a negative errno value.
|
|
*
|
|
* Initializes @skb header pointers as follows:
|
|
*
|
|
* - skb->mac_header: the Ethernet header.
|
|
*
|
|
* - skb->network_header: just past the Ethernet header, or just past the
|
|
* VLAN header, to the first byte of the Ethernet payload.
|
|
*
|
|
* - skb->transport_header: If key->dl_type is ETH_P_IP on output, then just
|
|
* past the IPv4 header, if one is present and of a correct length,
|
|
* otherwise the same as skb->network_header. For other key->dl_type
|
|
* values it is left untouched.
|
|
*/
|
|
int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
|
|
bool *is_frag)
|
|
{
|
|
struct ethhdr *eth;
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
key->tun_id = OVS_CB(skb)->tun_id;
|
|
key->in_port = in_port;
|
|
*is_frag = false;
|
|
|
|
/*
|
|
* We would really like to pull as many bytes as we could possibly
|
|
* want to parse into the linear data area. Currently that is:
|
|
*
|
|
* 14 Ethernet header
|
|
* 4 VLAN header
|
|
* 60 max IP header with options
|
|
* 20 max TCP/UDP/ICMP header (don't care about options)
|
|
* --
|
|
* 98
|
|
*
|
|
* But Xen only allocates 64 or 72 bytes for the linear data area in
|
|
* netback, which means that we would reallocate and copy the skb's
|
|
* linear data on every packet if we did that. So instead just pull 64
|
|
* bytes, which is always sufficient without IP options, and then check
|
|
* whether we need to pull more later when we look at the IP header.
|
|
*/
|
|
if (!pskb_may_pull(skb, min(skb->len, 64u)))
|
|
return -ENOMEM;
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
/* Link layer. */
|
|
eth = eth_hdr(skb);
|
|
memcpy(key->dl_src, eth->h_source, ETH_ALEN);
|
|
memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
|
|
|
|
/* dl_type, dl_vlan, dl_vlan_pcp. */
|
|
__skb_pull(skb, 2 * ETH_ALEN);
|
|
if (eth->h_proto == htons(ETH_P_8021Q))
|
|
parse_vlan(skb, key);
|
|
key->dl_type = parse_ethertype(skb);
|
|
skb_reset_network_header(skb);
|
|
__skb_push(skb, skb->data - (unsigned char *)eth);
|
|
|
|
/* Network layer. */
|
|
if (key->dl_type == htons(ETH_P_IP)) {
|
|
struct iphdr *nh;
|
|
int error;
|
|
|
|
error = check_iphdr(skb);
|
|
if (unlikely(error)) {
|
|
if (error == -EINVAL) {
|
|
skb->transport_header = skb->network_header;
|
|
return 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
nh = ip_hdr(skb);
|
|
key->nw_src = nh->saddr;
|
|
key->nw_dst = nh->daddr;
|
|
key->nw_tos = nh->tos & ~INET_ECN_MASK;
|
|
key->nw_proto = nh->protocol;
|
|
|
|
/* Transport layer. */
|
|
if (!(nh->frag_off & htons(IP_MF | IP_OFFSET)) &&
|
|
!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP)) {
|
|
if (key->nw_proto == IPPROTO_TCP) {
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->tp_src = tcp->source;
|
|
key->tp_dst = tcp->dest;
|
|
}
|
|
} else if (key->nw_proto == IPPROTO_UDP) {
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->tp_src = udp->source;
|
|
key->tp_dst = udp->dest;
|
|
}
|
|
} else if (key->nw_proto == IPPROTO_ICMP) {
|
|
if (icmphdr_ok(skb)) {
|
|
struct icmphdr *icmp = icmp_hdr(skb);
|
|
/* The ICMP type and code fields use the 16-bit
|
|
* transport port fields, so we need to store them
|
|
* in 16-bit network byte order. */
|
|
key->tp_src = htons(icmp->type);
|
|
key->tp_dst = htons(icmp->code);
|
|
}
|
|
}
|
|
} else
|
|
*is_frag = true;
|
|
|
|
} else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
|
|
struct arp_eth_header *arp;
|
|
|
|
arp = (struct arp_eth_header *)skb_network_header(skb);
|
|
|
|
if (arp->ar_hrd == htons(ARPHRD_ETHER)
|
|
&& arp->ar_pro == htons(ETH_P_IP)
|
|
&& arp->ar_hln == ETH_ALEN
|
|
&& arp->ar_pln == 4) {
|
|
|
|
/* We only match on the lower 8 bits of the opcode. */
|
|
if (ntohs(arp->ar_op) <= 0xff)
|
|
key->nw_proto = ntohs(arp->ar_op);
|
|
|
|
if (key->nw_proto == ARPOP_REQUEST
|
|
|| key->nw_proto == ARPOP_REPLY) {
|
|
memcpy(&key->nw_src, arp->ar_sip, sizeof(key->nw_src));
|
|
memcpy(&key->nw_dst, arp->ar_tip, sizeof(key->nw_dst));
|
|
memcpy(key->arp_sha, arp->ar_sha, ETH_ALEN);
|
|
memcpy(key->arp_tha, arp->ar_tha, ETH_ALEN);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u32 flow_hash(const struct sw_flow_key *key)
|
|
{
|
|
return jhash2((u32*)key, sizeof(*key) / sizeof(u32), hash_seed);
|
|
}
|
|
|
|
int flow_cmp(const struct tbl_node *node, void *key2_)
|
|
{
|
|
const struct sw_flow_key *key1 = &flow_cast(node)->key;
|
|
const struct sw_flow_key *key2 = key2_;
|
|
|
|
return !memcmp(key1, key2, sizeof(struct sw_flow_key));
|
|
}
|
|
|
|
/**
|
|
* flow_from_nlattrs - parses Netlink attributes into a flow key.
|
|
* @swkey: receives the extracted flow key.
|
|
* @key: Netlink attribute holding nested %ODP_KEY_ATTR_* Netlink attribute
|
|
* sequence.
|
|
*
|
|
* This state machine accepts the following forms, with [] for optional
|
|
* elements and | for alternatives:
|
|
*
|
|
* [tun_id] in_port ethernet [8021q] [ethertype [IP [TCP|UDP|ICMP] | ARP]
|
|
*/
|
|
int flow_from_nlattrs(struct sw_flow_key *swkey, const struct nlattr *attr)
|
|
{
|
|
const struct nlattr *nla;
|
|
u16 prev_type;
|
|
int rem;
|
|
|
|
memset(swkey, 0, sizeof(*swkey));
|
|
swkey->dl_type = htons(ETH_P_802_2);
|
|
|
|
prev_type = ODP_KEY_ATTR_UNSPEC;
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
static const u32 key_lens[ODP_KEY_ATTR_MAX + 1] = {
|
|
[ODP_KEY_ATTR_TUN_ID] = 8,
|
|
[ODP_KEY_ATTR_IN_PORT] = 4,
|
|
[ODP_KEY_ATTR_ETHERNET] = sizeof(struct odp_key_ethernet),
|
|
[ODP_KEY_ATTR_8021Q] = sizeof(struct odp_key_8021q),
|
|
[ODP_KEY_ATTR_ETHERTYPE] = 2,
|
|
[ODP_KEY_ATTR_IPV4] = sizeof(struct odp_key_ipv4),
|
|
[ODP_KEY_ATTR_TCP] = sizeof(struct odp_key_tcp),
|
|
[ODP_KEY_ATTR_UDP] = sizeof(struct odp_key_udp),
|
|
[ODP_KEY_ATTR_ICMP] = sizeof(struct odp_key_icmp),
|
|
[ODP_KEY_ATTR_ARP] = sizeof(struct odp_key_arp),
|
|
};
|
|
|
|
const struct odp_key_ethernet *eth_key;
|
|
const struct odp_key_8021q *q_key;
|
|
const struct odp_key_ipv4 *ipv4_key;
|
|
const struct odp_key_tcp *tcp_key;
|
|
const struct odp_key_udp *udp_key;
|
|
const struct odp_key_icmp *icmp_key;
|
|
const struct odp_key_arp *arp_key;
|
|
|
|
int type = nla_type(nla);
|
|
|
|
if (type > ODP_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
|
|
return -EINVAL;
|
|
|
|
#define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE))
|
|
switch (TRANSITION(prev_type, type)) {
|
|
case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_TUN_ID):
|
|
swkey->tun_id = nla_get_be64(nla);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_IN_PORT):
|
|
case TRANSITION(ODP_KEY_ATTR_TUN_ID, ODP_KEY_ATTR_IN_PORT):
|
|
if (nla_get_u32(nla) >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
swkey->in_port = nla_get_u32(nla);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IN_PORT, ODP_KEY_ATTR_ETHERNET):
|
|
eth_key = nla_data(nla);
|
|
memcpy(swkey->dl_src, eth_key->eth_src, ETH_ALEN);
|
|
memcpy(swkey->dl_dst, eth_key->eth_dst, ETH_ALEN);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_8021Q):
|
|
q_key = nla_data(nla);
|
|
/* Only standard 0x8100 VLANs currently supported. */
|
|
if (q_key->q_tpid != htons(ETH_P_8021Q))
|
|
return -EINVAL;
|
|
if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
|
|
return -EINVAL;
|
|
swkey->dl_tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_8021Q, ODP_KEY_ATTR_ETHERTYPE):
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_ETHERTYPE):
|
|
swkey->dl_type = nla_get_be16(nla);
|
|
if (ntohs(swkey->dl_type) < 1536)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV4):
|
|
if (swkey->dl_type != htons(ETH_P_IP))
|
|
return -EINVAL;
|
|
ipv4_key = nla_data(nla);
|
|
swkey->nw_src = ipv4_key->ipv4_src;
|
|
swkey->nw_dst = ipv4_key->ipv4_dst;
|
|
swkey->nw_proto = ipv4_key->ipv4_proto;
|
|
swkey->nw_tos = ipv4_key->ipv4_tos;
|
|
if (swkey->nw_tos & INET_ECN_MASK)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_TCP):
|
|
if (swkey->nw_proto != IPPROTO_TCP)
|
|
return -EINVAL;
|
|
tcp_key = nla_data(nla);
|
|
swkey->tp_src = tcp_key->tcp_src;
|
|
swkey->tp_dst = tcp_key->tcp_dst;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_UDP):
|
|
if (swkey->nw_proto != IPPROTO_UDP)
|
|
return -EINVAL;
|
|
udp_key = nla_data(nla);
|
|
swkey->tp_src = udp_key->udp_src;
|
|
swkey->tp_dst = udp_key->udp_dst;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_ICMP):
|
|
if (swkey->nw_proto != IPPROTO_ICMP)
|
|
return -EINVAL;
|
|
icmp_key = nla_data(nla);
|
|
swkey->tp_src = htons(icmp_key->icmp_type);
|
|
swkey->tp_dst = htons(icmp_key->icmp_code);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_ARP):
|
|
if (swkey->dl_type != htons(ETH_P_ARP))
|
|
return -EINVAL;
|
|
arp_key = nla_data(nla);
|
|
swkey->nw_src = arp_key->arp_sip;
|
|
swkey->nw_dst = arp_key->arp_tip;
|
|
if (arp_key->arp_op & htons(0xff00))
|
|
return -EINVAL;
|
|
swkey->nw_proto = ntohs(arp_key->arp_op);
|
|
memcpy(swkey->arp_sha, arp_key->arp_sha, ETH_ALEN);
|
|
memcpy(swkey->arp_tha, arp_key->arp_tha, ETH_ALEN);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
prev_type = type;
|
|
}
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
switch (prev_type) {
|
|
case ODP_KEY_ATTR_UNSPEC:
|
|
return -EINVAL;
|
|
|
|
case ODP_KEY_ATTR_TUN_ID:
|
|
case ODP_KEY_ATTR_IN_PORT:
|
|
return -EINVAL;
|
|
|
|
case ODP_KEY_ATTR_ETHERNET:
|
|
case ODP_KEY_ATTR_8021Q:
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_ETHERTYPE:
|
|
if (swkey->dl_type == htons(ETH_P_IP) ||
|
|
swkey->dl_type == htons(ETH_P_ARP))
|
|
return -EINVAL;
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_IPV4:
|
|
if (swkey->nw_proto == IPPROTO_TCP ||
|
|
swkey->nw_proto == IPPROTO_UDP ||
|
|
swkey->nw_proto == IPPROTO_ICMP)
|
|
return -EINVAL;
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_TCP:
|
|
case ODP_KEY_ATTR_UDP:
|
|
case ODP_KEY_ATTR_ICMP:
|
|
case ODP_KEY_ATTR_ARP:
|
|
return 0;
|
|
}
|
|
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
|
|
{
|
|
struct odp_key_ethernet *eth_key;
|
|
struct nlattr *nla;
|
|
|
|
if (swkey->tun_id != cpu_to_be64(0))
|
|
NLA_PUT_BE64(skb, ODP_KEY_ATTR_TUN_ID, swkey->tun_id);
|
|
|
|
NLA_PUT_U32(skb, ODP_KEY_ATTR_IN_PORT, swkey->in_port);
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ETHERNET, sizeof(*eth_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
eth_key = nla_data(nla);
|
|
memcpy(eth_key->eth_src, swkey->dl_src, ETH_ALEN);
|
|
memcpy(eth_key->eth_dst, swkey->dl_dst, ETH_ALEN);
|
|
|
|
if (swkey->dl_tci != htons(0)) {
|
|
struct odp_key_8021q q_key;
|
|
|
|
q_key.q_tpid = htons(ETH_P_8021Q);
|
|
q_key.q_tci = swkey->dl_tci & ~htons(VLAN_TAG_PRESENT);
|
|
NLA_PUT(skb, ODP_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
|
|
}
|
|
|
|
if (swkey->dl_type == htons(ETH_P_802_2))
|
|
return 0;
|
|
|
|
NLA_PUT_BE16(skb, ODP_KEY_ATTR_ETHERTYPE, swkey->dl_type);
|
|
|
|
if (swkey->dl_type == htons(ETH_P_IP)) {
|
|
struct odp_key_ipv4 *ipv4_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_IPV4, sizeof(*ipv4_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv4_key = nla_data(nla);
|
|
ipv4_key->ipv4_src = swkey->nw_src;
|
|
ipv4_key->ipv4_dst = swkey->nw_dst;
|
|
ipv4_key->ipv4_proto = swkey->nw_proto;
|
|
ipv4_key->ipv4_tos = swkey->nw_tos;
|
|
|
|
if (swkey->nw_proto == IPPROTO_TCP) {
|
|
struct odp_key_tcp *tcp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_TCP, sizeof(*tcp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
tcp_key = nla_data(nla);
|
|
tcp_key->tcp_src = swkey->tp_src;
|
|
tcp_key->tcp_dst = swkey->tp_dst;
|
|
} else if (swkey->nw_proto == IPPROTO_UDP) {
|
|
struct odp_key_udp *udp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_UDP, sizeof(*udp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
udp_key = nla_data(nla);
|
|
udp_key->udp_src = swkey->tp_src;
|
|
udp_key->udp_dst = swkey->tp_dst;
|
|
} else if (swkey->nw_proto == IPPROTO_ICMP) {
|
|
struct odp_key_icmp *icmp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ICMP, sizeof(*icmp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmp_key = nla_data(nla);
|
|
icmp_key->icmp_type = ntohs(swkey->tp_src);
|
|
icmp_key->icmp_code = ntohs(swkey->tp_dst);
|
|
}
|
|
} else if (swkey->dl_type == htons(ETH_P_ARP)) {
|
|
struct odp_key_arp *arp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ARP, sizeof(*arp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
arp_key = nla_data(nla);
|
|
arp_key->arp_sip = swkey->nw_src;
|
|
arp_key->arp_tip = swkey->nw_dst;
|
|
arp_key->arp_op = htons(swkey->nw_proto);
|
|
memcpy(arp_key->arp_sha, swkey->arp_sha, ETH_ALEN);
|
|
memcpy(arp_key->arp_tha, swkey->arp_tha, ETH_ALEN);
|
|
}
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
/* Initializes the flow module.
|
|
* Returns zero if successful or a negative error code. */
|
|
int flow_init(void)
|
|
{
|
|
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
|
|
0, NULL);
|
|
if (flow_cache == NULL)
|
|
return -ENOMEM;
|
|
|
|
get_random_bytes(&hash_seed, sizeof(hash_seed));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Uninitializes the flow module. */
|
|
void flow_exit(void)
|
|
{
|
|
kmem_cache_destroy(flow_cache);
|
|
}
|