mirror of
https://github.com/openvswitch/ovs
synced 2025-10-27 15:18:06 +00:00
Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Simon Horman <horms@verge.net.au> Signed-off-by: Jesse Gross <jesse@nicira.com>
565 lines
14 KiB
C
565 lines
14 KiB
C
/*
|
|
* Distributed under the terms of the GNU GPL version 2.
|
|
* Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks.
|
|
*
|
|
* Significant portions of this file may be copied from parts of the Linux
|
|
* kernel, by Linus Torvalds and others.
|
|
*/
|
|
|
|
/* Functions for executing flow actions. */
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/in6.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/ip.h>
|
|
#include <net/checksum.h>
|
|
|
|
#include "actions.h"
|
|
#include "datapath.h"
|
|
#include "openvswitch/datapath-protocol.h"
|
|
#include "vport.h"
|
|
|
|
static struct sk_buff *make_writable(struct sk_buff *skb, unsigned min_headroom, gfp_t gfp)
|
|
{
|
|
if (skb_cloned(skb)) {
|
|
struct sk_buff *nskb;
|
|
unsigned headroom = max(min_headroom, skb_headroom(skb));
|
|
|
|
nskb = skb_copy_expand(skb, headroom, skb_tailroom(skb), gfp);
|
|
if (nskb) {
|
|
set_skb_csum_bits(skb, nskb);
|
|
kfree_skb(skb);
|
|
return nskb;
|
|
}
|
|
} else {
|
|
unsigned int hdr_len = (skb_transport_offset(skb)
|
|
+ sizeof(struct tcphdr));
|
|
if (pskb_may_pull(skb, min(hdr_len, skb->len)))
|
|
return skb;
|
|
}
|
|
kfree_skb(skb);
|
|
return NULL;
|
|
}
|
|
|
|
static struct sk_buff *vlan_pull_tag(struct sk_buff *skb)
|
|
{
|
|
struct vlan_ethhdr *vh = vlan_eth_hdr(skb);
|
|
struct ethhdr *eh;
|
|
|
|
/* Verify we were given a vlan packet */
|
|
if (vh->h_vlan_proto != htons(ETH_P_8021Q) || skb->len < VLAN_ETH_HLEN)
|
|
return skb;
|
|
|
|
if (OVS_CB(skb)->ip_summed == OVS_CSUM_COMPLETE)
|
|
skb->csum = csum_sub(skb->csum, csum_partial(skb->data
|
|
+ ETH_HLEN, VLAN_HLEN, 0));
|
|
|
|
memmove(skb->data + VLAN_HLEN, skb->data, 2 * VLAN_ETH_ALEN);
|
|
|
|
eh = (struct ethhdr *)skb_pull(skb, VLAN_HLEN);
|
|
|
|
skb->protocol = eh->h_proto;
|
|
skb->mac_header += VLAN_HLEN;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *modify_vlan_tci(struct datapath *dp, struct sk_buff *skb,
|
|
const struct odp_flow_key *key,
|
|
const union odp_action *a, int n_actions,
|
|
gfp_t gfp)
|
|
{
|
|
u16 tci, mask;
|
|
|
|
if (a->type == ODPAT_SET_VLAN_VID) {
|
|
tci = ntohs(a->vlan_vid.vlan_vid);
|
|
mask = VLAN_VID_MASK;
|
|
} else {
|
|
tci = a->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT;
|
|
mask = VLAN_PCP_MASK;
|
|
}
|
|
|
|
skb = make_writable(skb, VLAN_HLEN, gfp);
|
|
if (!skb)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (skb->protocol == htons(ETH_P_8021Q)) {
|
|
/* Modify vlan id, but maintain other TCI values */
|
|
struct vlan_ethhdr *vh;
|
|
__be16 old_tci;
|
|
|
|
if (skb->len < VLAN_ETH_HLEN)
|
|
return skb;
|
|
|
|
vh = vlan_eth_hdr(skb);
|
|
old_tci = vh->h_vlan_TCI;
|
|
|
|
vh->h_vlan_TCI = htons((ntohs(vh->h_vlan_TCI) & ~mask) | tci);
|
|
|
|
if (OVS_CB(skb)->ip_summed == OVS_CSUM_COMPLETE) {
|
|
__be16 diff[] = { ~old_tci, vh->h_vlan_TCI };
|
|
|
|
skb->csum = ~csum_partial((char *)diff, sizeof(diff),
|
|
~skb->csum);
|
|
}
|
|
} else {
|
|
int err;
|
|
|
|
/* Add vlan header */
|
|
|
|
/* Set up checksumming pointers for checksum-deferred packets
|
|
* on Xen. Otherwise, dev_queue_xmit() will try to do this
|
|
* when we send the packet out on the wire, and it will fail at
|
|
* that point because skb_checksum_setup() will not look inside
|
|
* an 802.1Q header. */
|
|
err = vswitch_skb_checksum_setup(skb);
|
|
if (unlikely(err)) {
|
|
kfree_skb(skb);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* GSO is not implemented for packets with an 802.1Q header, so
|
|
* we have to do segmentation before we add that header.
|
|
*
|
|
* GSO does work with hardware-accelerated VLAN tagging, but we
|
|
* can't use hardware-accelerated VLAN tagging since it
|
|
* requires the device to have a VLAN group configured (with
|
|
* e.g. vconfig(8)) and we don't do that.
|
|
*
|
|
* Having to do this here may be a performance loss, since we
|
|
* can't take advantage of TSO hardware support, although it
|
|
* does not make a measurable network performance difference
|
|
* for 1G Ethernet. Fixing that would require patching the
|
|
* kernel (either to add GSO support to the VLAN protocol or to
|
|
* support hardware-accelerated VLAN tagging without VLAN
|
|
* groups configured). */
|
|
if (skb_is_gso(skb)) {
|
|
struct sk_buff *segs;
|
|
|
|
segs = skb_gso_segment(skb, 0);
|
|
kfree_skb(skb);
|
|
if (unlikely(IS_ERR(segs)))
|
|
return ERR_CAST(segs);
|
|
|
|
do {
|
|
struct sk_buff *nskb = segs->next;
|
|
int err;
|
|
|
|
segs->next = NULL;
|
|
|
|
/* GSO can change the checksum type so update.*/
|
|
compute_ip_summed(segs, true);
|
|
|
|
segs = __vlan_put_tag(segs, tci);
|
|
err = -ENOMEM;
|
|
if (segs) {
|
|
err = execute_actions(dp, segs,
|
|
key, a + 1,
|
|
n_actions - 1,
|
|
gfp);
|
|
}
|
|
|
|
if (unlikely(err)) {
|
|
while ((segs = nskb)) {
|
|
nskb = segs->next;
|
|
segs->next = NULL;
|
|
kfree_skb(segs);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
segs = nskb;
|
|
} while (segs->next);
|
|
|
|
skb = segs;
|
|
compute_ip_summed(skb, true);
|
|
}
|
|
|
|
/* The hardware-accelerated version of vlan_put_tag() works
|
|
* only for a device that has a VLAN group configured (with
|
|
* e.g. vconfig(8)), so call the software-only version
|
|
* __vlan_put_tag() directly instead.
|
|
*/
|
|
skb = __vlan_put_tag(skb, tci);
|
|
if (!skb)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* GSO doesn't fix up the hardware computed checksum so this
|
|
* will only be hit in the non-GSO case. */
|
|
if (OVS_CB(skb)->ip_summed == OVS_CSUM_COMPLETE)
|
|
skb->csum = csum_add(skb->csum, csum_partial(skb->data
|
|
+ ETH_HLEN, VLAN_HLEN, 0));
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *strip_vlan(struct sk_buff *skb, gfp_t gfp)
|
|
{
|
|
skb = make_writable(skb, 0, gfp);
|
|
if (skb)
|
|
vlan_pull_tag(skb);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *set_dl_addr(struct sk_buff *skb,
|
|
const struct odp_action_dl_addr *a,
|
|
gfp_t gfp)
|
|
{
|
|
skb = make_writable(skb, 0, gfp);
|
|
if (skb) {
|
|
struct ethhdr *eh = eth_hdr(skb);
|
|
if (a->type == ODPAT_SET_DL_SRC)
|
|
memcpy(eh->h_source, a->dl_addr, ETH_ALEN);
|
|
else
|
|
memcpy(eh->h_dest, a->dl_addr, ETH_ALEN);
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
/* Updates 'sum', which is a field in 'skb''s data, given that a 4-byte field
|
|
* covered by the sum has been changed from 'from' to 'to'. If set,
|
|
* 'pseudohdr' indicates that the field is in the TCP or UDP pseudo-header.
|
|
* Based on nf_proto_csum_replace4. */
|
|
static void update_csum(__sum16 *sum, struct sk_buff *skb,
|
|
__be32 from, __be32 to, int pseudohdr)
|
|
{
|
|
__be32 diff[] = { ~from, to };
|
|
|
|
if (OVS_CB(skb)->ip_summed != OVS_CSUM_PARTIAL) {
|
|
*sum = csum_fold(csum_partial((char *)diff, sizeof(diff),
|
|
~csum_unfold(*sum)));
|
|
if (OVS_CB(skb)->ip_summed == OVS_CSUM_COMPLETE && pseudohdr)
|
|
skb->csum = ~csum_partial((char *)diff, sizeof(diff),
|
|
~skb->csum);
|
|
} else if (pseudohdr)
|
|
*sum = ~csum_fold(csum_partial((char *)diff, sizeof(diff),
|
|
csum_unfold(*sum)));
|
|
}
|
|
|
|
static bool is_ip(struct sk_buff *skb, const struct odp_flow_key *key)
|
|
{
|
|
return (key->dl_type == htons(ETH_P_IP) &&
|
|
skb->transport_header > skb->network_header);
|
|
}
|
|
|
|
static __sum16 *get_l4_checksum(struct sk_buff *skb, const struct odp_flow_key *key)
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
if (key->nw_proto == IPPROTO_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
return &tcp_hdr(skb)->check;
|
|
} else if (key->nw_proto == IPPROTO_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr)))
|
|
return &udp_hdr(skb)->check;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct sk_buff *set_nw_addr(struct sk_buff *skb,
|
|
const struct odp_flow_key *key,
|
|
const struct odp_action_nw_addr *a,
|
|
gfp_t gfp)
|
|
{
|
|
struct iphdr *nh;
|
|
__sum16 *check;
|
|
__be32 *nwaddr;
|
|
|
|
if (unlikely(!is_ip(skb, key)))
|
|
return skb;
|
|
|
|
skb = make_writable(skb, 0, gfp);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
nh = ip_hdr(skb);
|
|
nwaddr = a->type == ODPAT_SET_NW_SRC ? &nh->saddr : &nh->daddr;
|
|
|
|
check = get_l4_checksum(skb, key);
|
|
if (likely(check))
|
|
update_csum(check, skb, *nwaddr, a->nw_addr, 1);
|
|
update_csum(&nh->check, skb, *nwaddr, a->nw_addr, 0);
|
|
|
|
*nwaddr = a->nw_addr;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *set_nw_tos(struct sk_buff *skb,
|
|
const struct odp_flow_key *key,
|
|
const struct odp_action_nw_tos *a,
|
|
gfp_t gfp)
|
|
{
|
|
if (unlikely(!is_ip(skb, key)))
|
|
return skb;
|
|
|
|
skb = make_writable(skb, 0, gfp);
|
|
if (skb) {
|
|
struct iphdr *nh = ip_hdr(skb);
|
|
u8 *f = &nh->tos;
|
|
u8 old = *f;
|
|
u8 new;
|
|
|
|
/* Set the DSCP bits and preserve the ECN bits. */
|
|
new = a->nw_tos | (nh->tos & INET_ECN_MASK);
|
|
update_csum(&nh->check, skb, htons((u16)old),
|
|
htons((u16)new), 0);
|
|
*f = new;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *set_tp_port(struct sk_buff *skb,
|
|
const struct odp_flow_key *key,
|
|
const struct odp_action_tp_port *a, gfp_t gfp)
|
|
{
|
|
struct udphdr *th;
|
|
__sum16 *check;
|
|
__be16 *port;
|
|
|
|
if (unlikely(!is_ip(skb, key)))
|
|
return skb;
|
|
|
|
skb = make_writable(skb, 0, gfp);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
/* Must follow make_writable() since that can move the skb data. */
|
|
check = get_l4_checksum(skb, key);
|
|
if (unlikely(!check))
|
|
return skb;
|
|
|
|
/*
|
|
* Update port and checksum.
|
|
*
|
|
* This is OK because source and destination port numbers are at the
|
|
* same offsets in both UDP and TCP headers, and get_l4_checksum() only
|
|
* supports those protocols.
|
|
*/
|
|
th = udp_hdr(skb);
|
|
port = a->type == ODPAT_SET_TP_SRC ? &th->source : &th->dest;
|
|
update_csum(check, skb, *port, a->tp_port, 0);
|
|
*port = a->tp_port;
|
|
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* is_spoofed_arp - check for invalid ARP packet
|
|
*
|
|
* @skb: skbuff containing an Ethernet packet, with network header pointing
|
|
* just past the Ethernet and optional 802.1Q header.
|
|
* @key: flow key extracted from @skb by flow_extract()
|
|
*
|
|
* Returns true if @skb is an invalid Ethernet+IPv4 ARP packet: one with screwy
|
|
* or truncated header fields or one whose inner and outer Ethernet address
|
|
* differ.
|
|
*/
|
|
static bool is_spoofed_arp(struct sk_buff *skb, const struct odp_flow_key *key)
|
|
{
|
|
struct arp_eth_header *arp;
|
|
|
|
if (key->dl_type != htons(ETH_P_ARP))
|
|
return false;
|
|
|
|
if (skb_network_offset(skb) + sizeof(struct arp_eth_header) > skb->len)
|
|
return true;
|
|
|
|
arp = (struct arp_eth_header *)skb_network_header(skb);
|
|
return (arp->ar_hrd != htons(ARPHRD_ETHER) ||
|
|
arp->ar_pro != htons(ETH_P_IP) ||
|
|
arp->ar_hln != ETH_ALEN ||
|
|
arp->ar_pln != 4 ||
|
|
compare_ether_addr(arp->ar_sha, eth_hdr(skb)->h_source));
|
|
}
|
|
|
|
static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
|
|
{
|
|
struct dp_port *p;
|
|
|
|
if (!skb)
|
|
goto error;
|
|
|
|
p = rcu_dereference(dp->ports[out_port]);
|
|
if (!p)
|
|
goto error;
|
|
|
|
vport_send(p->vport, skb);
|
|
return;
|
|
|
|
error:
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/* Never consumes 'skb'. Returns a port that 'skb' should be sent to, -1 if
|
|
* none. */
|
|
static int output_group(struct datapath *dp, __u16 group,
|
|
struct sk_buff *skb, gfp_t gfp)
|
|
{
|
|
struct dp_port_group *g = rcu_dereference(dp->groups[group]);
|
|
int prev_port = -1;
|
|
int i;
|
|
|
|
if (!g)
|
|
return -1;
|
|
for (i = 0; i < g->n_ports; i++) {
|
|
struct dp_port *p = rcu_dereference(dp->ports[g->ports[i]]);
|
|
if (!p || OVS_CB(skb)->dp_port == p)
|
|
continue;
|
|
if (prev_port != -1) {
|
|
struct sk_buff *clone = skb_clone(skb, gfp);
|
|
if (!clone)
|
|
return -1;
|
|
do_output(dp, clone, prev_port);
|
|
}
|
|
prev_port = p->port_no;
|
|
}
|
|
return prev_port;
|
|
}
|
|
|
|
static int output_control(struct datapath *dp, struct sk_buff *skb, u32 arg,
|
|
gfp_t gfp)
|
|
{
|
|
skb = skb_clone(skb, gfp);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
return dp_output_control(dp, skb, _ODPL_ACTION_NR, arg);
|
|
}
|
|
|
|
/* Send a copy of this packet up to the sFlow agent, along with extra
|
|
* information about what happened to it. */
|
|
static void sflow_sample(struct datapath *dp, struct sk_buff *skb,
|
|
const union odp_action *a, int n_actions,
|
|
gfp_t gfp, struct dp_port *dp_port)
|
|
{
|
|
struct odp_sflow_sample_header *hdr;
|
|
unsigned int actlen = n_actions * sizeof(union odp_action);
|
|
unsigned int hdrlen = sizeof(struct odp_sflow_sample_header);
|
|
struct sk_buff *nskb;
|
|
|
|
nskb = skb_copy_expand(skb, actlen + hdrlen, 0, gfp);
|
|
if (!nskb)
|
|
return;
|
|
|
|
memcpy(__skb_push(nskb, actlen), a, actlen);
|
|
hdr = (struct odp_sflow_sample_header*)__skb_push(nskb, hdrlen);
|
|
hdr->n_actions = n_actions;
|
|
hdr->sample_pool = atomic_read(&dp_port->sflow_pool);
|
|
dp_output_control(dp, nskb, _ODPL_SFLOW_NR, 0);
|
|
}
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
int execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
const struct odp_flow_key *key,
|
|
const union odp_action *a, int n_actions,
|
|
gfp_t gfp)
|
|
{
|
|
/* Every output action needs a separate clone of 'skb', but the common
|
|
* case is just a single output action, so that doing a clone and
|
|
* then freeing the original skbuff is wasteful. So the following code
|
|
* is slightly obscure just to avoid that. */
|
|
int prev_port = -1;
|
|
u32 priority = skb->priority;
|
|
int err;
|
|
|
|
if (dp->sflow_probability) {
|
|
struct dp_port *p = OVS_CB(skb)->dp_port;
|
|
if (p) {
|
|
atomic_inc(&p->sflow_pool);
|
|
if (dp->sflow_probability == UINT_MAX ||
|
|
net_random() < dp->sflow_probability)
|
|
sflow_sample(dp, skb, a, n_actions, gfp, p);
|
|
}
|
|
}
|
|
|
|
OVS_CB(skb)->tun_id = 0;
|
|
|
|
for (; n_actions > 0; a++, n_actions--) {
|
|
if (prev_port != -1) {
|
|
do_output(dp, skb_clone(skb, gfp), prev_port);
|
|
prev_port = -1;
|
|
}
|
|
|
|
switch (a->type) {
|
|
case ODPAT_OUTPUT:
|
|
prev_port = a->output.port;
|
|
break;
|
|
|
|
case ODPAT_OUTPUT_GROUP:
|
|
prev_port = output_group(dp, a->output_group.group,
|
|
skb, gfp);
|
|
break;
|
|
|
|
case ODPAT_CONTROLLER:
|
|
err = output_control(dp, skb, a->controller.arg, gfp);
|
|
if (err) {
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
break;
|
|
|
|
case ODPAT_SET_TUNNEL:
|
|
OVS_CB(skb)->tun_id = a->tunnel.tun_id;
|
|
break;
|
|
|
|
case ODPAT_SET_VLAN_VID:
|
|
case ODPAT_SET_VLAN_PCP:
|
|
skb = modify_vlan_tci(dp, skb, key, a, n_actions, gfp);
|
|
if (IS_ERR(skb))
|
|
return PTR_ERR(skb);
|
|
break;
|
|
|
|
case ODPAT_STRIP_VLAN:
|
|
skb = strip_vlan(skb, gfp);
|
|
break;
|
|
|
|
case ODPAT_SET_DL_SRC:
|
|
case ODPAT_SET_DL_DST:
|
|
skb = set_dl_addr(skb, &a->dl_addr, gfp);
|
|
break;
|
|
|
|
case ODPAT_SET_NW_SRC:
|
|
case ODPAT_SET_NW_DST:
|
|
skb = set_nw_addr(skb, key, &a->nw_addr, gfp);
|
|
break;
|
|
|
|
case ODPAT_SET_NW_TOS:
|
|
skb = set_nw_tos(skb, key, &a->nw_tos, gfp);
|
|
break;
|
|
|
|
case ODPAT_SET_TP_SRC:
|
|
case ODPAT_SET_TP_DST:
|
|
skb = set_tp_port(skb, key, &a->tp_port, gfp);
|
|
break;
|
|
|
|
case ODPAT_SET_PRIORITY:
|
|
skb->priority = a->priority.priority;
|
|
break;
|
|
|
|
case ODPAT_POP_PRIORITY:
|
|
skb->priority = priority;
|
|
break;
|
|
|
|
case ODPAT_DROP_SPOOFED_ARP:
|
|
if (unlikely(is_spoofed_arp(skb, key)))
|
|
goto exit;
|
|
break;
|
|
}
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
}
|
|
exit:
|
|
if (prev_port != -1)
|
|
do_output(dp, skb, prev_port);
|
|
else
|
|
kfree_skb(skb);
|
|
return 0;
|
|
}
|