2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-25 15:07:05 +00:00
Files
openvswitch/datapath/flow.c
Ben Pfaff d656937779 datapath: Convert datapath operations to use Netlink framing.
Signed-off-by: Ben Pfaff <blp@nicira.com>
Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-27 21:08:40 -08:00

682 lines
18 KiB
C

/*
* Distributed under the terms of the GNU GPL version 2.
* Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include "flow.h"
#include "datapath.h"
#include <asm/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
static struct kmem_cache *flow_cache;
static unsigned int hash_seed __read_mostly;
static inline bool arphdr_ok(struct sk_buff *skb)
{
return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header);
}
static inline int check_iphdr(struct sk_buff *skb)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int ip_len;
if (skb->len < nh_ofs + sizeof(struct iphdr))
return -EINVAL;
ip_len = ip_hdrlen(skb);
if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)
return -EINVAL;
/*
* Pull enough header bytes to account for the IP header plus the
* longest transport header that we parse, currently 20 bytes for TCP.
*/
if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len)))
return -ENOMEM;
skb_set_transport_header(skb, nh_ofs + ip_len);
return 0;
}
static inline bool tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
if (skb->len >= th_ofs + sizeof(struct tcphdr)) {
int tcp_len = tcp_hdrlen(skb);
return (tcp_len >= sizeof(struct tcphdr)
&& skb->len >= th_ofs + tcp_len);
}
return false;
}
static inline bool udphdr_ok(struct sk_buff *skb)
{
return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr);
}
static inline bool icmphdr_ok(struct sk_buff *skb)
{
return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr);
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
u8 tcp_flags = 0;
if (flow->key.dl_type == htons(ETH_P_IP) &&
flow->key.nw_proto == IPPROTO_TCP) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
spin_lock_bh(&flow->lock);
flow->used = jiffies;
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock_bh(&flow->lock);
}
struct sw_flow_actions *flow_actions_alloc(u32 actions_len)
{
struct sw_flow_actions *sfa;
if (actions_len % NLA_ALIGNTO)
return ERR_PTR(-EINVAL);
/* At least DP_MAX_PORTS actions are required to be able to flood a
* packet to every port. Factor of 2 allows for setting VLAN tags,
* etc. */
if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->actions_len = actions_len;
return sfa;
}
struct sw_flow *flow_alloc(void)
{
struct sw_flow *flow;
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
if (!flow)
return ERR_PTR(-ENOMEM);
spin_lock_init(&flow->lock);
atomic_set(&flow->refcnt, 1);
flow->dead = false;
return flow;
}
void flow_free_tbl(struct tbl_node *node)
{
struct sw_flow *flow = flow_cast(node);
flow->dead = true;
flow_put(flow);
}
/* RCU callback used by flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
flow->dead = true;
flow_put(flow);
}
/* Schedules 'flow' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free(struct sw_flow *flow)
{
call_rcu(&flow->rcu, rcu_free_flow_callback);
}
void flow_hold(struct sw_flow *flow)
{
atomic_inc(&flow->refcnt);
}
void flow_put(struct sw_flow *flow)
{
if (unlikely(!flow))
return;
if (atomic_dec_and_test(&flow->refcnt)) {
kfree((struct sf_flow_acts __force *)flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
}
/* RCU callback used by flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
struct sw_flow_actions *sf_acts = container_of(rcu,
struct sw_flow_actions, rcu);
kfree(sf_acts);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}
static void parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
struct qtag_prefix {
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))
return;
qp = (struct qtag_prefix *) skb->data;
key->dl_tci = qp->tci | htons(VLAN_TAG_PRESENT);
__skb_pull(skb, sizeof(struct qtag_prefix));
}
static __be16 parse_ethertype(struct sk_buff *skb)
{
struct llc_snap_hdr {
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[3];
__be16 ethertype;
};
struct llc_snap_hdr *llc;
__be16 proto;
proto = *(__be16 *) skb->data;
__skb_pull(skb, sizeof(__be16));
if (ntohs(proto) >= 1536)
return proto;
if (unlikely(skb->len < sizeof(struct llc_snap_hdr)))
return htons(ETH_P_802_2);
llc = (struct llc_snap_hdr *) skb->data;
if (llc->dsap != LLC_SAP_SNAP ||
llc->ssap != LLC_SAP_SNAP ||
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
return htons(ETH_P_802_2);
__skb_pull(skb, sizeof(struct llc_snap_hdr));
return llc->ethertype;
}
/**
* flow_extract - extracts a flow key from an Ethernet frame.
* @skb: sk_buff that contains the frame, with skb->data pointing to the
* Ethernet header
* @in_port: port number on which @skb was received.
* @key: output flow key
* @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
* not contain an IPv4 packet or if it is not a fragment.
*
* The caller must ensure that skb->len >= ETH_HLEN.
*
* Returns 0 if successful, otherwise a negative errno value.
*
* Initializes @skb header pointers as follows:
*
* - skb->mac_header: the Ethernet header.
*
* - skb->network_header: just past the Ethernet header, or just past the
* VLAN header, to the first byte of the Ethernet payload.
*
* - skb->transport_header: If key->dl_type is ETH_P_IP on output, then just
* past the IPv4 header, if one is present and of a correct length,
* otherwise the same as skb->network_header. For other key->dl_type
* values it is left untouched.
*/
int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
bool *is_frag)
{
struct ethhdr *eth;
memset(key, 0, sizeof(*key));
key->tun_id = OVS_CB(skb)->tun_id;
key->in_port = in_port;
*is_frag = false;
/*
* We would really like to pull as many bytes as we could possibly
* want to parse into the linear data area. Currently that is:
*
* 14 Ethernet header
* 4 VLAN header
* 60 max IP header with options
* 20 max TCP/UDP/ICMP header (don't care about options)
* --
* 98
*
* But Xen only allocates 64 or 72 bytes for the linear data area in
* netback, which means that we would reallocate and copy the skb's
* linear data on every packet if we did that. So instead just pull 64
* bytes, which is always sufficient without IP options, and then check
* whether we need to pull more later when we look at the IP header.
*/
if (!pskb_may_pull(skb, min(skb->len, 64u)))
return -ENOMEM;
skb_reset_mac_header(skb);
/* Link layer. */
eth = eth_hdr(skb);
memcpy(key->dl_src, eth->h_source, ETH_ALEN);
memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
/* dl_type, dl_vlan, dl_vlan_pcp. */
__skb_pull(skb, 2 * ETH_ALEN);
if (eth->h_proto == htons(ETH_P_8021Q))
parse_vlan(skb, key);
key->dl_type = parse_ethertype(skb);
skb_reset_network_header(skb);
__skb_push(skb, skb->data - (unsigned char *)eth);
/* Network layer. */
if (key->dl_type == htons(ETH_P_IP)) {
struct iphdr *nh;
int error;
error = check_iphdr(skb);
if (unlikely(error)) {
if (error == -EINVAL) {
skb->transport_header = skb->network_header;
return 0;
}
return error;
}
nh = ip_hdr(skb);
key->nw_src = nh->saddr;
key->nw_dst = nh->daddr;
key->nw_tos = nh->tos & ~INET_ECN_MASK;
key->nw_proto = nh->protocol;
/* Transport layer. */
if (!(nh->frag_off & htons(IP_MF | IP_OFFSET)) &&
!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP)) {
if (key->nw_proto == IPPROTO_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->tp_src = tcp->source;
key->tp_dst = tcp->dest;
}
} else if (key->nw_proto == IPPROTO_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->tp_src = udp->source;
key->tp_dst = udp->dest;
}
} else if (key->nw_proto == IPPROTO_ICMP) {
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store them
* in 16-bit network byte order. */
key->tp_src = htons(icmp->type);
key->tp_dst = htons(icmp->code);
}
}
} else
*is_frag = true;
} else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
struct arp_eth_header *arp;
arp = (struct arp_eth_header *)skb_network_header(skb);
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff)
key->nw_proto = ntohs(arp->ar_op);
if (key->nw_proto == ARPOP_REQUEST
|| key->nw_proto == ARPOP_REPLY) {
memcpy(&key->nw_src, arp->ar_sip, sizeof(key->nw_src));
memcpy(&key->nw_dst, arp->ar_tip, sizeof(key->nw_dst));
}
}
}
return 0;
}
u32 flow_hash(const struct sw_flow_key *key)
{
return jhash2((u32*)key, sizeof(*key) / sizeof(u32), hash_seed);
}
int flow_cmp(const struct tbl_node *node, void *key2_)
{
const struct sw_flow_key *key1 = &flow_cast(node)->key;
const struct sw_flow_key *key2 = key2_;
return !memcmp(key1, key2, sizeof(struct sw_flow_key));
}
/**
* flow_from_nlattrs - parses Netlink attributes into a flow key.
* @swkey: receives the extracted flow key.
* @key: Netlink attribute holding nested %ODP_KEY_ATTR_* Netlink attribute
* sequence.
*
* This state machine accepts the following forms, with [] for optional
* elements and | for alternatives:
*
* [tun_id] in_port ethernet [8021q] [ethertype [IP [TCP|UDP|ICMP] | ARP]
*/
int flow_from_nlattrs(struct sw_flow_key *swkey, const struct nlattr *attr)
{
const struct nlattr *nla;
u16 prev_type;
int rem;
memset(swkey, 0, sizeof(*swkey));
swkey->dl_type = htons(ETH_P_802_2);
prev_type = ODP_KEY_ATTR_UNSPEC;
nla_for_each_nested(nla, attr, rem) {
static const u32 key_lens[ODP_KEY_ATTR_MAX + 1] = {
[ODP_KEY_ATTR_TUN_ID] = 8,
[ODP_KEY_ATTR_IN_PORT] = 4,
[ODP_KEY_ATTR_ETHERNET] = sizeof(struct odp_key_ethernet),
[ODP_KEY_ATTR_8021Q] = sizeof(struct odp_key_8021q),
[ODP_KEY_ATTR_ETHERTYPE] = 2,
[ODP_KEY_ATTR_IPV4] = sizeof(struct odp_key_ipv4),
[ODP_KEY_ATTR_TCP] = sizeof(struct odp_key_tcp),
[ODP_KEY_ATTR_UDP] = sizeof(struct odp_key_udp),
[ODP_KEY_ATTR_ICMP] = sizeof(struct odp_key_icmp),
[ODP_KEY_ATTR_ARP] = sizeof(struct odp_key_arp),
};
const struct odp_key_ethernet *eth_key;
const struct odp_key_8021q *q_key;
const struct odp_key_ipv4 *ipv4_key;
const struct odp_key_tcp *tcp_key;
const struct odp_key_udp *udp_key;
const struct odp_key_icmp *icmp_key;
const struct odp_key_arp *arp_key;
int type = nla_type(nla);
if (type > ODP_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
return -EINVAL;
#define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE))
switch (TRANSITION(prev_type, type)) {
case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_TUN_ID):
swkey->tun_id = nla_get_be64(nla);
break;
case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_IN_PORT):
case TRANSITION(ODP_KEY_ATTR_TUN_ID, ODP_KEY_ATTR_IN_PORT):
if (nla_get_u32(nla) >= DP_MAX_PORTS)
return -EINVAL;
swkey->in_port = nla_get_u32(nla);
break;
case TRANSITION(ODP_KEY_ATTR_IN_PORT, ODP_KEY_ATTR_ETHERNET):
eth_key = nla_data(nla);
memcpy(swkey->dl_src, eth_key->eth_src, ETH_ALEN);
memcpy(swkey->dl_dst, eth_key->eth_dst, ETH_ALEN);
break;
case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_8021Q):
q_key = nla_data(nla);
/* Only standard 0x8100 VLANs currently supported. */
if (q_key->q_tpid != htons(ETH_P_8021Q))
return -EINVAL;
if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
return -EINVAL;
swkey->dl_tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
break;
case TRANSITION(ODP_KEY_ATTR_8021Q, ODP_KEY_ATTR_ETHERTYPE):
case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_ETHERTYPE):
swkey->dl_type = nla_get_be16(nla);
if (ntohs(swkey->dl_type) < 1536)
return -EINVAL;
break;
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV4):
if (swkey->dl_type != htons(ETH_P_IP))
return -EINVAL;
ipv4_key = nla_data(nla);
swkey->nw_src = ipv4_key->ipv4_src;
swkey->nw_dst = ipv4_key->ipv4_dst;
swkey->nw_proto = ipv4_key->ipv4_proto;
swkey->nw_tos = ipv4_key->ipv4_tos;
if (swkey->nw_tos & INET_ECN_MASK)
return -EINVAL;
break;
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_TCP):
if (swkey->nw_proto != IPPROTO_TCP)
return -EINVAL;
tcp_key = nla_data(nla);
swkey->tp_src = tcp_key->tcp_src;
swkey->tp_dst = tcp_key->tcp_dst;
break;
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_UDP):
if (swkey->nw_proto != IPPROTO_UDP)
return -EINVAL;
udp_key = nla_data(nla);
swkey->tp_src = udp_key->udp_src;
swkey->tp_dst = udp_key->udp_dst;
break;
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_ICMP):
if (swkey->nw_proto != IPPROTO_ICMP)
return -EINVAL;
icmp_key = nla_data(nla);
swkey->tp_src = htons(icmp_key->icmp_type);
swkey->tp_dst = htons(icmp_key->icmp_code);
break;
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_ARP):
if (swkey->dl_type != htons(ETH_P_ARP))
return -EINVAL;
arp_key = nla_data(nla);
swkey->nw_src = arp_key->arp_sip;
swkey->nw_dst = arp_key->arp_tip;
if (arp_key->arp_op & htons(0xff00))
return -EINVAL;
swkey->nw_proto = ntohs(arp_key->arp_op);
break;
default:
return -EINVAL;
}
prev_type = type;
}
if (rem)
return -EINVAL;
switch (prev_type) {
case ODP_KEY_ATTR_UNSPEC:
return -EINVAL;
case ODP_KEY_ATTR_TUN_ID:
case ODP_KEY_ATTR_IN_PORT:
return -EINVAL;
case ODP_KEY_ATTR_ETHERNET:
case ODP_KEY_ATTR_8021Q:
return 0;
case ODP_KEY_ATTR_ETHERTYPE:
if (swkey->dl_type == htons(ETH_P_IP) ||
swkey->dl_type == htons(ETH_P_ARP))
return -EINVAL;
return 0;
case ODP_KEY_ATTR_IPV4:
if (swkey->nw_proto == IPPROTO_TCP ||
swkey->nw_proto == IPPROTO_UDP ||
swkey->nw_proto == IPPROTO_ICMP)
return -EINVAL;
return 0;
case ODP_KEY_ATTR_TCP:
case ODP_KEY_ATTR_UDP:
case ODP_KEY_ATTR_ICMP:
case ODP_KEY_ATTR_ARP:
return 0;
}
WARN_ON_ONCE(1);
return -EINVAL;
}
int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
{
struct odp_key_ethernet *eth_key;
struct nlattr *nla;
if (swkey->tun_id != cpu_to_be64(0))
NLA_PUT_BE64(skb, ODP_KEY_ATTR_TUN_ID, swkey->tun_id);
NLA_PUT_U32(skb, ODP_KEY_ATTR_IN_PORT, swkey->in_port);
nla = nla_reserve(skb, ODP_KEY_ATTR_ETHERNET, sizeof(*eth_key));
if (!nla)
goto nla_put_failure;
eth_key = nla_data(nla);
memcpy(eth_key->eth_src, swkey->dl_src, ETH_ALEN);
memcpy(eth_key->eth_dst, swkey->dl_dst, ETH_ALEN);
if (swkey->dl_tci != htons(0)) {
struct odp_key_8021q q_key;
q_key.q_tpid = htons(ETH_P_8021Q);
q_key.q_tci = swkey->dl_tci & ~htons(VLAN_TAG_PRESENT);
NLA_PUT(skb, ODP_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
}
if (swkey->dl_type == htons(ETH_P_802_2))
return 0;
NLA_PUT_BE16(skb, ODP_KEY_ATTR_ETHERTYPE, swkey->dl_type);
if (swkey->dl_type == htons(ETH_P_IP)) {
struct odp_key_ipv4 *ipv4_key;
nla = nla_reserve(skb, ODP_KEY_ATTR_IPV4, sizeof(*ipv4_key));
if (!nla)
goto nla_put_failure;
ipv4_key = nla_data(nla);
ipv4_key->ipv4_src = swkey->nw_src;
ipv4_key->ipv4_dst = swkey->nw_dst;
ipv4_key->ipv4_proto = swkey->nw_proto;
ipv4_key->ipv4_tos = swkey->nw_tos;
if (swkey->nw_proto == IPPROTO_TCP) {
struct odp_key_tcp *tcp_key;
nla = nla_reserve(skb, ODP_KEY_ATTR_TCP, sizeof(*tcp_key));
if (!nla)
goto nla_put_failure;
tcp_key = nla_data(nla);
tcp_key->tcp_src = swkey->tp_src;
tcp_key->tcp_dst = swkey->tp_dst;
} else if (swkey->nw_proto == IPPROTO_UDP) {
struct odp_key_udp *udp_key;
nla = nla_reserve(skb, ODP_KEY_ATTR_UDP, sizeof(*udp_key));
if (!nla)
goto nla_put_failure;
udp_key = nla_data(nla);
udp_key->udp_src = swkey->tp_src;
udp_key->udp_dst = swkey->tp_dst;
} else if (swkey->nw_proto == IPPROTO_ICMP) {
struct odp_key_icmp *icmp_key;
nla = nla_reserve(skb, ODP_KEY_ATTR_ICMP, sizeof(*icmp_key));
if (!nla)
goto nla_put_failure;
icmp_key = nla_data(nla);
icmp_key->icmp_type = ntohs(swkey->tp_src);
icmp_key->icmp_code = ntohs(swkey->tp_dst);
}
} else if (swkey->dl_type == htons(ETH_P_ARP)) {
struct odp_key_arp *arp_key;
nla = nla_reserve(skb, ODP_KEY_ATTR_ARP, sizeof(*arp_key));
if (!nla)
goto nla_put_failure;
arp_key = nla_data(nla);
arp_key->arp_sip = swkey->nw_src;
arp_key->arp_tip = swkey->nw_dst;
arp_key->arp_op = htons(swkey->nw_proto);
}
return 0;
nla_put_failure:
return -EMSGSIZE;
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int flow_init(void)
{
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
get_random_bytes(&hash_seed, sizeof(hash_seed));
return 0;
}
/* Uninitializes the flow module. */
void flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}