2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-19 14:37:21 +00:00
Files
openvswitch/datapath/flow.c
2010-08-26 09:15:42 -07:00

366 lines
9.5 KiB
C

/*
* Distributed under the terms of the GNU GPL version 2.
* Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include "flow.h"
#include "datapath.h"
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
#include "compat.h"
struct kmem_cache *flow_cache;
static unsigned int hash_seed;
struct arp_eth_header
{
__be16 ar_hrd; /* format of hardware address */
__be16 ar_pro; /* format of protocol address */
unsigned char ar_hln; /* length of hardware address */
unsigned char ar_pln; /* length of protocol address */
__be16 ar_op; /* ARP opcode (command) */
/* Ethernet+IPv4 specific members. */
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
unsigned char ar_sip[4]; /* sender IP address */
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
unsigned char ar_tip[4]; /* target IP address */
} __attribute__((packed));
static inline int arphdr_ok(struct sk_buff *skb)
{
int nh_ofs = skb_network_offset(skb);
return pskb_may_pull(skb, nh_ofs + sizeof(struct arp_eth_header));
}
static inline int iphdr_ok(struct sk_buff *skb)
{
int nh_ofs = skb_network_offset(skb);
if (skb->len >= nh_ofs + sizeof(struct iphdr)) {
int ip_len = ip_hdrlen(skb);
return (ip_len >= sizeof(struct iphdr)
&& pskb_may_pull(skb, nh_ofs + ip_len));
}
return 0;
}
static inline int tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
if (pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))) {
int tcp_len = tcp_hdrlen(skb);
return (tcp_len >= sizeof(struct tcphdr)
&& skb->len >= th_ofs + tcp_len);
}
return 0;
}
static inline int udphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
return pskb_may_pull(skb, th_ofs + sizeof(struct udphdr));
}
static inline int icmphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
return pskb_may_pull(skb, th_ofs + sizeof(struct icmphdr));
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
u8 tcp_flags = 0;
if (flow->key.dl_type == htons(ETH_P_IP) &&
flow->key.nw_proto == IPPROTO_TCP) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
spin_lock_bh(&flow->lock);
flow->used = jiffies;
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock_bh(&flow->lock);
}
struct sw_flow_actions *flow_actions_alloc(size_t n_actions)
{
struct sw_flow_actions *sfa;
if (n_actions > (PAGE_SIZE - sizeof *sfa) / sizeof(union odp_action))
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof *sfa + n_actions * sizeof(union odp_action),
GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->n_actions = n_actions;
return sfa;
}
/* Frees 'flow' immediately. */
static void flow_free(struct sw_flow *flow)
{
if (unlikely(!flow))
return;
kfree(flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
void flow_free_tbl(struct tbl_node *node)
{
struct sw_flow *flow = flow_cast(node);
flow_free(flow);
}
/* RCU callback used by flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
flow_free(flow);
}
/* Schedules 'flow' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free(struct sw_flow *flow)
{
call_rcu(&flow->rcu, rcu_free_flow_callback);
}
/* RCU callback used by flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
struct sw_flow_actions *sf_acts = container_of(rcu,
struct sw_flow_actions, rcu);
kfree(sf_acts);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}
static void parse_vlan(struct sk_buff *skb, struct odp_flow_key *key)
{
struct qtag_prefix {
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))
return;
qp = (struct qtag_prefix *) skb->data;
key->dl_vlan = qp->tci & htons(VLAN_VID_MASK);
key->dl_vlan_pcp = (ntohs(qp->tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT;
__skb_pull(skb, sizeof(struct qtag_prefix));
}
static __be16 parse_ethertype(struct sk_buff *skb)
{
struct llc_snap_hdr {
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[3];
u16 ethertype;
};
struct llc_snap_hdr *llc;
__be16 proto;
proto = *(__be16 *) skb->data;
__skb_pull(skb, sizeof(__be16));
if (ntohs(proto) >= ODP_DL_TYPE_ETH2_CUTOFF)
return proto;
if (unlikely(skb->len < sizeof(struct llc_snap_hdr)))
return htons(ODP_DL_TYPE_NOT_ETH_TYPE);
llc = (struct llc_snap_hdr *) skb->data;
if (llc->dsap != LLC_SAP_SNAP ||
llc->ssap != LLC_SAP_SNAP ||
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
return htons(ODP_DL_TYPE_NOT_ETH_TYPE);
__skb_pull(skb, sizeof(struct llc_snap_hdr));
return llc->ethertype;
}
/* Parses the Ethernet frame in 'skb', which was received on 'in_port',
* and initializes 'key' to match. Returns 1 if 'skb' contains an IP
* fragment, 0 otherwise. */
int flow_extract(struct sk_buff *skb, u16 in_port, struct odp_flow_key *key)
{
struct ethhdr *eth;
int retval = 0;
memset(key, 0, sizeof *key);
key->tun_id = OVS_CB(skb)->tun_id;
key->in_port = in_port;
key->dl_vlan = htons(ODP_VLAN_NONE);
if (skb->len < sizeof *eth)
return 0;
if (!pskb_may_pull(skb, min(skb->len, 64u)))
return 0;
skb_reset_mac_header(skb);
/* Link layer. */
eth = eth_hdr(skb);
memcpy(key->dl_src, eth->h_source, ETH_ALEN);
memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
/* dl_type, dl_vlan, dl_vlan_pcp. */
__skb_pull(skb, 2 * ETH_ALEN);
if (eth->h_proto == htons(ETH_P_8021Q))
parse_vlan(skb, key);
key->dl_type = parse_ethertype(skb);
skb_reset_network_header(skb);
__skb_push(skb, skb->data - (unsigned char *)eth);
/* Network layer. */
if (key->dl_type == htons(ETH_P_IP) && iphdr_ok(skb)) {
struct iphdr *nh = ip_hdr(skb);
int th_ofs = skb_network_offset(skb) + nh->ihl * 4;
key->nw_src = nh->saddr;
key->nw_dst = nh->daddr;
key->nw_tos = nh->tos & ~INET_ECN_MASK;
key->nw_proto = nh->protocol;
skb_set_transport_header(skb, th_ofs);
/* Transport layer. */
if (!(nh->frag_off & htons(IP_MF | IP_OFFSET))) {
if (key->nw_proto == IPPROTO_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->tp_src = tcp->source;
key->tp_dst = tcp->dest;
} else {
/* Avoid tricking other code into
* thinking that this packet has an L4
* header. */
key->nw_proto = 0;
}
} else if (key->nw_proto == IPPROTO_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->tp_src = udp->source;
key->tp_dst = udp->dest;
} else {
/* Avoid tricking other code into
* thinking that this packet has an L4
* header. */
key->nw_proto = 0;
}
} else if (key->nw_proto == IPPROTO_ICMP) {
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store them
* in 16-bit network byte order. */
key->tp_src = htons(icmp->type);
key->tp_dst = htons(icmp->code);
} else {
/* Avoid tricking other code into
* thinking that this packet has an L4
* header. */
key->nw_proto = 0;
}
}
} else {
retval = 1;
}
} else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
struct arp_eth_header *arp;
arp = (struct arp_eth_header *)skb_network_header(skb);
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff) {
key->nw_proto = ntohs(arp->ar_op);
}
if (key->nw_proto == ARPOP_REQUEST
|| key->nw_proto == ARPOP_REPLY) {
memcpy(&key->nw_src, arp->ar_sip, sizeof(key->nw_src));
memcpy(&key->nw_dst, arp->ar_tip, sizeof(key->nw_dst));
}
}
} else {
skb_reset_transport_header(skb);
}
return retval;
}
u32 flow_hash(const struct odp_flow_key *key)
{
return jhash2((u32*)key, sizeof *key / sizeof(u32), hash_seed);
}
int flow_cmp(const struct tbl_node *node, void *key2_)
{
const struct odp_flow_key *key1 = &flow_cast(node)->key;
const struct odp_flow_key *key2 = key2_;
return !memcmp(key1, key2, sizeof(struct odp_flow_key));
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int flow_init(void)
{
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
get_random_bytes(&hash_seed, sizeof hash_seed);
return 0;
}
/* Uninitializes the flow module. */
void flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}