2
0
mirror of https://github.com/openvswitch/ovs synced 2025-10-17 14:28:02 +00:00
Files
openvswitch/datapath/flow.c
Jesse Gross 33b38b63e4 datapath: Use static where possible.
Mark functions and global variables used only in a single file as
static.

Found with sparse.

Signed-off-by: Jesse Gross <jesse@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
2010-12-09 17:43:36 -08:00

416 lines
10 KiB
C

/*
* Distributed under the terms of the GNU GPL version 2.
* Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
#include "flow.h"
#include "datapath.h"
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <net/inet_ecn.h>
#include <net/ip.h>
#include "compat.h"
static struct kmem_cache *flow_cache;
static unsigned int hash_seed __read_mostly;
static inline bool arphdr_ok(struct sk_buff *skb)
{
return skb->len >= skb_network_offset(skb) + sizeof(struct arp_eth_header);
}
static inline int check_iphdr(struct sk_buff *skb)
{
unsigned int nh_ofs = skb_network_offset(skb);
unsigned int ip_len;
if (skb->len < nh_ofs + sizeof(struct iphdr))
return -EINVAL;
ip_len = ip_hdrlen(skb);
if (ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)
return -EINVAL;
/*
* Pull enough header bytes to account for the IP header plus the
* longest transport header that we parse, currently 20 bytes for TCP.
*/
if (!pskb_may_pull(skb, min(nh_ofs + ip_len + 20, skb->len)))
return -ENOMEM;
skb_set_transport_header(skb, nh_ofs + ip_len);
return 0;
}
static inline bool tcphdr_ok(struct sk_buff *skb)
{
int th_ofs = skb_transport_offset(skb);
if (skb->len >= th_ofs + sizeof(struct tcphdr)) {
int tcp_len = tcp_hdrlen(skb);
return (tcp_len >= sizeof(struct tcphdr)
&& skb->len >= th_ofs + tcp_len);
}
return false;
}
static inline bool udphdr_ok(struct sk_buff *skb)
{
return skb->len >= skb_transport_offset(skb) + sizeof(struct udphdr);
}
static inline bool icmphdr_ok(struct sk_buff *skb)
{
return skb->len >= skb_transport_offset(skb) + sizeof(struct icmphdr);
}
#define TCP_FLAGS_OFFSET 13
#define TCP_FLAG_MASK 0x3f
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
{
u8 tcp_flags = 0;
if (flow->key.dl_type == htons(ETH_P_IP) &&
flow->key.nw_proto == IPPROTO_TCP) {
u8 *tcp = (u8 *)tcp_hdr(skb);
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
}
spin_lock_bh(&flow->lock);
flow->used = jiffies;
flow->packet_count++;
flow->byte_count += skb->len;
flow->tcp_flags |= tcp_flags;
spin_unlock_bh(&flow->lock);
}
struct sw_flow_actions *flow_actions_alloc(size_t n_actions)
{
struct sw_flow_actions *sfa;
/* At least DP_MAX_PORTS actions are required to be able to flood a
* packet to every port. Factor of 2 allows for setting VLAN tags,
* etc. */
if (n_actions > 2 * DP_MAX_PORTS)
return ERR_PTR(-EINVAL);
sfa = kmalloc(sizeof *sfa + n_actions * sizeof(union odp_action),
GFP_KERNEL);
if (!sfa)
return ERR_PTR(-ENOMEM);
sfa->n_actions = n_actions;
return sfa;
}
struct sw_flow *flow_alloc(void)
{
struct sw_flow *flow;
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
if (!flow)
return ERR_PTR(-ENOMEM);
spin_lock_init(&flow->lock);
atomic_set(&flow->refcnt, 1);
flow->dead = false;
return flow;
}
void flow_free_tbl(struct tbl_node *node)
{
struct sw_flow *flow = flow_cast(node);
flow->dead = true;
flow_put(flow);
}
/* RCU callback used by flow_deferred_free. */
static void rcu_free_flow_callback(struct rcu_head *rcu)
{
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
flow->dead = true;
flow_put(flow);
}
/* Schedules 'flow' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free(struct sw_flow *flow)
{
call_rcu(&flow->rcu, rcu_free_flow_callback);
}
void flow_hold(struct sw_flow *flow)
{
atomic_inc(&flow->refcnt);
}
void flow_put(struct sw_flow *flow)
{
if (unlikely(!flow))
return;
if (atomic_dec_and_test(&flow->refcnt)) {
kfree(flow->sf_acts);
kmem_cache_free(flow_cache, flow);
}
}
/* RCU callback used by flow_deferred_free_acts. */
static void rcu_free_acts_callback(struct rcu_head *rcu)
{
struct sw_flow_actions *sf_acts = container_of(rcu,
struct sw_flow_actions, rcu);
kfree(sf_acts);
}
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
* The caller must hold rcu_read_lock for this to be sensible. */
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
{
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
}
static void parse_vlan(struct sk_buff *skb, struct odp_flow_key *key)
{
struct qtag_prefix {
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))
return;
qp = (struct qtag_prefix *) skb->data;
key->dl_tci = qp->tci | htons(ODP_TCI_PRESENT);
__skb_pull(skb, sizeof(struct qtag_prefix));
}
static __be16 parse_ethertype(struct sk_buff *skb)
{
struct llc_snap_hdr {
u8 dsap; /* Always 0xAA */
u8 ssap; /* Always 0xAA */
u8 ctrl;
u8 oui[3];
u16 ethertype;
};
struct llc_snap_hdr *llc;
__be16 proto;
proto = *(__be16 *) skb->data;
__skb_pull(skb, sizeof(__be16));
if (ntohs(proto) >= ODP_DL_TYPE_ETH2_CUTOFF)
return proto;
if (unlikely(skb->len < sizeof(struct llc_snap_hdr)))
return htons(ODP_DL_TYPE_NOT_ETH_TYPE);
llc = (struct llc_snap_hdr *) skb->data;
if (llc->dsap != LLC_SAP_SNAP ||
llc->ssap != LLC_SAP_SNAP ||
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
return htons(ODP_DL_TYPE_NOT_ETH_TYPE);
__skb_pull(skb, sizeof(struct llc_snap_hdr));
return llc->ethertype;
}
/**
* flow_extract - extracts a flow key from an Ethernet frame.
* @skb: sk_buff that contains the frame, with skb->data pointing to the
* Ethernet header
* @in_port: port number on which @skb was received.
* @key: output flow key
* @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
* not contain an IPv4 packet or if it is not a fragment.
*
* The caller must ensure that skb->len >= ETH_HLEN.
*
* Returns 0 if successful, otherwise a negative errno value.
*
* Initializes @skb header pointers as follows:
*
* - skb->mac_header: the Ethernet header.
*
* - skb->network_header: just past the Ethernet header, or just past the
* VLAN header, to the first byte of the Ethernet payload.
*
* - skb->transport_header: If key->dl_type is ETH_P_IP on output, then just
* past the IPv4 header, if one is present and of a correct length,
* otherwise the same as skb->network_header. For other key->dl_type
* values it is left untouched.
*/
int flow_extract(struct sk_buff *skb, u16 in_port, struct odp_flow_key *key,
bool *is_frag)
{
struct ethhdr *eth;
memset(key, 0, sizeof *key);
key->tun_id = OVS_CB(skb)->tun_id;
key->in_port = in_port;
*is_frag = false;
/*
* We would really like to pull as many bytes as we could possibly
* want to parse into the linear data area. Currently that is:
*
* 14 Ethernet header
* 4 VLAN header
* 60 max IP header with options
* 20 max TCP/UDP/ICMP header (don't care about options)
* --
* 98
*
* But Xen only allocates 64 or 72 bytes for the linear data area in
* netback, which means that we would reallocate and copy the skb's
* linear data on every packet if we did that. So instead just pull 64
* bytes, which is always sufficient without IP options, and then check
* whether we need to pull more later when we look at the IP header.
*/
if (!pskb_may_pull(skb, min(skb->len, 64u)))
return -ENOMEM;
skb_reset_mac_header(skb);
/* Link layer. */
eth = eth_hdr(skb);
memcpy(key->dl_src, eth->h_source, ETH_ALEN);
memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
/* dl_type, dl_vlan, dl_vlan_pcp. */
__skb_pull(skb, 2 * ETH_ALEN);
if (eth->h_proto == htons(ETH_P_8021Q))
parse_vlan(skb, key);
key->dl_type = parse_ethertype(skb);
skb_reset_network_header(skb);
__skb_push(skb, skb->data - (unsigned char *)eth);
/* Network layer. */
if (key->dl_type == htons(ETH_P_IP)) {
struct iphdr *nh;
int error;
error = check_iphdr(skb);
if (unlikely(error)) {
if (error == -EINVAL) {
skb->transport_header = skb->network_header;
return 0;
}
return error;
}
nh = ip_hdr(skb);
key->nw_src = nh->saddr;
key->nw_dst = nh->daddr;
key->nw_tos = nh->tos & ~INET_ECN_MASK;
key->nw_proto = nh->protocol;
/* Transport layer. */
if (!(nh->frag_off & htons(IP_MF | IP_OFFSET))) {
if (key->nw_proto == IPPROTO_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->tp_src = tcp->source;
key->tp_dst = tcp->dest;
}
} else if (key->nw_proto == IPPROTO_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->tp_src = udp->source;
key->tp_dst = udp->dest;
}
} else if (key->nw_proto == IPPROTO_ICMP) {
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store them
* in 16-bit network byte order. */
key->tp_src = htons(icmp->type);
key->tp_dst = htons(icmp->code);
}
}
} else
*is_frag = true;
} else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
struct arp_eth_header *arp;
arp = (struct arp_eth_header *)skb_network_header(skb);
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff)
key->nw_proto = ntohs(arp->ar_op);
if (key->nw_proto == ARPOP_REQUEST
|| key->nw_proto == ARPOP_REPLY) {
memcpy(&key->nw_src, arp->ar_sip, sizeof(key->nw_src));
memcpy(&key->nw_dst, arp->ar_tip, sizeof(key->nw_dst));
}
}
}
return 0;
}
u32 flow_hash(const struct odp_flow_key *key)
{
return jhash2((u32*)key, sizeof *key / sizeof(u32), hash_seed);
}
int flow_cmp(const struct tbl_node *node, void *key2_)
{
const struct odp_flow_key *key1 = &flow_cast(node)->key;
const struct odp_flow_key *key2 = key2_;
return !memcmp(key1, key2, sizeof(struct odp_flow_key));
}
/* Initializes the flow module.
* Returns zero if successful or a negative error code. */
int flow_init(void)
{
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
0, NULL);
if (flow_cache == NULL)
return -ENOMEM;
get_random_bytes(&hash_seed, sizeof hash_seed);
return 0;
}
/* Uninitializes the flow module. */
void flow_exit(void)
{
kmem_cache_destroy(flow_cache);
}