mirror of
https://github.com/openvswitch/ovs
synced 2025-10-29 15:28:56 +00:00
Otherwise the dereference operator could target a portion of a ternary expression, for example. Also minor style fixes. Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com> Acked-by: Ben Pfaff <blp@nicira.com>
352 lines
16 KiB
C
352 lines
16 KiB
C
/*
|
||
* Copyright (c) 2014 Nicira, Inc.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at:
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
/* This header implements atomic operation primitives on x86_64 with GCC. */
|
||
#ifndef IN_OVS_ATOMIC_H
|
||
#error "This header should only be included indirectly via ovs-atomic.h."
|
||
#endif
|
||
|
||
#define OVS_ATOMIC_X86_64_IMPL 1
|
||
|
||
/*
|
||
* x86_64 Memory model (http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html):
|
||
*
|
||
* - 1, 2, 4, and 8 byte loads and stores are atomic on aligned memory.
|
||
* - Loads are not reordered with other loads.
|
||
* - Stores are not reordered with OLDER loads.
|
||
* - Loads may be reordered with OLDER stores to a different memory location,
|
||
* but not with OLDER stores to the same memory location.
|
||
* - Stores are not reordered with other stores, except for special
|
||
* instructions (CLFLUSH, streaming stores, fast string operations).
|
||
* Most of these are not emitted by compilers, and as long as the
|
||
* atomic stores are not combined with any other stores, even the allowed
|
||
* reordering of the stores by a single fast string operation (e.g., "stos")
|
||
* is not a problem.
|
||
* - Neither loads nor stores are reordered with locked instructions.
|
||
* - Loads cannot pass earlier LFENCE or MFENCE instructions.
|
||
* - Stores cannot pass earlier LFENCE, SFENCE, or MFENCE instructions.
|
||
* - LFENCE instruction cannot pass earlier loads.
|
||
* - SFENCE instruction cannot pass earlier stores.
|
||
* - MFENCE instruction cannot pass earlier loads or stores.
|
||
* - Stores by a single processor are observed in the same order by all
|
||
* processors.
|
||
* - (Unlocked) Stores from different processors are NOT ordered.
|
||
* - Memory ordering obeys causality (memory ordering respects transitive
|
||
* visibility).
|
||
* - Any two stores are seen in a consistent order by processors other than
|
||
* the those performing the stores.
|
||
* - Locked instructions have total order.
|
||
*
|
||
* These rules imply that:
|
||
*
|
||
* - Locked instructions are not needed for aligned loads or stores to make
|
||
* them atomic.
|
||
* - All stores have release semantics; none of the preceding stores or loads
|
||
* can be reordered with following stores. Following loads could still be
|
||
* reordered to happen before the store, but that is not a violation of the
|
||
* release semantics.
|
||
* - All loads from a given memory location have acquire semantics with
|
||
* respect to the stores on the same memory location; none of the following
|
||
* loads or stores can be reordered with the load. Preceding stores to a
|
||
* different memory location MAY be reordered with the load, but that is not
|
||
* a violation of the acquire semantics (i.e., the loads and stores of two
|
||
* critical sections guarded by a different memory location can overlap).
|
||
* - Locked instructions serve as CPU memory barriers by themselves.
|
||
* - Locked stores implement the sequential consistency memory order. Using
|
||
* locked instructions when seq_cst memory order is requested allows normal
|
||
* loads to observe the stores in the same (total) order without using CPU
|
||
* memory barrier after the loads.
|
||
*
|
||
* NOTE: Some older AMD Opteron processors have a bug that violates the
|
||
* acquire semantics described above. The bug manifests as an unlocked
|
||
* read-modify-write operation following a "semaphore operation" operating
|
||
* on data that existed before entering the critical section; i.e., the
|
||
* preceding "semaphore operation" fails to function as an acquire barrier.
|
||
* The affected CPUs are AMD family 15, models 32 to 63.
|
||
*
|
||
* Ref. http://support.amd.com/TechDocs/25759.pdf errata #147.
|
||
*/
|
||
|
||
/* Barriers. */
|
||
|
||
#define compiler_barrier() asm volatile(" " : : : "memory")
|
||
#define cpu_barrier() asm volatile("mfence;" : : : "memory")
|
||
|
||
/*
|
||
* The 'volatile' keyword prevents the compiler from keeping the atomic
|
||
* value in a register, and generates a new memory access for each atomic
|
||
* operation. This allows the implementations of memory_order_relaxed and
|
||
* memory_order_consume to avoid issuing a compiler memory barrier, allowing
|
||
* full optimization of all surrounding non-atomic variables.
|
||
*
|
||
* The placement of the 'volatile' keyword after the 'TYPE' below is highly
|
||
* significant when the TYPE is a pointer type. In that case we want the
|
||
* pointer to be declared volatile, not the data type that is being pointed
|
||
* at!
|
||
*/
|
||
#define ATOMIC(TYPE) TYPE volatile
|
||
|
||
/* Memory ordering. Must be passed in as a constant. */
|
||
typedef enum {
|
||
memory_order_relaxed,
|
||
memory_order_consume,
|
||
memory_order_acquire,
|
||
memory_order_release,
|
||
memory_order_acq_rel,
|
||
memory_order_seq_cst
|
||
} memory_order;
|
||
|
||
#define ATOMIC_BOOL_LOCK_FREE 2
|
||
#define ATOMIC_CHAR_LOCK_FREE 2
|
||
#define ATOMIC_SHORT_LOCK_FREE 2
|
||
#define ATOMIC_INT_LOCK_FREE 2
|
||
#define ATOMIC_LONG_LOCK_FREE 2
|
||
#define ATOMIC_LLONG_LOCK_FREE 2
|
||
#define ATOMIC_POINTER_LOCK_FREE 2
|
||
|
||
#define IS_LOCKLESS_ATOMIC(OBJECT) \
|
||
(sizeof(OBJECT) <= 8 && IS_POW2(sizeof(OBJECT)))
|
||
|
||
#define ATOMIC_VAR_INIT(VALUE) VALUE
|
||
#define atomic_init(OBJECT, VALUE) (*(OBJECT) = (VALUE), (void) 0)
|
||
|
||
/*
|
||
* The memory_model_relaxed does not need a compiler barrier, if the
|
||
* atomic operation can otherwise be guaranteed to not be moved with
|
||
* respect to other atomic operations on the same memory location. Using
|
||
* the 'volatile' keyword in the definition of the atomic types
|
||
* accomplishes this, as memory accesses to volatile data may not be
|
||
* optimized away, or be reordered with other volatile accesses.
|
||
*
|
||
* On x86 also memory_order_consume is automatic, and data dependency on a
|
||
* volatile atomic variable means that the compiler optimizations should not
|
||
* cause problems. That is, the compiler should not speculate the value of
|
||
* the atomic_read, as it is going to read it from the memory anyway.
|
||
* This allows omiting the compiler memory barrier on atomic_reads with
|
||
* memory_order_consume. This matches the definition of
|
||
* smp_read_barrier_depends() in Linux kernel as a nop for x86, and its usage
|
||
* in rcu_dereference().
|
||
*
|
||
* We use this same logic below to choose inline assembly statements with or
|
||
* without a compiler memory barrier.
|
||
*/
|
||
static inline void
|
||
atomic_compiler_barrier(memory_order order)
|
||
{
|
||
if (order > memory_order_consume) {
|
||
compiler_barrier();
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
atomic_thread_fence(memory_order order)
|
||
{
|
||
if (order == memory_order_seq_cst) {
|
||
cpu_barrier();
|
||
} else {
|
||
atomic_compiler_barrier(order);
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
atomic_signal_fence(memory_order order)
|
||
{
|
||
atomic_compiler_barrier(order);
|
||
}
|
||
|
||
#define atomic_is_lock_free(OBJ) \
|
||
((void) *(OBJ), \
|
||
IS_LOCKLESS_ATOMIC(*(OBJ)) ? 2 : 0)
|
||
|
||
#define atomic_exchange__(DST, SRC, ORDER) \
|
||
({ \
|
||
typeof(DST) dst___ = (DST); \
|
||
typeof(*(DST)) src___ = (SRC); \
|
||
\
|
||
if ((ORDER) > memory_order_consume) { \
|
||
asm volatile("xchg %1,%0 ; " \
|
||
"# atomic_exchange__" \
|
||
: "+r" (src___), /* 0 */ \
|
||
"+m" (*dst___) /* 1 */ \
|
||
:: "memory"); \
|
||
} else { \
|
||
asm volatile("xchg %1,%0 ; " \
|
||
"# atomic_exchange__" \
|
||
: "+r" (src___), /* 0 */ \
|
||
"+m" (*dst___)); /* 1 */ \
|
||
} \
|
||
src___; \
|
||
})
|
||
|
||
/* Atomic store: Valid memory models are:
|
||
*
|
||
* memory_order_relaxed, memory_order_release, and
|
||
* memory_order_seq_cst. */
|
||
#define atomic_store_explicit(DST, SRC, ORDER) \
|
||
({ \
|
||
typeof(DST) dst__ = (DST); \
|
||
typeof(*(DST)) src__ = (SRC); \
|
||
\
|
||
if ((ORDER) != memory_order_seq_cst) { \
|
||
atomic_compiler_barrier(ORDER); \
|
||
*dst__ = src__; \
|
||
} else { \
|
||
atomic_exchange__(dst__, src__, ORDER); \
|
||
} \
|
||
(void) 0; \
|
||
})
|
||
#define atomic_store(DST, SRC) \
|
||
atomic_store_explicit(DST, SRC, memory_order_seq_cst)
|
||
|
||
/* Atomic read: Valid memory models are:
|
||
*
|
||
* memory_order_relaxed, memory_order_consume, memory_model_acquire,
|
||
* and memory_order_seq_cst. */
|
||
#define atomic_read_explicit(SRC, DST, ORDER) \
|
||
({ \
|
||
typeof(DST) dst__ = (DST); \
|
||
typeof(SRC) src__ = (SRC); \
|
||
\
|
||
*dst__ = *src__; \
|
||
atomic_compiler_barrier(ORDER); \
|
||
(void) 0; \
|
||
})
|
||
#define atomic_read(SRC, DST) \
|
||
atomic_read_explicit(SRC, DST, memory_order_seq_cst)
|
||
|
||
#define atomic_compare_exchange__(DST, EXP, SRC, RES, CLOB) \
|
||
asm volatile("lock; cmpxchg %3,%1 ; " \
|
||
" sete %0 " \
|
||
"# atomic_compare_exchange__" \
|
||
: "=q" (RES), /* 0 */ \
|
||
"+m" (*DST), /* 1 */ \
|
||
"+a" (EXP) /* 2 */ \
|
||
: "r" (SRC) /* 3 */ \
|
||
: CLOB, "cc")
|
||
|
||
/* All memory models are valid for read-modify-write operations.
|
||
*
|
||
* Valid memory models for the read operation of the current value in
|
||
* the failure case are the same as for atomic read, but can not be
|
||
* stronger than the success memory model.
|
||
* ORD_FAIL is ignored, as atomic_compare_exchange__ already implements
|
||
* at least as strong a barrier as allowed for ORD_FAIL in all cases. */
|
||
#define atomic_compare_exchange_strong_explicit(DST, EXP, SRC, ORDER, ORD_FAIL) \
|
||
({ \
|
||
typeof(DST) dst__ = (DST); \
|
||
typeof(DST) expp__ = (EXP); \
|
||
typeof(*(DST)) src__ = (SRC); \
|
||
typeof(*(DST)) exp__ = *expp__; \
|
||
uint8_t res__; \
|
||
(void)ORD_FAIL; \
|
||
\
|
||
if ((ORDER) > memory_order_consume) { \
|
||
atomic_compare_exchange__(dst__, exp__, src__, res__, \
|
||
"memory"); \
|
||
} else { \
|
||
atomic_compare_exchange__(dst__, exp__, src__, res__, \
|
||
"cc"); \
|
||
} \
|
||
if (!res__) { \
|
||
*expp__ = exp__; \
|
||
} \
|
||
(bool)res__; \
|
||
})
|
||
#define atomic_compare_exchange_strong(DST, EXP, SRC) \
|
||
atomic_compare_exchange_strong_explicit(DST, EXP, SRC, \
|
||
memory_order_seq_cst, \
|
||
memory_order_seq_cst)
|
||
#define atomic_compare_exchange_weak \
|
||
atomic_compare_exchange_strong
|
||
#define atomic_compare_exchange_weak_explicit \
|
||
atomic_compare_exchange_strong_explicit
|
||
|
||
#define atomic_add__(RMW, ARG, CLOB) \
|
||
asm volatile("lock; xadd %0,%1 ; " \
|
||
"# atomic_add__ " \
|
||
: "+r" (ARG), /* 0 */ \
|
||
"+m" (*RMW) /* 1 */ \
|
||
:: CLOB, "cc")
|
||
|
||
#define atomic_add_explicit(RMW, ARG, ORIG, ORDER) \
|
||
({ \
|
||
typeof(RMW) rmw__ = (RMW); \
|
||
typeof(*(RMW)) arg__ = (ARG); \
|
||
\
|
||
if ((ORDER) > memory_order_consume) { \
|
||
atomic_add__(rmw__, arg__, "memory"); \
|
||
} else { \
|
||
atomic_add__(rmw__, arg__, "cc"); \
|
||
} \
|
||
*(ORIG) = arg__; \
|
||
})
|
||
#define atomic_add(RMW, ARG, ORIG) \
|
||
atomic_add_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
|
||
|
||
#define atomic_sub_explicit(RMW, ARG, ORIG, ORDER) \
|
||
atomic_add_explicit(RMW, -(ARG), ORIG, ORDER)
|
||
#define atomic_sub(RMW, ARG, ORIG) \
|
||
atomic_sub_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
|
||
|
||
/* We could use simple locked instructions if the original value was not
|
||
* needed. */
|
||
#define atomic_op__(RMW, OP, ARG, ORIG, ORDER) \
|
||
({ \
|
||
typeof(RMW) rmw__ = (RMW); \
|
||
typeof(ARG) arg__ = (ARG); \
|
||
\
|
||
typeof(*(RMW)) val__; \
|
||
\
|
||
atomic_read_explicit(rmw__, &val__, memory_order_relaxed); \
|
||
do { \
|
||
} while (!atomic_compare_exchange_weak_explicit(rmw__, &val__, \
|
||
val__ OP arg__, \
|
||
ORDER, \
|
||
memory_order_relaxed)); \
|
||
*(ORIG) = val__; \
|
||
})
|
||
|
||
#define atomic_or_explicit(RMW, ARG, ORIG, ORDER) \
|
||
atomic_op__(RMW, |, ARG, ORIG, ORDER)
|
||
#define atomic_or(RMW, ARG, ORIG) \
|
||
atomic_or_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
|
||
|
||
#define atomic_xor_explicit(RMW, ARG, ORIG, ORDER) \
|
||
atomic_op__(RMW, ^, ARG, ORIG, ORDER)
|
||
#define atomic_xor(RMW, ARG, ORIG) \
|
||
atomic_xor_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
|
||
|
||
#define atomic_and_explicit(RMW, ARG, ORIG, ORDER) \
|
||
atomic_op__(RMW, &, ARG, ORIG, ORDER)
|
||
#define atomic_and(RMW, ARG, ORIG) \
|
||
atomic_and_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
|
||
|
||
|
||
/* atomic_flag */
|
||
|
||
typedef ATOMIC(int) atomic_flag;
|
||
#define ATOMIC_FLAG_INIT { false }
|
||
|
||
#define atomic_flag_test_and_set_explicit(FLAG, ORDER) \
|
||
((bool)atomic_exchange__(FLAG, 1, ORDER))
|
||
#define atomic_flag_test_and_set(FLAG) \
|
||
atomic_flag_test_and_set_explicit(FLAG, memory_order_seq_cst)
|
||
|
||
#define atomic_flag_clear_explicit(FLAG, ORDER) \
|
||
atomic_store_explicit(FLAG, 0, ORDER)
|
||
#define atomic_flag_clear(FLAG) \
|
||
atomic_flag_clear_explicit(FLAG, memory_order_seq_cst)
|