mirror of
https://github.com/openvswitch/ovs
synced 2025-10-25 15:07:05 +00:00
1462 lines
45 KiB
C
1462 lines
45 KiB
C
/*
|
||
* Copyright (c) 2015 Nicira, Inc.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at:
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include "command-line.h"
|
||
#include <errno.h>
|
||
#include <getopt.h>
|
||
#include <sys/wait.h>
|
||
#include "dynamic-string.h"
|
||
#include "fatal-signal.h"
|
||
#include "match.h"
|
||
#include "ofp-actions.h"
|
||
#include "ofpbuf.h"
|
||
#include "ovn/lib/actions.h"
|
||
#include "ovn/lib/expr.h"
|
||
#include "ovn/lib/lex.h"
|
||
#include "ovs-thread.h"
|
||
#include "ovstest.h"
|
||
#include "shash.h"
|
||
#include "simap.h"
|
||
#include "util.h"
|
||
#include "openvswitch/vlog.h"
|
||
|
||
/* --relops: Bitmap of the relational operators to test, in exhaustive test. */
|
||
static unsigned int test_relops;
|
||
|
||
/* --nvars: Number of numeric variables to test, in exhaustive test. */
|
||
static int test_nvars = 2;
|
||
|
||
/* --svars: Number of string variables to test, in exhaustive test. */
|
||
static int test_svars = 2;
|
||
|
||
/* --bits: Number of bits per variable, in exhaustive test. */
|
||
static int test_bits = 3;
|
||
|
||
/* --operation: The operation to test, in exhaustive test. */
|
||
static enum { OP_CONVERT, OP_SIMPLIFY, OP_NORMALIZE, OP_FLOW } operation
|
||
= OP_FLOW;
|
||
|
||
/* --parallel: Number of parallel processes to use in test. */
|
||
static int test_parallel = 1;
|
||
|
||
/* -m, --more: Message verbosity */
|
||
static int verbosity;
|
||
|
||
static void
|
||
compare_token(const struct lex_token *a, const struct lex_token *b)
|
||
{
|
||
if (a->type != b->type) {
|
||
fprintf(stderr, "type differs: %d -> %d\n", a->type, b->type);
|
||
return;
|
||
}
|
||
|
||
if (!((a->s && b->s && !strcmp(a->s, b->s))
|
||
|| (!a->s && !b->s))) {
|
||
fprintf(stderr, "string differs: %s -> %s\n",
|
||
a->s ? a->s : "(null)",
|
||
b->s ? b->s : "(null)");
|
||
return;
|
||
}
|
||
|
||
if (a->type == LEX_T_INTEGER || a->type == LEX_T_MASKED_INTEGER) {
|
||
if (memcmp(&a->value, &b->value, sizeof a->value)) {
|
||
fprintf(stderr, "value differs\n");
|
||
return;
|
||
}
|
||
|
||
if (a->type == LEX_T_MASKED_INTEGER
|
||
&& memcmp(&a->mask, &b->mask, sizeof a->mask)) {
|
||
fprintf(stderr, "mask differs\n");
|
||
return;
|
||
}
|
||
|
||
if (a->format != b->format
|
||
&& !(a->format == LEX_F_HEXADECIMAL
|
||
&& b->format == LEX_F_DECIMAL
|
||
&& a->value.integer == 0)) {
|
||
fprintf(stderr, "format differs: %d -> %d\n",
|
||
a->format, b->format);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
test_lex(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
struct ds input;
|
||
struct ds output;
|
||
|
||
ds_init(&input);
|
||
ds_init(&output);
|
||
while (!ds_get_test_line(&input, stdin)) {
|
||
struct lexer lexer;
|
||
|
||
lexer_init(&lexer, ds_cstr(&input));
|
||
ds_clear(&output);
|
||
while (lexer_get(&lexer) != LEX_T_END) {
|
||
size_t len = output.length;
|
||
lex_token_format(&lexer.token, &output);
|
||
|
||
/* Check that the formatted version can really be parsed back
|
||
* losslessly. */
|
||
if (lexer.token.type != LEX_T_ERROR) {
|
||
const char *s = ds_cstr(&output) + len;
|
||
struct lexer l2;
|
||
|
||
lexer_init(&l2, s);
|
||
lexer_get(&l2);
|
||
compare_token(&lexer.token, &l2.token);
|
||
lexer_destroy(&l2);
|
||
}
|
||
ds_put_char(&output, ' ');
|
||
}
|
||
lexer_destroy(&lexer);
|
||
|
||
ds_chomp(&output, ' ');
|
||
puts(ds_cstr(&output));
|
||
}
|
||
ds_destroy(&input);
|
||
ds_destroy(&output);
|
||
}
|
||
|
||
static void
|
||
create_symtab(struct shash *symtab)
|
||
{
|
||
shash_init(symtab);
|
||
|
||
/* Reserve a pair of registers for the logical inport and outport. A full
|
||
* 32-bit register each is bigger than we need, but the expression code
|
||
* doesn't yet support string fields that occupy less than a full OXM. */
|
||
expr_symtab_add_string(symtab, "inport", MFF_REG6, NULL);
|
||
expr_symtab_add_string(symtab, "outport", MFF_REG7, NULL);
|
||
|
||
expr_symtab_add_field(symtab, "xreg0", MFF_XREG0, NULL, false);
|
||
expr_symtab_add_field(symtab, "xreg1", MFF_XREG1, NULL, false);
|
||
expr_symtab_add_field(symtab, "xreg2", MFF_XREG2, NULL, false);
|
||
|
||
expr_symtab_add_subfield(symtab, "reg0", NULL, "xreg0[32..63]");
|
||
expr_symtab_add_subfield(symtab, "reg1", NULL, "xreg0[0..31]");
|
||
expr_symtab_add_subfield(symtab, "reg2", NULL, "xreg1[32..63]");
|
||
expr_symtab_add_subfield(symtab, "reg3", NULL, "xreg1[0..31]");
|
||
expr_symtab_add_subfield(symtab, "reg4", NULL, "xreg2[32..63]");
|
||
expr_symtab_add_subfield(symtab, "reg5", NULL, "xreg2[0..31]");
|
||
|
||
expr_symtab_add_field(symtab, "eth.src", MFF_ETH_SRC, NULL, false);
|
||
expr_symtab_add_field(symtab, "eth.dst", MFF_ETH_DST, NULL, false);
|
||
expr_symtab_add_field(symtab, "eth.type", MFF_ETH_TYPE, NULL, true);
|
||
|
||
expr_symtab_add_field(symtab, "vlan.tci", MFF_VLAN_TCI, NULL, false);
|
||
expr_symtab_add_predicate(symtab, "vlan.present", "vlan.tci[12]");
|
||
expr_symtab_add_subfield(symtab, "vlan.pcp", "vlan.present",
|
||
"vlan.tci[13..15]");
|
||
expr_symtab_add_subfield(symtab, "vlan.vid", "vlan.present",
|
||
"vlan.tci[0..11]");
|
||
|
||
expr_symtab_add_predicate(symtab, "ip4", "eth.type == 0x800");
|
||
expr_symtab_add_predicate(symtab, "ip6", "eth.type == 0x86dd");
|
||
expr_symtab_add_predicate(symtab, "ip", "ip4 || ip6");
|
||
expr_symtab_add_field(symtab, "ip.proto", MFF_IP_PROTO, "ip", true);
|
||
expr_symtab_add_field(symtab, "ip.dscp", MFF_IP_DSCP, "ip", false);
|
||
expr_symtab_add_field(symtab, "ip.ecn", MFF_IP_ECN, "ip", false);
|
||
expr_symtab_add_field(symtab, "ip.ttl", MFF_IP_TTL, "ip", false);
|
||
|
||
expr_symtab_add_field(symtab, "ip4.src", MFF_IPV4_SRC, "ip4", false);
|
||
expr_symtab_add_field(symtab, "ip4.dst", MFF_IPV4_DST, "ip4", false);
|
||
|
||
expr_symtab_add_predicate(symtab, "icmp4", "ip4 && ip.proto == 1");
|
||
expr_symtab_add_field(symtab, "icmp4.type", MFF_ICMPV4_TYPE, "icmp4",
|
||
false);
|
||
expr_symtab_add_field(symtab, "icmp4.code", MFF_ICMPV4_CODE, "icmp4",
|
||
false);
|
||
|
||
expr_symtab_add_field(symtab, "ip6.src", MFF_IPV6_SRC, "ip6", false);
|
||
expr_symtab_add_field(symtab, "ip6.dst", MFF_IPV6_DST, "ip6", false);
|
||
expr_symtab_add_field(symtab, "ip6.label", MFF_IPV6_LABEL, "ip6", false);
|
||
|
||
expr_symtab_add_predicate(symtab, "icmp6", "ip6 && ip.proto == 58");
|
||
expr_symtab_add_field(symtab, "icmp6.type", MFF_ICMPV6_TYPE, "icmp6",
|
||
true);
|
||
expr_symtab_add_field(symtab, "icmp6.code", MFF_ICMPV6_CODE, "icmp6",
|
||
true);
|
||
|
||
expr_symtab_add_predicate(symtab, "icmp", "icmp4 || icmp6");
|
||
|
||
expr_symtab_add_field(symtab, "ip.frag", MFF_IP_FRAG, "ip", false);
|
||
expr_symtab_add_predicate(symtab, "ip.is_frag", "ip.frag[0]");
|
||
expr_symtab_add_predicate(symtab, "ip.later_frag", "ip.frag[1]");
|
||
expr_symtab_add_predicate(symtab, "ip.first_frag", "ip.is_frag && !ip.later_frag");
|
||
|
||
expr_symtab_add_predicate(symtab, "arp", "eth.type == 0x806");
|
||
expr_symtab_add_field(symtab, "arp.op", MFF_ARP_OP, "arp", false);
|
||
expr_symtab_add_field(symtab, "arp.spa", MFF_ARP_SPA, "arp", false);
|
||
expr_symtab_add_field(symtab, "arp.sha", MFF_ARP_SHA, "arp", false);
|
||
expr_symtab_add_field(symtab, "arp.tpa", MFF_ARP_TPA, "arp", false);
|
||
expr_symtab_add_field(symtab, "arp.tha", MFF_ARP_THA, "arp", false);
|
||
|
||
expr_symtab_add_predicate(symtab, "nd", "icmp6.type == {135, 136} && icmp6.code == 0");
|
||
expr_symtab_add_field(symtab, "nd.target", MFF_ND_TARGET, "nd", false);
|
||
expr_symtab_add_field(symtab, "nd.sll", MFF_ND_SLL,
|
||
"nd && icmp6.type == 135", false);
|
||
expr_symtab_add_field(symtab, "nd.tll", MFF_ND_TLL,
|
||
"nd && icmp6.type == 136", false);
|
||
|
||
expr_symtab_add_predicate(symtab, "tcp", "ip.proto == 6");
|
||
expr_symtab_add_field(symtab, "tcp.src", MFF_TCP_SRC, "tcp", false);
|
||
expr_symtab_add_field(symtab, "tcp.dst", MFF_TCP_DST, "tcp", false);
|
||
expr_symtab_add_field(symtab, "tcp.flags", MFF_TCP_FLAGS, "tcp", false);
|
||
|
||
expr_symtab_add_predicate(symtab, "udp", "ip.proto == 17");
|
||
expr_symtab_add_field(symtab, "udp.src", MFF_UDP_SRC, "udp", false);
|
||
expr_symtab_add_field(symtab, "udp.dst", MFF_UDP_DST, "udp", false);
|
||
|
||
expr_symtab_add_predicate(symtab, "sctp", "ip.proto == 132");
|
||
expr_symtab_add_field(symtab, "sctp.src", MFF_SCTP_SRC, "sctp", false);
|
||
expr_symtab_add_field(symtab, "sctp.dst", MFF_SCTP_DST, "sctp", false);
|
||
|
||
/* For negative testing. */
|
||
expr_symtab_add_field(symtab, "bad_prereq", MFF_XREG0, "xyzzy", false);
|
||
expr_symtab_add_field(symtab, "self_recurse", MFF_XREG0,
|
||
"self_recurse != 0", false);
|
||
expr_symtab_add_field(symtab, "mutual_recurse_1", MFF_XREG0,
|
||
"mutual_recurse_2 != 0", false);
|
||
expr_symtab_add_field(symtab, "mutual_recurse_2", MFF_XREG0,
|
||
"mutual_recurse_1 != 0", false);
|
||
expr_symtab_add_string(symtab, "big_string", MFF_XREG0, NULL);
|
||
}
|
||
|
||
static void
|
||
test_parse_expr__(int steps)
|
||
{
|
||
struct shash symtab;
|
||
struct simap ports;
|
||
struct ds input;
|
||
|
||
create_symtab(&symtab);
|
||
|
||
simap_init(&ports);
|
||
simap_put(&ports, "eth0", 5);
|
||
simap_put(&ports, "eth1", 6);
|
||
simap_put(&ports, "LOCAL", ofp_to_u16(OFPP_LOCAL));
|
||
|
||
ds_init(&input);
|
||
while (!ds_get_test_line(&input, stdin)) {
|
||
struct expr *expr;
|
||
char *error;
|
||
|
||
expr = expr_parse_string(ds_cstr(&input), &symtab, &error);
|
||
if (!error && steps > 0) {
|
||
expr = expr_annotate(expr, &symtab, &error);
|
||
}
|
||
if (!error) {
|
||
if (steps > 1) {
|
||
expr = expr_simplify(expr);
|
||
}
|
||
if (steps > 2) {
|
||
expr = expr_normalize(expr);
|
||
ovs_assert(expr_is_normalized(expr));
|
||
}
|
||
}
|
||
if (!error) {
|
||
if (steps > 3) {
|
||
struct hmap matches;
|
||
|
||
expr_to_matches(expr, &ports, &matches);
|
||
expr_matches_print(&matches, stdout);
|
||
expr_matches_destroy(&matches);
|
||
} else {
|
||
struct ds output = DS_EMPTY_INITIALIZER;
|
||
expr_format(expr, &output);
|
||
puts(ds_cstr(&output));
|
||
ds_destroy(&output);
|
||
}
|
||
} else {
|
||
puts(error);
|
||
free(error);
|
||
}
|
||
expr_destroy(expr);
|
||
}
|
||
ds_destroy(&input);
|
||
|
||
simap_destroy(&ports);
|
||
expr_symtab_destroy(&symtab);
|
||
shash_destroy(&symtab);
|
||
}
|
||
|
||
static void
|
||
test_parse_expr(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
test_parse_expr__(0);
|
||
}
|
||
|
||
static void
|
||
test_annotate_expr(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
test_parse_expr__(1);
|
||
}
|
||
|
||
static void
|
||
test_simplify_expr(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
test_parse_expr__(2);
|
||
}
|
||
|
||
static void
|
||
test_normalize_expr(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
test_parse_expr__(3);
|
||
}
|
||
|
||
static void
|
||
test_expr_to_flows(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
test_parse_expr__(4);
|
||
}
|
||
|
||
/* Evaluate an expression. */
|
||
|
||
static bool evaluate_expr(const struct expr *, unsigned int subst, int n_bits);
|
||
|
||
static bool
|
||
evaluate_andor_expr(const struct expr *expr, unsigned int subst, int n_bits,
|
||
bool short_circuit)
|
||
{
|
||
const struct expr *sub;
|
||
|
||
LIST_FOR_EACH (sub, node, &expr->andor) {
|
||
if (evaluate_expr(sub, subst, n_bits) == short_circuit) {
|
||
return short_circuit;
|
||
}
|
||
}
|
||
return !short_circuit;
|
||
}
|
||
|
||
static bool
|
||
evaluate_cmp_expr(const struct expr *expr, unsigned int subst, int n_bits)
|
||
{
|
||
int var_idx = atoi(expr->cmp.symbol->name + 1);
|
||
if (expr->cmp.symbol->name[0] == 'n') {
|
||
unsigned var_mask = (1u << n_bits) - 1;
|
||
unsigned int arg1 = (subst >> (var_idx * n_bits)) & var_mask;
|
||
unsigned int arg2 = ntohll(expr->cmp.value.integer);
|
||
unsigned int mask = ntohll(expr->cmp.mask.integer);
|
||
|
||
ovs_assert(!(mask & ~var_mask));
|
||
ovs_assert(!(arg2 & ~var_mask));
|
||
ovs_assert(!(arg2 & ~mask));
|
||
|
||
arg1 &= mask;
|
||
switch (expr->cmp.relop) {
|
||
case EXPR_R_EQ:
|
||
return arg1 == arg2;
|
||
|
||
case EXPR_R_NE:
|
||
return arg1 != arg2;
|
||
|
||
case EXPR_R_LT:
|
||
return arg1 < arg2;
|
||
|
||
case EXPR_R_LE:
|
||
return arg1 <= arg2;
|
||
|
||
case EXPR_R_GT:
|
||
return arg1 > arg2;
|
||
|
||
case EXPR_R_GE:
|
||
return arg1 >= arg2;
|
||
|
||
default:
|
||
OVS_NOT_REACHED();
|
||
}
|
||
} else if (expr->cmp.symbol->name[0] == 's') {
|
||
unsigned int arg1 = (subst >> (test_nvars * n_bits + var_idx)) & 1;
|
||
unsigned int arg2 = atoi(expr->cmp.string);
|
||
return arg1 == arg2;
|
||
} else {
|
||
OVS_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
/* Evaluates 'expr' and returns its Boolean result. 'subst' provides the value
|
||
* for the variables, which must be 'n_bits' bits each and be named "a", "b",
|
||
* "c", etc. The value of variable "a" is the least-significant 'n_bits' bits
|
||
* of 'subst', the value of "b" is the next 'n_bits' bits, and so on. */
|
||
static bool
|
||
evaluate_expr(const struct expr *expr, unsigned int subst, int n_bits)
|
||
{
|
||
switch (expr->type) {
|
||
case EXPR_T_CMP:
|
||
return evaluate_cmp_expr(expr, subst, n_bits);
|
||
|
||
case EXPR_T_AND:
|
||
return evaluate_andor_expr(expr, subst, n_bits, false);
|
||
|
||
case EXPR_T_OR:
|
||
return evaluate_andor_expr(expr, subst, n_bits, true);
|
||
|
||
case EXPR_T_BOOLEAN:
|
||
return expr->boolean;
|
||
|
||
default:
|
||
OVS_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
static void
|
||
test_evaluate_expr(struct ovs_cmdl_context *ctx)
|
||
{
|
||
int a = atoi(ctx->argv[1]);
|
||
int b = atoi(ctx->argv[2]);
|
||
int c = atoi(ctx->argv[3]);
|
||
unsigned int subst = a | (b << 3) || (c << 6);
|
||
struct shash symtab;
|
||
struct ds input;
|
||
|
||
shash_init(&symtab);
|
||
expr_symtab_add_field(&symtab, "xreg0", MFF_XREG0, NULL, false);
|
||
expr_symtab_add_field(&symtab, "xreg1", MFF_XREG1, NULL, false);
|
||
expr_symtab_add_field(&symtab, "xreg2", MFF_XREG1, NULL, false);
|
||
expr_symtab_add_subfield(&symtab, "a", NULL, "xreg0[0..2]");
|
||
expr_symtab_add_subfield(&symtab, "b", NULL, "xreg1[0..2]");
|
||
expr_symtab_add_subfield(&symtab, "c", NULL, "xreg2[0..2]");
|
||
|
||
ds_init(&input);
|
||
while (!ds_get_test_line(&input, stdin)) {
|
||
struct expr *expr;
|
||
char *error;
|
||
|
||
expr = expr_parse_string(ds_cstr(&input), &symtab, &error);
|
||
if (!error) {
|
||
expr = expr_annotate(expr, &symtab, &error);
|
||
}
|
||
if (!error) {
|
||
printf("%d\n", evaluate_expr(expr, subst, 3));
|
||
} else {
|
||
puts(error);
|
||
free(error);
|
||
}
|
||
expr_destroy(expr);
|
||
}
|
||
ds_destroy(&input);
|
||
|
||
expr_symtab_destroy(&symtab);
|
||
shash_destroy(&symtab);
|
||
}
|
||
|
||
/* Compositions.
|
||
*
|
||
* The "compositions" of a positive integer N are all of the ways that one can
|
||
* add up positive integers to sum to N. For example, the compositions of 3
|
||
* are 3, 2+1, 1+2, and 1+1+1.
|
||
*
|
||
* We use compositions to find all the ways to break up N terms of a Boolean
|
||
* expression into subexpressions. Suppose we want to generate all expressions
|
||
* with 3 terms. The compositions of 3 (ignoring 3 itself) provide the
|
||
* possibilities (x && x) || x, x || (x && x), and x || x || x. (Of course one
|
||
* can exchange && for || in each case.) One must recursively compose the
|
||
* sub-expressions whose values are 3 or greater; that is what the "tree shape"
|
||
* concept later covers.
|
||
*
|
||
* To iterate through all compositions of, e.g., 5:
|
||
*
|
||
* unsigned int state;
|
||
* int s[5];
|
||
* int n;
|
||
*
|
||
* for (n = first_composition(ARRAY_SIZE(s), &state, s); n > 0;
|
||
* n = next_composition(&state, s, n)) {
|
||
* // Do something with composition 's' with 'n' elements.
|
||
* }
|
||
*
|
||
* Algorithm from D. E. Knuth, _The Art of Computer Programming, Vol. 4A:
|
||
* Combinatorial Algorithms, Part 1_, section 7.2.1.1, answer to exercise
|
||
* 12(a).
|
||
*/
|
||
|
||
/* Begins iteration through the compositions of 'n'. Initializes 's' to the
|
||
* number of elements in the first composition of 'n' and returns that number
|
||
* of elements. The first composition in fact is always 'n' itself, so the
|
||
* return value will be 1.
|
||
*
|
||
* Initializes '*state' to some internal state information. The caller must
|
||
* maintain this state (and 's') for use by next_composition().
|
||
*
|
||
* 's' must have room for at least 'n' elements. */
|
||
static int
|
||
first_composition(int n, unsigned int *state, int s[])
|
||
{
|
||
*state = 0;
|
||
s[0] = n;
|
||
return 1;
|
||
}
|
||
|
||
/* Advances 's', with 'sn' elements, to the next composition and returns the
|
||
* number of elements in this new composition, or 0 if no compositions are
|
||
* left. 'state' is the same internal state passed to first_composition(). */
|
||
static int
|
||
next_composition(unsigned int *state, int s[], int sn)
|
||
{
|
||
int j = sn - 1;
|
||
if (++*state & 1) {
|
||
if (s[j] > 1) {
|
||
s[j]--;
|
||
s[j + 1] = 1;
|
||
j++;
|
||
} else {
|
||
j--;
|
||
s[j]++;
|
||
}
|
||
} else {
|
||
if (s[j - 1] > 1) {
|
||
s[j - 1]--;
|
||
s[j + 1] = s[j];
|
||
s[j] = 1;
|
||
j++;
|
||
} else {
|
||
j--;
|
||
s[j] = s[j + 1];
|
||
s[j - 1]++;
|
||
if (!j) {
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
return j + 1;
|
||
}
|
||
|
||
static void
|
||
test_composition(struct ovs_cmdl_context *ctx)
|
||
{
|
||
int n = atoi(ctx->argv[1]);
|
||
unsigned int state;
|
||
int s[50];
|
||
|
||
for (int sn = first_composition(n, &state, s); sn;
|
||
sn = next_composition(&state, s, sn)) {
|
||
for (int i = 0; i < sn; i++) {
|
||
printf("%d%c", s[i], i == sn - 1 ? '\n' : ' ');
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Tree shapes.
|
||
*
|
||
* This code generates all possible Boolean expressions with a specified number
|
||
* of terms N (equivalent to the number of external nodes in a tree).
|
||
*
|
||
* See test_tree_shape() for a simple example. */
|
||
|
||
/* An array of these structures describes the shape of a tree.
|
||
*
|
||
* A single element of struct tree_shape describes a single node in the tree.
|
||
* The node has 'sn' direct children. From left to right, for i in 0...sn-1,
|
||
* s[i] is 1 if the child is a leaf node, otherwise the child is a subtree and
|
||
* s[i] is the number of leaf nodes within that subtree. In the latter case,
|
||
* the subtree is described by another struct tree_shape within the enclosing
|
||
* array. The tree_shapes are ordered in the array in in-order.
|
||
*/
|
||
struct tree_shape {
|
||
unsigned int state;
|
||
int s[50];
|
||
int sn;
|
||
};
|
||
|
||
static int
|
||
init_tree_shape__(struct tree_shape ts[], int n)
|
||
{
|
||
if (n <= 2) {
|
||
return 0;
|
||
}
|
||
|
||
int n_tses = 1;
|
||
/* Skip the first composition intentionally. */
|
||
ts->sn = first_composition(n, &ts->state, ts->s);
|
||
ts->sn = next_composition(&ts->state, ts->s, ts->sn);
|
||
for (int i = 0; i < ts->sn; i++) {
|
||
n_tses += init_tree_shape__(&ts[n_tses], ts->s[i]);
|
||
}
|
||
return n_tses;
|
||
}
|
||
|
||
/* Initializes 'ts[]' as the first in the set of all of possible shapes of
|
||
* trees with 'n' leaves. Returns the number of "struct tree_shape"s in the
|
||
* first tree shape. */
|
||
static int
|
||
init_tree_shape(struct tree_shape ts[], int n)
|
||
{
|
||
switch (n) {
|
||
case 1:
|
||
ts->sn = 1;
|
||
ts->s[0] = 1;
|
||
return 1;
|
||
case 2:
|
||
ts->sn = 2;
|
||
ts->s[0] = 1;
|
||
ts->s[1] = 1;
|
||
return 1;
|
||
default:
|
||
return init_tree_shape__(ts, n);
|
||
}
|
||
}
|
||
|
||
/* Advances 'ts', which currently has 'n_tses' elements, to the next possible
|
||
* tree shape with the number of leaves passed to init_tree_shape(). Returns
|
||
* the number of "struct tree_shape"s in the next shape, or 0 if all tree
|
||
* shapes have been visited. */
|
||
static int
|
||
next_tree_shape(struct tree_shape ts[], int n_tses)
|
||
{
|
||
if (n_tses == 1 && ts->sn == 2 && ts->s[0] == 1 && ts->s[1] == 1) {
|
||
return 0;
|
||
}
|
||
while (n_tses > 0) {
|
||
struct tree_shape *p = &ts[n_tses - 1];
|
||
p->sn = p->sn > 1 ? next_composition(&p->state, p->s, p->sn) : 0;
|
||
if (p->sn) {
|
||
for (int i = 0; i < p->sn; i++) {
|
||
n_tses += init_tree_shape__(&ts[n_tses], p->s[i]);
|
||
}
|
||
break;
|
||
}
|
||
n_tses--;
|
||
}
|
||
return n_tses;
|
||
}
|
||
|
||
static void
|
||
print_tree_shape(const struct tree_shape ts[], int n_tses)
|
||
{
|
||
for (int i = 0; i < n_tses; i++) {
|
||
if (i) {
|
||
printf(", ");
|
||
}
|
||
for (int j = 0; j < ts[i].sn; j++) {
|
||
int k = ts[i].s[j];
|
||
if (k > 9) {
|
||
printf("(%d)", k);
|
||
} else {
|
||
printf("%d", k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
test_tree_shape(struct ovs_cmdl_context *ctx)
|
||
{
|
||
int n = atoi(ctx->argv[1]);
|
||
struct tree_shape ts[50];
|
||
int n_tses;
|
||
|
||
for (n_tses = init_tree_shape(ts, n); n_tses;
|
||
n_tses = next_tree_shape(ts, n_tses)) {
|
||
print_tree_shape(ts, n_tses);
|
||
putchar('\n');
|
||
}
|
||
}
|
||
|
||
/* Iteration through all possible terminal expressions (e.g. EXPR_T_CMP and
|
||
* EXPR_T_BOOLEAN expressions).
|
||
*
|
||
* Given a tree shape, this allows the code to try all possible ways to plug in
|
||
* terms.
|
||
*
|
||
* Example use:
|
||
*
|
||
* struct expr terminal;
|
||
* const struct expr_symbol *vars = ...;
|
||
* int n_vars = ...;
|
||
* int n_bits = ...;
|
||
*
|
||
* init_terminal(&terminal, vars[0]);
|
||
* do {
|
||
* // Something with 'terminal'.
|
||
* } while (next_terminal(&terminal, vars, n_vars, n_bits));
|
||
*/
|
||
|
||
/* Sets 'expr' to the first possible terminal expression. 'var' should be the
|
||
* first variable in the ones to be tested. */
|
||
static void
|
||
init_terminal(struct expr *expr, int phase,
|
||
const struct expr_symbol *nvars[], int n_nvars,
|
||
const struct expr_symbol *svars[], int n_svars)
|
||
{
|
||
if (phase < 1 && n_nvars) {
|
||
expr->type = EXPR_T_CMP;
|
||
expr->cmp.symbol = nvars[0];
|
||
expr->cmp.relop = rightmost_1bit_idx(test_relops);
|
||
memset(&expr->cmp.value, 0, sizeof expr->cmp.value);
|
||
memset(&expr->cmp.mask, 0, sizeof expr->cmp.mask);
|
||
expr->cmp.value.integer = htonll(0);
|
||
expr->cmp.mask.integer = htonll(1);
|
||
return;
|
||
}
|
||
|
||
if (phase < 2 && n_svars) {
|
||
expr->type = EXPR_T_CMP;
|
||
expr->cmp.symbol = svars[0];
|
||
expr->cmp.relop = EXPR_R_EQ;
|
||
expr->cmp.string = xstrdup("0");
|
||
return;
|
||
}
|
||
|
||
expr->type = EXPR_T_BOOLEAN;
|
||
expr->boolean = false;
|
||
}
|
||
|
||
/* Returns 'x' with the rightmost contiguous string of 1s changed to 0s,
|
||
* e.g. 01011100 => 01000000. See H. S. Warren, Jr., _Hacker's Delight_, 2nd
|
||
* ed., section 2-1. */
|
||
static unsigned int
|
||
turn_off_rightmost_1s(unsigned int x)
|
||
{
|
||
return ((x & -x) + x) & x;
|
||
}
|
||
|
||
static const struct expr_symbol *
|
||
next_var(const struct expr_symbol *symbol,
|
||
const struct expr_symbol *vars[], int n_vars)
|
||
{
|
||
for (int i = 0; i < n_vars; i++) {
|
||
if (symbol == vars[i]) {
|
||
return i + 1 >= n_vars ? NULL : vars[i + 1];
|
||
}
|
||
}
|
||
OVS_NOT_REACHED();
|
||
}
|
||
|
||
static enum expr_relop
|
||
next_relop(enum expr_relop relop)
|
||
{
|
||
unsigned int remaining_relops = test_relops & ~((1u << (relop + 1)) - 1);
|
||
return (remaining_relops
|
||
? rightmost_1bit_idx(remaining_relops)
|
||
: rightmost_1bit_idx(test_relops));
|
||
}
|
||
|
||
/* Advances 'expr' to the next possible terminal expression within the 'n_vars'
|
||
* variables of 'n_bits' bits each in 'vars[]'. */
|
||
static bool
|
||
next_terminal(struct expr *expr,
|
||
const struct expr_symbol *nvars[], int n_nvars, int n_bits,
|
||
const struct expr_symbol *svars[], int n_svars)
|
||
{
|
||
if (expr->type == EXPR_T_BOOLEAN) {
|
||
if (expr->boolean) {
|
||
return false;
|
||
} else {
|
||
expr->boolean = true;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
if (!expr->cmp.symbol->width) {
|
||
int next_value = atoi(expr->cmp.string) + 1;
|
||
free(expr->cmp.string);
|
||
if (next_value > 1) {
|
||
expr->cmp.symbol = next_var(expr->cmp.symbol, svars, n_svars);
|
||
if (!expr->cmp.symbol) {
|
||
init_terminal(expr, 2, nvars, n_nvars, svars, n_svars);
|
||
return true;
|
||
}
|
||
next_value = 0;
|
||
}
|
||
expr->cmp.string = xasprintf("%d", next_value);
|
||
return true;
|
||
}
|
||
|
||
unsigned int next;
|
||
|
||
next = (ntohll(expr->cmp.value.integer)
|
||
+ (ntohll(expr->cmp.mask.integer) << n_bits));
|
||
for (;;) {
|
||
next++;
|
||
unsigned m = next >> n_bits;
|
||
unsigned v = next & ((1u << n_bits) - 1);
|
||
if (next >= (1u << (2 * n_bits))) {
|
||
enum expr_relop old_relop = expr->cmp.relop;
|
||
expr->cmp.relop = next_relop(old_relop);
|
||
if (expr->cmp.relop <= old_relop) {
|
||
expr->cmp.symbol = next_var(expr->cmp.symbol, nvars, n_nvars);
|
||
if (!expr->cmp.symbol) {
|
||
init_terminal(expr, 1, nvars, n_nvars, svars, n_svars);
|
||
return true;
|
||
}
|
||
}
|
||
next = 0;
|
||
} else if (m == 0) {
|
||
/* Skip: empty mask is pathological. */
|
||
} else if (v & ~m) {
|
||
/* Skip: 1-bits in value correspond to 0-bits in mask. */
|
||
} else if (turn_off_rightmost_1s(m)
|
||
&& (expr->cmp.relop != EXPR_R_EQ &&
|
||
expr->cmp.relop != EXPR_R_NE)) {
|
||
/* Skip: can't have discontiguous mask for > >= < <=. */
|
||
} else {
|
||
expr->cmp.value.integer = htonll(v);
|
||
expr->cmp.mask.integer = htonll(m);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
static struct expr *
|
||
make_terminal(struct expr ***terminalp)
|
||
{
|
||
struct expr *e = expr_create_boolean(true);
|
||
**terminalp = e;
|
||
(*terminalp)++;
|
||
return e;
|
||
}
|
||
|
||
static struct expr *
|
||
build_simple_tree(enum expr_type type, int n, struct expr ***terminalp)
|
||
{
|
||
if (n == 2) {
|
||
struct expr *e = expr_create_andor(type);
|
||
for (int i = 0; i < 2; i++) {
|
||
struct expr *sub = make_terminal(terminalp);
|
||
list_push_back(&e->andor, &sub->node);
|
||
}
|
||
return e;
|
||
} else if (n == 1) {
|
||
return make_terminal(terminalp);
|
||
} else {
|
||
OVS_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
static struct expr *
|
||
build_tree_shape(enum expr_type type, const struct tree_shape **tsp,
|
||
struct expr ***terminalp)
|
||
{
|
||
const struct tree_shape *ts = *tsp;
|
||
(*tsp)++;
|
||
|
||
struct expr *e = expr_create_andor(type);
|
||
enum expr_type t = type == EXPR_T_AND ? EXPR_T_OR : EXPR_T_AND;
|
||
for (int i = 0; i < ts->sn; i++) {
|
||
struct expr *sub = (ts->s[i] > 2
|
||
? build_tree_shape(t, tsp, terminalp)
|
||
: build_simple_tree(t, ts->s[i], terminalp));
|
||
list_push_back(&e->andor, &sub->node);
|
||
}
|
||
return e;
|
||
}
|
||
|
||
struct test_rule {
|
||
struct cls_rule cr;
|
||
};
|
||
|
||
static void
|
||
free_rule(struct test_rule *test_rule)
|
||
{
|
||
cls_rule_destroy(&test_rule->cr);
|
||
free(test_rule);
|
||
}
|
||
|
||
static int
|
||
test_tree_shape_exhaustively(struct expr *expr, struct shash *symtab,
|
||
struct expr *terminals[], int n_terminals,
|
||
const struct expr_symbol *nvars[], int n_nvars,
|
||
int n_bits,
|
||
const struct expr_symbol *svars[], int n_svars)
|
||
{
|
||
struct simap string_map = SIMAP_INITIALIZER(&string_map);
|
||
simap_put(&string_map, "0", 0);
|
||
simap_put(&string_map, "1", 1);
|
||
|
||
int n_tested = 0;
|
||
|
||
const unsigned int var_mask = (1u << n_bits) - 1;
|
||
for (int i = 0; i < n_terminals; i++) {
|
||
init_terminal(terminals[i], 0, nvars, n_nvars, svars, n_svars);
|
||
}
|
||
|
||
struct ds s = DS_EMPTY_INITIALIZER;
|
||
struct flow f;
|
||
memset(&f, 0, sizeof f);
|
||
for (;;) {
|
||
for (int i = n_terminals - 1; ; i--) {
|
||
if (!i) {
|
||
ds_destroy(&s);
|
||
simap_destroy(&string_map);
|
||
return n_tested;
|
||
}
|
||
if (next_terminal(terminals[i], nvars, n_nvars, n_bits,
|
||
svars, n_svars)) {
|
||
break;
|
||
}
|
||
init_terminal(terminals[i], 0, nvars, n_nvars, svars, n_svars);
|
||
}
|
||
ovs_assert(expr_honors_invariants(expr));
|
||
|
||
n_tested++;
|
||
|
||
struct expr *modified;
|
||
if (operation == OP_CONVERT) {
|
||
ds_clear(&s);
|
||
expr_format(expr, &s);
|
||
|
||
char *error;
|
||
modified = expr_parse_string(ds_cstr(&s), symtab, &error);
|
||
if (error) {
|
||
fprintf(stderr, "%s fails to parse (%s)\n",
|
||
ds_cstr(&s), error);
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
} else if (operation >= OP_SIMPLIFY) {
|
||
modified = expr_simplify(expr_clone(expr));
|
||
ovs_assert(expr_honors_invariants(modified));
|
||
|
||
if (operation >= OP_NORMALIZE) {
|
||
modified = expr_normalize(modified);
|
||
ovs_assert(expr_is_normalized(modified));
|
||
}
|
||
}
|
||
|
||
struct hmap matches;
|
||
struct classifier cls;
|
||
if (operation >= OP_FLOW) {
|
||
struct expr_match *m;
|
||
struct test_rule *test_rule;
|
||
|
||
expr_to_matches(modified, &string_map, &matches);
|
||
|
||
classifier_init(&cls, NULL);
|
||
HMAP_FOR_EACH (m, hmap_node, &matches) {
|
||
test_rule = xmalloc(sizeof *test_rule);
|
||
cls_rule_init(&test_rule->cr, &m->match, 0);
|
||
classifier_insert(&cls, &test_rule->cr, CLS_MIN_VERSION,
|
||
m->conjunctions, m->n);
|
||
}
|
||
}
|
||
for (int subst = 0; subst < 1 << (n_bits * n_nvars + n_svars);
|
||
subst++) {
|
||
bool expected = evaluate_expr(expr, subst, n_bits);
|
||
bool actual = evaluate_expr(modified, subst, n_bits);
|
||
if (actual != expected) {
|
||
struct ds expr_s, modified_s;
|
||
|
||
ds_init(&expr_s);
|
||
expr_format(expr, &expr_s);
|
||
|
||
ds_init(&modified_s);
|
||
expr_format(modified, &modified_s);
|
||
|
||
fprintf(stderr,
|
||
"%s evaluates to %d, but %s evaluates to %d, for",
|
||
ds_cstr(&expr_s), expected,
|
||
ds_cstr(&modified_s), actual);
|
||
for (int i = 0; i < n_nvars; i++) {
|
||
if (i > 0) {
|
||
fputs(",", stderr);
|
||
}
|
||
fprintf(stderr, " n%d = 0x%x", i,
|
||
(subst >> (n_bits * i)) & var_mask);
|
||
}
|
||
for (int i = 0; i < n_svars; i++) {
|
||
fprintf(stderr, ", s%d = \"%d\"", i,
|
||
(subst >> (n_bits * n_nvars + i)) & 1);
|
||
}
|
||
putc('\n', stderr);
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
|
||
if (operation >= OP_FLOW) {
|
||
for (int i = 0; i < n_nvars; i++) {
|
||
f.regs[i] = (subst >> (i * n_bits)) & var_mask;
|
||
}
|
||
for (int i = 0; i < n_svars; i++) {
|
||
f.regs[n_nvars + i] = ((subst >> (n_nvars * n_bits + i))
|
||
& 1);
|
||
}
|
||
bool found = classifier_lookup(&cls, CLS_MIN_VERSION,
|
||
&f, NULL) != NULL;
|
||
if (expected != found) {
|
||
struct ds expr_s, modified_s;
|
||
|
||
ds_init(&expr_s);
|
||
expr_format(expr, &expr_s);
|
||
|
||
ds_init(&modified_s);
|
||
expr_format(modified, &modified_s);
|
||
|
||
fprintf(stderr,
|
||
"%s and %s evaluate to %d, for",
|
||
ds_cstr(&expr_s), ds_cstr(&modified_s), expected);
|
||
for (int i = 0; i < n_nvars; i++) {
|
||
if (i > 0) {
|
||
fputs(",", stderr);
|
||
}
|
||
fprintf(stderr, " n%d = 0x%x", i,
|
||
(subst >> (n_bits * i)) & var_mask);
|
||
}
|
||
for (int i = 0; i < n_svars; i++) {
|
||
fprintf(stderr, ", s%d = \"%d\"", i,
|
||
(subst >> (n_bits * n_nvars + i)) & 1);
|
||
}
|
||
fputs(".\n", stderr);
|
||
|
||
fprintf(stderr, "Converted to classifier:\n");
|
||
expr_matches_print(&matches, stderr);
|
||
fprintf(stderr,
|
||
"However, %s flow was found in the classifier.\n",
|
||
found ? "a" : "no");
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
}
|
||
}
|
||
if (operation >= OP_FLOW) {
|
||
struct test_rule *test_rule;
|
||
|
||
CLS_FOR_EACH (test_rule, cr, &cls) {
|
||
classifier_remove(&cls, &test_rule->cr);
|
||
ovsrcu_postpone(free_rule, test_rule);
|
||
}
|
||
classifier_destroy(&cls);
|
||
ovsrcu_quiesce();
|
||
|
||
expr_matches_destroy(&matches);
|
||
}
|
||
expr_destroy(modified);
|
||
}
|
||
}
|
||
|
||
#ifndef _WIN32
|
||
static void
|
||
wait_pid(pid_t *pids, int *n)
|
||
{
|
||
int status;
|
||
pid_t pid;
|
||
|
||
pid = waitpid(WAIT_ANY, &status, 0);
|
||
if (pid < 0) {
|
||
ovs_fatal(errno, "waitpid failed");
|
||
} else if (WIFEXITED(status)) {
|
||
if (WEXITSTATUS(status)) {
|
||
exit(WEXITSTATUS(status));
|
||
}
|
||
} else if (WIFSIGNALED(status)) {
|
||
raise(WTERMSIG(status));
|
||
exit(1);
|
||
} else {
|
||
OVS_NOT_REACHED();
|
||
}
|
||
|
||
for (int i = 0; i < *n; i++) {
|
||
if (pids[i] == pid) {
|
||
pids[i] = pids[--*n];
|
||
return;
|
||
}
|
||
}
|
||
ovs_fatal(0, "waitpid returned unknown child");
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
test_exhaustive(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
int n_terminals = atoi(ctx->argv[1]);
|
||
struct tree_shape ts[50];
|
||
int n_tses;
|
||
|
||
struct shash symtab;
|
||
const struct expr_symbol *nvars[4];
|
||
const struct expr_symbol *svars[4];
|
||
|
||
ovs_assert(test_nvars <= ARRAY_SIZE(nvars));
|
||
ovs_assert(test_svars <= ARRAY_SIZE(svars));
|
||
ovs_assert(test_nvars + test_svars <= FLOW_N_REGS);
|
||
|
||
shash_init(&symtab);
|
||
for (int i = 0; i < test_nvars; i++) {
|
||
char *name = xasprintf("n%d", i);
|
||
nvars[i] = expr_symtab_add_field(&symtab, name, MFF_REG0 + i, NULL,
|
||
false);
|
||
free(name);
|
||
}
|
||
for (int i = 0; i < test_svars; i++) {
|
||
char *name = xasprintf("s%d", i);
|
||
svars[i] = expr_symtab_add_string(&symtab, name,
|
||
MFF_REG0 + test_nvars + i, NULL);
|
||
free(name);
|
||
}
|
||
|
||
#ifndef _WIN32
|
||
pid_t *children = xmalloc(test_parallel * sizeof *children);
|
||
int n_children = 0;
|
||
#endif
|
||
|
||
int n_tested = 0;
|
||
for (int i = 0; i < 2; i++) {
|
||
enum expr_type base_type = i ? EXPR_T_OR : EXPR_T_AND;
|
||
|
||
for (n_tses = init_tree_shape(ts, n_terminals); n_tses;
|
||
n_tses = next_tree_shape(ts, n_tses)) {
|
||
const struct tree_shape *tsp = ts;
|
||
struct expr *terminals[50];
|
||
struct expr **terminalp = terminals;
|
||
struct expr *expr = build_tree_shape(base_type, &tsp, &terminalp);
|
||
ovs_assert(terminalp == &terminals[n_terminals]);
|
||
|
||
if (verbosity > 0) {
|
||
print_tree_shape(ts, n_tses);
|
||
printf(": ");
|
||
struct ds s = DS_EMPTY_INITIALIZER;
|
||
expr_format(expr, &s);
|
||
puts(ds_cstr(&s));
|
||
ds_destroy(&s);
|
||
}
|
||
|
||
#ifndef _WIN32
|
||
if (test_parallel > 1) {
|
||
pid_t pid = xfork();
|
||
if (!pid) {
|
||
test_tree_shape_exhaustively(expr, &symtab,
|
||
terminals, n_terminals,
|
||
nvars, test_nvars, test_bits,
|
||
svars, test_svars);
|
||
expr_destroy(expr);
|
||
exit(0);
|
||
} else {
|
||
if (n_children >= test_parallel) {
|
||
wait_pid(children, &n_children);
|
||
}
|
||
children[n_children++] = pid;
|
||
}
|
||
} else
|
||
#endif
|
||
{
|
||
n_tested += test_tree_shape_exhaustively(
|
||
expr, &symtab, terminals, n_terminals,
|
||
nvars, test_nvars, test_bits,
|
||
svars, test_svars);
|
||
}
|
||
expr_destroy(expr);
|
||
}
|
||
}
|
||
#ifndef _WIN32
|
||
while (n_children > 0) {
|
||
wait_pid(children, &n_children);
|
||
}
|
||
free(children);
|
||
#endif
|
||
|
||
printf("Tested ");
|
||
switch (operation) {
|
||
case OP_CONVERT:
|
||
printf("converting");
|
||
break;
|
||
case OP_SIMPLIFY:
|
||
printf("simplifying");
|
||
break;
|
||
case OP_NORMALIZE:
|
||
printf("normalizing");
|
||
break;
|
||
case OP_FLOW:
|
||
printf("converting to flows");
|
||
break;
|
||
}
|
||
if (n_tested) {
|
||
printf(" %d expressions of %d terminals", n_tested, n_terminals);
|
||
} else {
|
||
printf(" all %d-terminal expressions", n_terminals);
|
||
}
|
||
if (test_nvars || test_svars) {
|
||
printf(" with");
|
||
if (test_nvars) {
|
||
printf(" %d numeric vars (each %d bits) in terms of operators",
|
||
test_nvars, test_bits);
|
||
for (unsigned int relops = test_relops; relops;
|
||
relops = zero_rightmost_1bit(relops)) {
|
||
enum expr_relop r = rightmost_1bit_idx(relops);
|
||
printf(" %s", expr_relop_to_string(r));
|
||
}
|
||
}
|
||
if (test_nvars && test_svars) {
|
||
printf (" and");
|
||
}
|
||
if (test_svars) {
|
||
printf(" %d string vars", test_svars);
|
||
}
|
||
} else {
|
||
printf(" in terms of Boolean constants only");
|
||
}
|
||
printf(".\n");
|
||
|
||
expr_symtab_destroy(&symtab);
|
||
shash_destroy(&symtab);
|
||
}
|
||
|
||
/* Actions. */
|
||
|
||
static void
|
||
test_parse_actions(struct ovs_cmdl_context *ctx OVS_UNUSED)
|
||
{
|
||
struct shash symtab;
|
||
struct simap ports, ct_zones;
|
||
struct ds input;
|
||
|
||
create_symtab(&symtab);
|
||
|
||
simap_init(&ports);
|
||
simap_put(&ports, "eth0", 5);
|
||
simap_put(&ports, "eth1", 6);
|
||
simap_put(&ports, "LOCAL", ofp_to_u16(OFPP_LOCAL));
|
||
simap_init(&ct_zones);
|
||
|
||
ds_init(&input);
|
||
while (!ds_get_test_line(&input, stdin)) {
|
||
struct ofpbuf ofpacts;
|
||
struct expr *prereqs;
|
||
char *error;
|
||
|
||
ofpbuf_init(&ofpacts, 0);
|
||
error = actions_parse_string(ds_cstr(&input), &symtab, &ports,
|
||
&ct_zones, 16, 16, 10, 64,
|
||
&ofpacts, &prereqs);
|
||
if (!error) {
|
||
struct ds output;
|
||
|
||
ds_init(&output);
|
||
ds_put_cstr(&output, "actions=");
|
||
ofpacts_format(ofpacts.data, ofpacts.size, &output);
|
||
ds_put_cstr(&output, ", prereqs=");
|
||
if (prereqs) {
|
||
expr_format(prereqs, &output);
|
||
} else {
|
||
ds_put_char(&output, '1');
|
||
}
|
||
puts(ds_cstr(&output));
|
||
ds_destroy(&output);
|
||
} else {
|
||
puts(error);
|
||
free(error);
|
||
}
|
||
|
||
expr_destroy(prereqs);
|
||
ofpbuf_uninit(&ofpacts);
|
||
}
|
||
ds_destroy(&input);
|
||
|
||
simap_destroy(&ports);
|
||
simap_destroy(&ct_zones);
|
||
expr_symtab_destroy(&symtab);
|
||
shash_destroy(&symtab);
|
||
}
|
||
|
||
static unsigned int
|
||
parse_relops(const char *s)
|
||
{
|
||
unsigned int relops = 0;
|
||
struct lexer lexer;
|
||
|
||
lexer_init(&lexer, s);
|
||
lexer_get(&lexer);
|
||
do {
|
||
enum expr_relop relop;
|
||
|
||
if (expr_relop_from_token(lexer.token.type, &relop)) {
|
||
relops |= 1u << relop;
|
||
lexer_get(&lexer);
|
||
} else {
|
||
ovs_fatal(0, "%s: relational operator expected at `%.*s'",
|
||
s, (int) (lexer.input - lexer.start), lexer.start);
|
||
}
|
||
lexer_match(&lexer, LEX_T_COMMA);
|
||
} while (lexer.token.type != LEX_T_END);
|
||
lexer_destroy(&lexer);
|
||
|
||
return relops;
|
||
}
|
||
|
||
static void
|
||
usage(void)
|
||
{
|
||
printf("\
|
||
%s: OVN test utility\n\
|
||
usage: test-ovn %s [OPTIONS] COMMAND [ARG...]\n\
|
||
\n\
|
||
lex\n\
|
||
Lexically analyzes OVN input from stdin and print them back on stdout.\n\
|
||
\n\
|
||
parse-expr\n\
|
||
annotate-expr\n\
|
||
simplify-expr\n\
|
||
normalize-expr\n\
|
||
expr-to-flows\n\
|
||
Parses OVN expressions from stdin and print them back on stdout after\n\
|
||
differing degrees of analysis. Available fields are based on packet\n\
|
||
headers.\n\
|
||
\n\
|
||
evaluate-expr A B C\n\
|
||
Parses OVN expressions from stdin, evaluate them with assigned values,\n\
|
||
and print the results on stdout. Available fields are 'a', 'b', and 'c'\n\
|
||
of 3 bits each. A, B, and C should be in the range 0 to 7.\n\
|
||
\n\
|
||
composition N\n\
|
||
Prints all the compositions of N on stdout.\n\
|
||
\n\
|
||
tree-shape N\n\
|
||
Prints all the tree shapes with N terminals on stdout.\n\
|
||
\n\
|
||
exhaustive N\n\
|
||
Tests that all possible Boolean expressions with N terminals are properly\n\
|
||
simplified, normalized, and converted to flows. Available options:\n\
|
||
Overall options:\n\
|
||
--operation=OPERATION Operation to test, one of: convert, simplify,\n\
|
||
normalize, flow. Default: flow. 'normalize' includes 'simplify',\n\
|
||
'flow' includes 'simplify' and 'normalize'.\n\
|
||
--parallel=N Number of processes to use in parallel, default 1.\n\
|
||
Numeric vars:\n\
|
||
--nvars=N Number of numeric vars to test, in range 0...4, default 2.\n\
|
||
--bits=N Number of bits per variable, in range 1...3, default 3.\n\
|
||
--relops=OPERATORS Test only the specified Boolean operators.\n\
|
||
OPERATORS may include == != < <= > >=, space or\n\
|
||
comma separated. Default is all operators.\n\
|
||
String vars:\n\
|
||
--svars=N Number of string vars to test, in range 0...4, default 2.\n\
|
||
",
|
||
program_name, program_name);
|
||
exit(EXIT_SUCCESS);
|
||
}
|
||
|
||
static void
|
||
test_ovn_main(int argc, char *argv[])
|
||
{
|
||
enum {
|
||
OPT_RELOPS = UCHAR_MAX + 1,
|
||
OPT_NVARS,
|
||
OPT_SVARS,
|
||
OPT_BITS,
|
||
OPT_OPERATION,
|
||
OPT_PARALLEL
|
||
};
|
||
static const struct option long_options[] = {
|
||
{"relops", required_argument, NULL, OPT_RELOPS},
|
||
{"nvars", required_argument, NULL, OPT_NVARS},
|
||
{"svars", required_argument, NULL, OPT_SVARS},
|
||
{"bits", required_argument, NULL, OPT_BITS},
|
||
{"operation", required_argument, NULL, OPT_OPERATION},
|
||
{"parallel", required_argument, NULL, OPT_PARALLEL},
|
||
{"more", no_argument, NULL, 'm'},
|
||
{"help", no_argument, NULL, 'h'},
|
||
{NULL, 0, NULL, 0},
|
||
};
|
||
char *short_options = ovs_cmdl_long_options_to_short_options(long_options);
|
||
|
||
set_program_name(argv[0]);
|
||
|
||
test_relops = parse_relops("== != < <= > >=");
|
||
for (;;) {
|
||
int option_index = 0;
|
||
int c = getopt_long (argc, argv, short_options, long_options,
|
||
&option_index);
|
||
|
||
if (c == -1) {
|
||
break;
|
||
}
|
||
switch (c) {
|
||
case OPT_RELOPS:
|
||
test_relops = parse_relops(optarg);
|
||
break;
|
||
|
||
case OPT_NVARS:
|
||
test_nvars = atoi(optarg);
|
||
if (test_nvars < 0 || test_nvars > 4) {
|
||
ovs_fatal(0, "number of numeric variables must be "
|
||
"between 0 and 4");
|
||
}
|
||
break;
|
||
|
||
case OPT_SVARS:
|
||
test_svars = atoi(optarg);
|
||
if (test_svars < 0 || test_svars > 4) {
|
||
ovs_fatal(0, "number of string variables must be "
|
||
"between 0 and 4");
|
||
}
|
||
break;
|
||
|
||
case OPT_BITS:
|
||
test_bits = atoi(optarg);
|
||
if (test_bits < 1 || test_bits > 3) {
|
||
ovs_fatal(0, "number of bits must be between 1 and 3");
|
||
}
|
||
break;
|
||
|
||
case OPT_OPERATION:
|
||
if (!strcmp(optarg, "convert")) {
|
||
operation = OP_CONVERT;
|
||
} else if (!strcmp(optarg, "simplify")) {
|
||
operation = OP_SIMPLIFY;
|
||
} else if (!strcmp(optarg, "normalize")) {
|
||
operation = OP_NORMALIZE;
|
||
} else if (!strcmp(optarg, "flow")) {
|
||
operation = OP_FLOW;
|
||
} else {
|
||
ovs_fatal(0, "%s: unknown operation", optarg);
|
||
}
|
||
break;
|
||
|
||
case OPT_PARALLEL:
|
||
test_parallel = atoi(optarg);
|
||
break;
|
||
|
||
case 'm':
|
||
verbosity++;
|
||
break;
|
||
|
||
case 'h':
|
||
usage();
|
||
|
||
case '?':
|
||
exit(1);
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
free(short_options);
|
||
|
||
static const struct ovs_cmdl_command commands[] = {
|
||
/* Lexer. */
|
||
{"lex", NULL, 0, 0, test_lex},
|
||
|
||
/* Expressions. */
|
||
{"parse-expr", NULL, 0, 0, test_parse_expr},
|
||
{"annotate-expr", NULL, 0, 0, test_annotate_expr},
|
||
{"simplify-expr", NULL, 0, 0, test_simplify_expr},
|
||
{"normalize-expr", NULL, 0, 0, test_normalize_expr},
|
||
{"expr-to-flows", NULL, 0, 0, test_expr_to_flows},
|
||
{"evaluate-expr", NULL, 1, 1, test_evaluate_expr},
|
||
{"composition", NULL, 1, 1, test_composition},
|
||
{"tree-shape", NULL, 1, 1, test_tree_shape},
|
||
{"exhaustive", NULL, 1, 1, test_exhaustive},
|
||
|
||
/* Actions. */
|
||
{"parse-actions", NULL, 0, 0, test_parse_actions},
|
||
|
||
{NULL, NULL, 0, 0, NULL},
|
||
};
|
||
struct ovs_cmdl_context ctx;
|
||
ctx.argc = argc - optind;
|
||
ctx.argv = argv + optind;
|
||
ovs_cmdl_run_command(&ctx, commands);
|
||
}
|
||
|
||
OVSTEST_REGISTER("test-ovn", test_ovn_main);
|