mirror of
https://github.com/openvswitch/ovs
synced 2025-10-19 14:37:21 +00:00
We currently always pull 64 bytes of data (if it exists) into the skb linear data area when parsing flows. The theory behind this is that the data should always be there and it's enough to parse common flows. However, this causes a number of problems in different situations. The first is that it is not enough to handle IPv6 so we must pull additional data anyways. However, the main problem is that GRO typically allocates a new skb and puts just the headers in there. For a typical TCP/IPv4 packet there are 54 bytes of headers, which means that we must possibly reallocate and copy on every packet. In addition, GRO creates frag_lists with this specific geometry in order to allow later segmentation if the packet is forwarded to a device that does not support frag_lists. When we pull additional data it changes the geometry and causes later problems for the device. This patch instead incrementally pulls data, which avoids these problems. Signed-off-by: Jesse Gross <jesse@nicira.com> CC: Ian Campbell <Ian.Campbell@citrix.com>
962 lines
26 KiB
C
962 lines
26 KiB
C
/*
|
|
* Distributed under the terms of the GNU GPL version 2.
|
|
* Copyright (c) 2007, 2008, 2009, 2010, 2011 Nicira Networks.
|
|
*
|
|
* Significant portions of this file may be copied from parts of the Linux
|
|
* kernel, by Linus Torvalds and others.
|
|
*/
|
|
|
|
#include "flow.h"
|
|
#include "datapath.h"
|
|
#include <asm/uaccess.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/llc_pdu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/llc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/in.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <linux/icmpv6.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ndisc.h>
|
|
|
|
#include "vlan.h"
|
|
|
|
static struct kmem_cache *flow_cache;
|
|
static unsigned int hash_seed __read_mostly;
|
|
|
|
static int check_header(struct sk_buff *skb, int len)
|
|
{
|
|
if (unlikely(skb->len < len))
|
|
return -EINVAL;
|
|
if (unlikely(!pskb_may_pull(skb, len)))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static inline bool arphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_network_offset(skb) +
|
|
sizeof(struct arp_eth_header));
|
|
}
|
|
|
|
static inline int check_iphdr(struct sk_buff *skb)
|
|
{
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int ip_len;
|
|
int err;
|
|
|
|
err = check_header(skb, nh_ofs + sizeof(struct iphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
ip_len = ip_hdrlen(skb);
|
|
if (unlikely(ip_len < sizeof(struct iphdr) ||
|
|
skb->len < nh_ofs + ip_len))
|
|
return -EINVAL;
|
|
|
|
skb_set_transport_header(skb, nh_ofs + ip_len);
|
|
return 0;
|
|
}
|
|
|
|
static inline bool tcphdr_ok(struct sk_buff *skb)
|
|
{
|
|
int th_ofs = skb_transport_offset(skb);
|
|
int tcp_len;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
|
|
return false;
|
|
|
|
tcp_len = tcp_hdrlen(skb);
|
|
if (unlikely(tcp_len < sizeof(struct tcphdr) ||
|
|
skb->len < th_ofs + tcp_len))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool udphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
}
|
|
|
|
static inline bool icmphdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct icmphdr));
|
|
}
|
|
|
|
u64 flow_used_time(unsigned long flow_jiffies)
|
|
{
|
|
struct timespec cur_ts;
|
|
u64 cur_ms, idle_ms;
|
|
|
|
ktime_get_ts(&cur_ts);
|
|
idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
|
|
cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
|
|
cur_ts.tv_nsec / NSEC_PER_MSEC;
|
|
|
|
return cur_ms - idle_ms;
|
|
}
|
|
|
|
static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
unsigned int nh_ofs = skb_network_offset(skb);
|
|
unsigned int nh_len;
|
|
int payload_ofs;
|
|
struct ipv6hdr *nh;
|
|
uint8_t nexthdr;
|
|
int err;
|
|
|
|
err = check_header(skb, nh_ofs + sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
nexthdr = nh->nexthdr;
|
|
payload_ofs = (u8 *)(nh + 1) - skb->data;
|
|
|
|
ipv6_addr_copy(&key->ipv6_src, &nh->saddr);
|
|
ipv6_addr_copy(&key->ipv6_dst, &nh->daddr);
|
|
key->nw_tos = ipv6_get_dsfield(nh) & ~INET_ECN_MASK;
|
|
key->nw_proto = NEXTHDR_NONE;
|
|
|
|
payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr);
|
|
if (unlikely(payload_ofs < 0))
|
|
return -EINVAL;
|
|
|
|
nh_len = payload_ofs - nh_ofs;
|
|
skb_set_transport_header(skb, nh_ofs + nh_len);
|
|
key->nw_proto = nexthdr;
|
|
return nh_len;
|
|
}
|
|
|
|
static bool icmp6hdr_ok(struct sk_buff *skb)
|
|
{
|
|
return pskb_may_pull(skb, skb_transport_offset(skb) +
|
|
sizeof(struct icmp6hdr));
|
|
}
|
|
|
|
#define TCP_FLAGS_OFFSET 13
|
|
#define TCP_FLAG_MASK 0x3f
|
|
|
|
void flow_used(struct sw_flow *flow, struct sk_buff *skb)
|
|
{
|
|
u8 tcp_flags = 0;
|
|
|
|
if (flow->key.dl_type == htons(ETH_P_IP) &&
|
|
flow->key.nw_proto == IPPROTO_TCP) {
|
|
u8 *tcp = (u8 *)tcp_hdr(skb);
|
|
tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
|
|
}
|
|
|
|
spin_lock_bh(&flow->lock);
|
|
flow->used = jiffies;
|
|
flow->packet_count++;
|
|
flow->byte_count += skb->len;
|
|
flow->tcp_flags |= tcp_flags;
|
|
spin_unlock_bh(&flow->lock);
|
|
}
|
|
|
|
struct sw_flow_actions *flow_actions_alloc(const struct nlattr *actions)
|
|
{
|
|
int actions_len = nla_len(actions);
|
|
struct sw_flow_actions *sfa;
|
|
|
|
/* At least DP_MAX_PORTS actions are required to be able to flood a
|
|
* packet to every port. Factor of 2 allows for setting VLAN tags,
|
|
* etc. */
|
|
if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
|
|
if (!sfa)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sfa->actions_len = actions_len;
|
|
memcpy(sfa->actions, nla_data(actions), actions_len);
|
|
return sfa;
|
|
}
|
|
|
|
struct sw_flow *flow_alloc(void)
|
|
{
|
|
struct sw_flow *flow;
|
|
|
|
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
|
|
if (!flow)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
spin_lock_init(&flow->lock);
|
|
atomic_set(&flow->refcnt, 1);
|
|
flow->sf_acts = NULL;
|
|
flow->dead = false;
|
|
|
|
return flow;
|
|
}
|
|
|
|
void flow_free_tbl(struct tbl_node *node)
|
|
{
|
|
struct sw_flow *flow = flow_cast(node);
|
|
|
|
flow->dead = true;
|
|
flow_put(flow);
|
|
}
|
|
|
|
/* RCU callback used by flow_deferred_free. */
|
|
static void rcu_free_flow_callback(struct rcu_head *rcu)
|
|
{
|
|
struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
|
|
|
|
flow->dead = true;
|
|
flow_put(flow);
|
|
}
|
|
|
|
/* Schedules 'flow' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void flow_deferred_free(struct sw_flow *flow)
|
|
{
|
|
call_rcu(&flow->rcu, rcu_free_flow_callback);
|
|
}
|
|
|
|
void flow_hold(struct sw_flow *flow)
|
|
{
|
|
atomic_inc(&flow->refcnt);
|
|
}
|
|
|
|
void flow_put(struct sw_flow *flow)
|
|
{
|
|
if (unlikely(!flow))
|
|
return;
|
|
|
|
if (atomic_dec_and_test(&flow->refcnt)) {
|
|
kfree((struct sf_flow_acts __force *)flow->sf_acts);
|
|
kmem_cache_free(flow_cache, flow);
|
|
}
|
|
}
|
|
|
|
/* RCU callback used by flow_deferred_free_acts. */
|
|
static void rcu_free_acts_callback(struct rcu_head *rcu)
|
|
{
|
|
struct sw_flow_actions *sf_acts = container_of(rcu,
|
|
struct sw_flow_actions, rcu);
|
|
kfree(sf_acts);
|
|
}
|
|
|
|
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
|
|
{
|
|
call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
|
|
}
|
|
|
|
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
struct qtag_prefix {
|
|
__be16 eth_type; /* ETH_P_8021Q */
|
|
__be16 tci;
|
|
};
|
|
struct qtag_prefix *qp;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
|
|
sizeof(__be16))))
|
|
return -ENOMEM;
|
|
|
|
qp = (struct qtag_prefix *) skb->data;
|
|
key->dl_tci = qp->tci | htons(VLAN_TAG_PRESENT);
|
|
__skb_pull(skb, sizeof(struct qtag_prefix));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __be16 parse_ethertype(struct sk_buff *skb)
|
|
{
|
|
struct llc_snap_hdr {
|
|
u8 dsap; /* Always 0xAA */
|
|
u8 ssap; /* Always 0xAA */
|
|
u8 ctrl;
|
|
u8 oui[3];
|
|
__be16 ethertype;
|
|
};
|
|
struct llc_snap_hdr *llc;
|
|
__be16 proto;
|
|
|
|
proto = *(__be16 *) skb->data;
|
|
__skb_pull(skb, sizeof(__be16));
|
|
|
|
if (ntohs(proto) >= 1536)
|
|
return proto;
|
|
|
|
if (skb->len < sizeof(struct llc_snap_hdr))
|
|
return htons(ETH_P_802_2);
|
|
|
|
if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
|
|
return htons(0);
|
|
|
|
llc = (struct llc_snap_hdr *) skb->data;
|
|
if (llc->dsap != LLC_SAP_SNAP ||
|
|
llc->ssap != LLC_SAP_SNAP ||
|
|
(llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
|
|
return htons(ETH_P_802_2);
|
|
|
|
__skb_pull(skb, sizeof(struct llc_snap_hdr));
|
|
return llc->ethertype;
|
|
}
|
|
|
|
static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
|
|
int nh_len)
|
|
{
|
|
struct icmp6hdr *icmp = icmp6_hdr(skb);
|
|
|
|
/* The ICMPv6 type and code fields use the 16-bit transport port
|
|
* fields, so we need to store them in 16-bit network byte order.
|
|
*/
|
|
key->tp_src = htons(icmp->icmp6_type);
|
|
key->tp_dst = htons(icmp->icmp6_code);
|
|
|
|
if (icmp->icmp6_code == 0 &&
|
|
(icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
|
|
int icmp_len = skb->len - skb_transport_offset(skb);
|
|
struct nd_msg *nd;
|
|
int offset;
|
|
|
|
/* In order to process neighbor discovery options, we need the
|
|
* entire packet.
|
|
*/
|
|
if (unlikely(icmp_len < sizeof(*nd)))
|
|
return 0;
|
|
if (unlikely(skb_linearize(skb)))
|
|
return -ENOMEM;
|
|
|
|
nd = (struct nd_msg *)skb_transport_header(skb);
|
|
ipv6_addr_copy(&key->nd_target, &nd->target);
|
|
|
|
icmp_len -= sizeof(*nd);
|
|
offset = 0;
|
|
while (icmp_len >= 8) {
|
|
struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset);
|
|
int opt_len = nd_opt->nd_opt_len * 8;
|
|
|
|
if (unlikely(!opt_len || opt_len > icmp_len))
|
|
goto invalid;
|
|
|
|
/* Store the link layer address if the appropriate
|
|
* option is provided. It is considered an error if
|
|
* the same link layer option is specified twice.
|
|
*/
|
|
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
|
|
&& opt_len == 8) {
|
|
if (unlikely(!is_zero_ether_addr(key->arp_sha)))
|
|
goto invalid;
|
|
memcpy(key->arp_sha,
|
|
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
|
|
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
|
|
&& opt_len == 8) {
|
|
if (unlikely(!is_zero_ether_addr(key->arp_tha)))
|
|
goto invalid;
|
|
memcpy(key->arp_tha,
|
|
&nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
|
|
}
|
|
|
|
icmp_len -= opt_len;
|
|
offset += opt_len;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
invalid:
|
|
memset(&key->nd_target, 0, sizeof(key->nd_target));
|
|
memset(key->arp_sha, 0, sizeof(key->arp_sha));
|
|
memset(key->arp_tha, 0, sizeof(key->arp_tha));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* flow_extract - extracts a flow key from an Ethernet frame.
|
|
* @skb: sk_buff that contains the frame, with skb->data pointing to the
|
|
* Ethernet header
|
|
* @in_port: port number on which @skb was received.
|
|
* @key: output flow key
|
|
* @is_frag: set to 1 if @skb contains an IPv4 fragment, or to 0 if @skb does
|
|
* not contain an IPv4 packet or if it is not a fragment.
|
|
*
|
|
* The caller must ensure that skb->len >= ETH_HLEN.
|
|
*
|
|
* Returns 0 if successful, otherwise a negative errno value.
|
|
*
|
|
* Initializes @skb header pointers as follows:
|
|
*
|
|
* - skb->mac_header: the Ethernet header.
|
|
*
|
|
* - skb->network_header: just past the Ethernet header, or just past the
|
|
* VLAN header, to the first byte of the Ethernet payload.
|
|
*
|
|
* - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
|
|
* on output, then just past the IP header, if one is present and
|
|
* of a correct length, otherwise the same as skb->network_header.
|
|
* For other key->dl_type values it is left untouched.
|
|
*/
|
|
int flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
|
|
bool *is_frag)
|
|
{
|
|
struct ethhdr *eth;
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
key->tun_id = OVS_CB(skb)->tun_id;
|
|
key->in_port = in_port;
|
|
*is_frag = false;
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
/* Link layer. We are guaranteed to have at least the 14 byte Ethernet
|
|
* header in the linear data area.
|
|
*/
|
|
eth = eth_hdr(skb);
|
|
memcpy(key->dl_src, eth->h_source, ETH_ALEN);
|
|
memcpy(key->dl_dst, eth->h_dest, ETH_ALEN);
|
|
__skb_pull(skb, 2 * ETH_ALEN);
|
|
|
|
if (vlan_tx_tag_present(skb))
|
|
key->dl_tci = htons(vlan_get_tci(skb));
|
|
else if (eth->h_proto == htons(ETH_P_8021Q))
|
|
if (unlikely(parse_vlan(skb, key)))
|
|
return -ENOMEM;
|
|
|
|
key->dl_type = parse_ethertype(skb);
|
|
if (unlikely(key->dl_type == htons(0)))
|
|
return -ENOMEM;
|
|
|
|
skb_reset_network_header(skb);
|
|
__skb_push(skb, skb->data - skb_mac_header(skb));
|
|
|
|
/* Network layer. */
|
|
if (key->dl_type == htons(ETH_P_IP)) {
|
|
struct iphdr *nh;
|
|
int error;
|
|
|
|
error = check_iphdr(skb);
|
|
if (unlikely(error)) {
|
|
if (error == -EINVAL) {
|
|
skb->transport_header = skb->network_header;
|
|
return 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
nh = ip_hdr(skb);
|
|
key->ipv4_src = nh->saddr;
|
|
key->ipv4_dst = nh->daddr;
|
|
key->nw_tos = nh->tos & ~INET_ECN_MASK;
|
|
key->nw_proto = nh->protocol;
|
|
|
|
/* Transport layer. */
|
|
if (!(nh->frag_off & htons(IP_MF | IP_OFFSET)) &&
|
|
!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP)) {
|
|
if (key->nw_proto == IPPROTO_TCP) {
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->tp_src = tcp->source;
|
|
key->tp_dst = tcp->dest;
|
|
}
|
|
} else if (key->nw_proto == IPPROTO_UDP) {
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->tp_src = udp->source;
|
|
key->tp_dst = udp->dest;
|
|
}
|
|
} else if (key->nw_proto == IPPROTO_ICMP) {
|
|
if (icmphdr_ok(skb)) {
|
|
struct icmphdr *icmp = icmp_hdr(skb);
|
|
/* The ICMP type and code fields use the 16-bit
|
|
* transport port fields, so we need to store them
|
|
* in 16-bit network byte order. */
|
|
key->tp_src = htons(icmp->type);
|
|
key->tp_dst = htons(icmp->code);
|
|
}
|
|
}
|
|
} else
|
|
*is_frag = true;
|
|
|
|
} else if (key->dl_type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
|
|
struct arp_eth_header *arp;
|
|
|
|
arp = (struct arp_eth_header *)skb_network_header(skb);
|
|
|
|
if (arp->ar_hrd == htons(ARPHRD_ETHER)
|
|
&& arp->ar_pro == htons(ETH_P_IP)
|
|
&& arp->ar_hln == ETH_ALEN
|
|
&& arp->ar_pln == 4) {
|
|
|
|
/* We only match on the lower 8 bits of the opcode. */
|
|
if (ntohs(arp->ar_op) <= 0xff)
|
|
key->nw_proto = ntohs(arp->ar_op);
|
|
|
|
if (key->nw_proto == ARPOP_REQUEST
|
|
|| key->nw_proto == ARPOP_REPLY) {
|
|
memcpy(&key->ipv4_src, arp->ar_sip, sizeof(key->ipv4_src));
|
|
memcpy(&key->ipv4_dst, arp->ar_tip, sizeof(key->ipv4_dst));
|
|
memcpy(key->arp_sha, arp->ar_sha, ETH_ALEN);
|
|
memcpy(key->arp_tha, arp->ar_tha, ETH_ALEN);
|
|
}
|
|
}
|
|
} else if (key->dl_type == htons(ETH_P_IPV6)) {
|
|
int nh_len; /* IPv6 Header + Extensions */
|
|
|
|
nh_len = parse_ipv6hdr(skb, key);
|
|
if (unlikely(nh_len < 0)) {
|
|
if (nh_len == -EINVAL) {
|
|
skb->transport_header = skb->network_header;
|
|
return 0;
|
|
}
|
|
return nh_len;
|
|
}
|
|
|
|
/* Transport layer. */
|
|
if (key->nw_proto == NEXTHDR_TCP) {
|
|
if (tcphdr_ok(skb)) {
|
|
struct tcphdr *tcp = tcp_hdr(skb);
|
|
key->tp_src = tcp->source;
|
|
key->tp_dst = tcp->dest;
|
|
}
|
|
} else if (key->nw_proto == NEXTHDR_UDP) {
|
|
if (udphdr_ok(skb)) {
|
|
struct udphdr *udp = udp_hdr(skb);
|
|
key->tp_src = udp->source;
|
|
key->tp_dst = udp->dest;
|
|
}
|
|
} else if (key->nw_proto == NEXTHDR_ICMP) {
|
|
if (icmp6hdr_ok(skb)) {
|
|
int error = parse_icmpv6(skb, key, nh_len);
|
|
if (error < 0)
|
|
return error;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u32 flow_hash(const struct sw_flow_key *key)
|
|
{
|
|
return jhash2((u32*)key, sizeof(*key) / sizeof(u32), hash_seed);
|
|
}
|
|
|
|
int flow_cmp(const struct tbl_node *node, void *key2_)
|
|
{
|
|
const struct sw_flow_key *key1 = &flow_cast(node)->key;
|
|
const struct sw_flow_key *key2 = key2_;
|
|
|
|
return !memcmp(key1, key2, sizeof(struct sw_flow_key));
|
|
}
|
|
|
|
/**
|
|
* flow_from_nlattrs - parses Netlink attributes into a flow key.
|
|
* @swkey: receives the extracted flow key.
|
|
* @key: Netlink attribute holding nested %ODP_KEY_ATTR_* Netlink attribute
|
|
* sequence.
|
|
*
|
|
* This state machine accepts the following forms, with [] for optional
|
|
* elements and | for alternatives:
|
|
*
|
|
* [tun_id] in_port ethernet [8021q] [ethertype \
|
|
* [IPv4 [TCP|UDP|ICMP] | IPv6 [TCP|UDP|ICMPv6 [ND]] | ARP]]
|
|
*/
|
|
int flow_from_nlattrs(struct sw_flow_key *swkey, const struct nlattr *attr)
|
|
{
|
|
const struct nlattr *nla;
|
|
u16 prev_type;
|
|
int rem;
|
|
|
|
memset(swkey, 0, sizeof(*swkey));
|
|
swkey->dl_type = htons(ETH_P_802_2);
|
|
|
|
prev_type = ODP_KEY_ATTR_UNSPEC;
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
static const u32 key_lens[ODP_KEY_ATTR_MAX + 1] = {
|
|
[ODP_KEY_ATTR_TUN_ID] = 8,
|
|
[ODP_KEY_ATTR_IN_PORT] = 4,
|
|
[ODP_KEY_ATTR_ETHERNET] = sizeof(struct odp_key_ethernet),
|
|
[ODP_KEY_ATTR_8021Q] = sizeof(struct odp_key_8021q),
|
|
[ODP_KEY_ATTR_ETHERTYPE] = 2,
|
|
[ODP_KEY_ATTR_IPV4] = sizeof(struct odp_key_ipv4),
|
|
[ODP_KEY_ATTR_IPV6] = sizeof(struct odp_key_ipv6),
|
|
[ODP_KEY_ATTR_TCP] = sizeof(struct odp_key_tcp),
|
|
[ODP_KEY_ATTR_UDP] = sizeof(struct odp_key_udp),
|
|
[ODP_KEY_ATTR_ICMP] = sizeof(struct odp_key_icmp),
|
|
[ODP_KEY_ATTR_ICMPV6] = sizeof(struct odp_key_icmpv6),
|
|
[ODP_KEY_ATTR_ARP] = sizeof(struct odp_key_arp),
|
|
[ODP_KEY_ATTR_ND] = sizeof(struct odp_key_nd),
|
|
};
|
|
|
|
const struct odp_key_ethernet *eth_key;
|
|
const struct odp_key_8021q *q_key;
|
|
const struct odp_key_ipv4 *ipv4_key;
|
|
const struct odp_key_ipv6 *ipv6_key;
|
|
const struct odp_key_tcp *tcp_key;
|
|
const struct odp_key_udp *udp_key;
|
|
const struct odp_key_icmp *icmp_key;
|
|
const struct odp_key_icmpv6 *icmpv6_key;
|
|
const struct odp_key_arp *arp_key;
|
|
const struct odp_key_nd *nd_key;
|
|
|
|
int type = nla_type(nla);
|
|
|
|
if (type > ODP_KEY_ATTR_MAX || nla_len(nla) != key_lens[type])
|
|
return -EINVAL;
|
|
|
|
#define TRANSITION(PREV_TYPE, TYPE) (((PREV_TYPE) << 16) | (TYPE))
|
|
switch (TRANSITION(prev_type, type)) {
|
|
case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_TUN_ID):
|
|
swkey->tun_id = nla_get_be64(nla);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_UNSPEC, ODP_KEY_ATTR_IN_PORT):
|
|
case TRANSITION(ODP_KEY_ATTR_TUN_ID, ODP_KEY_ATTR_IN_PORT):
|
|
if (nla_get_u32(nla) >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
swkey->in_port = nla_get_u32(nla);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IN_PORT, ODP_KEY_ATTR_ETHERNET):
|
|
eth_key = nla_data(nla);
|
|
memcpy(swkey->dl_src, eth_key->eth_src, ETH_ALEN);
|
|
memcpy(swkey->dl_dst, eth_key->eth_dst, ETH_ALEN);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_8021Q):
|
|
q_key = nla_data(nla);
|
|
/* Only standard 0x8100 VLANs currently supported. */
|
|
if (q_key->q_tpid != htons(ETH_P_8021Q))
|
|
return -EINVAL;
|
|
if (q_key->q_tci & htons(VLAN_TAG_PRESENT))
|
|
return -EINVAL;
|
|
swkey->dl_tci = q_key->q_tci | htons(VLAN_TAG_PRESENT);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_8021Q, ODP_KEY_ATTR_ETHERTYPE):
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERNET, ODP_KEY_ATTR_ETHERTYPE):
|
|
swkey->dl_type = nla_get_be16(nla);
|
|
if (ntohs(swkey->dl_type) < 1536)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV4):
|
|
if (swkey->dl_type != htons(ETH_P_IP))
|
|
return -EINVAL;
|
|
ipv4_key = nla_data(nla);
|
|
swkey->ipv4_src = ipv4_key->ipv4_src;
|
|
swkey->ipv4_dst = ipv4_key->ipv4_dst;
|
|
swkey->nw_proto = ipv4_key->ipv4_proto;
|
|
swkey->nw_tos = ipv4_key->ipv4_tos;
|
|
if (swkey->nw_tos & INET_ECN_MASK)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_IPV6):
|
|
if (swkey->dl_type != htons(ETH_P_IPV6))
|
|
return -EINVAL;
|
|
ipv6_key = nla_data(nla);
|
|
memcpy(&swkey->ipv6_src, ipv6_key->ipv6_src,
|
|
sizeof(swkey->ipv6_src));
|
|
memcpy(&swkey->ipv6_dst, ipv6_key->ipv6_dst,
|
|
sizeof(swkey->ipv6_dst));
|
|
swkey->nw_proto = ipv6_key->ipv6_proto;
|
|
swkey->nw_tos = ipv6_key->ipv6_tos;
|
|
if (swkey->nw_tos & INET_ECN_MASK)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_TCP):
|
|
case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_TCP):
|
|
if (swkey->nw_proto != IPPROTO_TCP)
|
|
return -EINVAL;
|
|
tcp_key = nla_data(nla);
|
|
swkey->tp_src = tcp_key->tcp_src;
|
|
swkey->tp_dst = tcp_key->tcp_dst;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_UDP):
|
|
case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_UDP):
|
|
if (swkey->nw_proto != IPPROTO_UDP)
|
|
return -EINVAL;
|
|
udp_key = nla_data(nla);
|
|
swkey->tp_src = udp_key->udp_src;
|
|
swkey->tp_dst = udp_key->udp_dst;
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV4, ODP_KEY_ATTR_ICMP):
|
|
if (swkey->nw_proto != IPPROTO_ICMP)
|
|
return -EINVAL;
|
|
icmp_key = nla_data(nla);
|
|
swkey->tp_src = htons(icmp_key->icmp_type);
|
|
swkey->tp_dst = htons(icmp_key->icmp_code);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_IPV6, ODP_KEY_ATTR_ICMPV6):
|
|
if (swkey->nw_proto != IPPROTO_ICMPV6)
|
|
return -EINVAL;
|
|
icmpv6_key = nla_data(nla);
|
|
swkey->tp_src = htons(icmpv6_key->icmpv6_type);
|
|
swkey->tp_dst = htons(icmpv6_key->icmpv6_code);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ETHERTYPE, ODP_KEY_ATTR_ARP):
|
|
if (swkey->dl_type != htons(ETH_P_ARP))
|
|
return -EINVAL;
|
|
arp_key = nla_data(nla);
|
|
swkey->ipv4_src = arp_key->arp_sip;
|
|
swkey->ipv4_dst = arp_key->arp_tip;
|
|
if (arp_key->arp_op & htons(0xff00))
|
|
return -EINVAL;
|
|
swkey->nw_proto = ntohs(arp_key->arp_op);
|
|
memcpy(swkey->arp_sha, arp_key->arp_sha, ETH_ALEN);
|
|
memcpy(swkey->arp_tha, arp_key->arp_tha, ETH_ALEN);
|
|
break;
|
|
|
|
case TRANSITION(ODP_KEY_ATTR_ICMPV6, ODP_KEY_ATTR_ND):
|
|
if (swkey->tp_src != htons(NDISC_NEIGHBOUR_SOLICITATION)
|
|
&& swkey->tp_src != htons(NDISC_NEIGHBOUR_ADVERTISEMENT))
|
|
return -EINVAL;
|
|
nd_key = nla_data(nla);
|
|
memcpy(&swkey->nd_target, nd_key->nd_target,
|
|
sizeof(swkey->nd_target));
|
|
memcpy(swkey->arp_sha, nd_key->nd_sll, ETH_ALEN);
|
|
memcpy(swkey->arp_tha, nd_key->nd_tll, ETH_ALEN);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
prev_type = type;
|
|
}
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
switch (prev_type) {
|
|
case ODP_KEY_ATTR_UNSPEC:
|
|
return -EINVAL;
|
|
|
|
case ODP_KEY_ATTR_TUN_ID:
|
|
case ODP_KEY_ATTR_IN_PORT:
|
|
return -EINVAL;
|
|
|
|
case ODP_KEY_ATTR_ETHERNET:
|
|
case ODP_KEY_ATTR_8021Q:
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_ETHERTYPE:
|
|
if (swkey->dl_type == htons(ETH_P_IP) ||
|
|
swkey->dl_type == htons(ETH_P_ARP))
|
|
return -EINVAL;
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_IPV4:
|
|
if (swkey->nw_proto == IPPROTO_TCP ||
|
|
swkey->nw_proto == IPPROTO_UDP ||
|
|
swkey->nw_proto == IPPROTO_ICMP)
|
|
return -EINVAL;
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_IPV6:
|
|
if (swkey->nw_proto == IPPROTO_TCP ||
|
|
swkey->nw_proto == IPPROTO_UDP ||
|
|
swkey->nw_proto == IPPROTO_ICMPV6)
|
|
return -EINVAL;
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_ICMPV6:
|
|
if (swkey->tp_src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
|
|
swkey->tp_src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT))
|
|
return -EINVAL;
|
|
return 0;
|
|
|
|
case ODP_KEY_ATTR_TCP:
|
|
case ODP_KEY_ATTR_UDP:
|
|
case ODP_KEY_ATTR_ICMP:
|
|
case ODP_KEY_ATTR_ARP:
|
|
case ODP_KEY_ATTR_ND:
|
|
return 0;
|
|
}
|
|
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
|
|
{
|
|
struct odp_key_ethernet *eth_key;
|
|
struct nlattr *nla;
|
|
|
|
/* This is an imperfect sanity-check that FLOW_BUFSIZE doesn't need
|
|
* to be updated, but will at least raise awareness when new ODP key
|
|
* types are added. */
|
|
BUILD_BUG_ON(__ODP_KEY_ATTR_MAX != 14);
|
|
|
|
if (swkey->tun_id != cpu_to_be64(0))
|
|
NLA_PUT_BE64(skb, ODP_KEY_ATTR_TUN_ID, swkey->tun_id);
|
|
|
|
NLA_PUT_U32(skb, ODP_KEY_ATTR_IN_PORT, swkey->in_port);
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ETHERNET, sizeof(*eth_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
eth_key = nla_data(nla);
|
|
memcpy(eth_key->eth_src, swkey->dl_src, ETH_ALEN);
|
|
memcpy(eth_key->eth_dst, swkey->dl_dst, ETH_ALEN);
|
|
|
|
if (swkey->dl_tci != htons(0)) {
|
|
struct odp_key_8021q q_key;
|
|
|
|
q_key.q_tpid = htons(ETH_P_8021Q);
|
|
q_key.q_tci = swkey->dl_tci & ~htons(VLAN_TAG_PRESENT);
|
|
NLA_PUT(skb, ODP_KEY_ATTR_8021Q, sizeof(q_key), &q_key);
|
|
}
|
|
|
|
if (swkey->dl_type == htons(ETH_P_802_2))
|
|
return 0;
|
|
|
|
NLA_PUT_BE16(skb, ODP_KEY_ATTR_ETHERTYPE, swkey->dl_type);
|
|
|
|
if (swkey->dl_type == htons(ETH_P_IP)) {
|
|
struct odp_key_ipv4 *ipv4_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_IPV4, sizeof(*ipv4_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv4_key = nla_data(nla);
|
|
memset(ipv4_key, 0, sizeof(struct odp_key_ipv4));
|
|
ipv4_key->ipv4_src = swkey->ipv4_src;
|
|
ipv4_key->ipv4_dst = swkey->ipv4_dst;
|
|
ipv4_key->ipv4_proto = swkey->nw_proto;
|
|
ipv4_key->ipv4_tos = swkey->nw_tos;
|
|
} else if (swkey->dl_type == htons(ETH_P_IPV6)) {
|
|
struct odp_key_ipv6 *ipv6_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_IPV6, sizeof(*ipv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv6_key = nla_data(nla);
|
|
memset(ipv6_key, 0, sizeof(struct odp_key_ipv6));
|
|
memcpy(ipv6_key->ipv6_src, &swkey->ipv6_src,
|
|
sizeof(ipv6_key->ipv6_src));
|
|
memcpy(ipv6_key->ipv6_dst, &swkey->ipv6_dst,
|
|
sizeof(ipv6_key->ipv6_dst));
|
|
ipv6_key->ipv6_proto = swkey->nw_proto;
|
|
ipv6_key->ipv6_tos = swkey->nw_tos;
|
|
} else if (swkey->dl_type == htons(ETH_P_ARP)) {
|
|
struct odp_key_arp *arp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ARP, sizeof(*arp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
arp_key = nla_data(nla);
|
|
memset(arp_key, 0, sizeof(struct odp_key_arp));
|
|
arp_key->arp_sip = swkey->ipv4_src;
|
|
arp_key->arp_tip = swkey->ipv4_dst;
|
|
arp_key->arp_op = htons(swkey->nw_proto);
|
|
memcpy(arp_key->arp_sha, swkey->arp_sha, ETH_ALEN);
|
|
memcpy(arp_key->arp_tha, swkey->arp_tha, ETH_ALEN);
|
|
}
|
|
|
|
if (swkey->dl_type == htons(ETH_P_IP) ||
|
|
swkey->dl_type == htons(ETH_P_IPV6)) {
|
|
|
|
if (swkey->nw_proto == IPPROTO_TCP) {
|
|
struct odp_key_tcp *tcp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_TCP, sizeof(*tcp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
tcp_key = nla_data(nla);
|
|
tcp_key->tcp_src = swkey->tp_src;
|
|
tcp_key->tcp_dst = swkey->tp_dst;
|
|
} else if (swkey->nw_proto == IPPROTO_UDP) {
|
|
struct odp_key_udp *udp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_UDP, sizeof(*udp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
udp_key = nla_data(nla);
|
|
udp_key->udp_src = swkey->tp_src;
|
|
udp_key->udp_dst = swkey->tp_dst;
|
|
} else if (swkey->dl_type == htons(ETH_P_IP) &&
|
|
swkey->nw_proto == IPPROTO_ICMP) {
|
|
struct odp_key_icmp *icmp_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ICMP, sizeof(*icmp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmp_key = nla_data(nla);
|
|
icmp_key->icmp_type = ntohs(swkey->tp_src);
|
|
icmp_key->icmp_code = ntohs(swkey->tp_dst);
|
|
} else if (swkey->dl_type == htons(ETH_P_IPV6) &&
|
|
swkey->nw_proto == IPPROTO_ICMPV6) {
|
|
struct odp_key_icmpv6 *icmpv6_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ICMPV6,
|
|
sizeof(*icmpv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmpv6_key = nla_data(nla);
|
|
icmpv6_key->icmpv6_type = ntohs(swkey->tp_src);
|
|
icmpv6_key->icmpv6_code = ntohs(swkey->tp_dst);
|
|
|
|
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
|
|
struct odp_key_nd *nd_key;
|
|
|
|
nla = nla_reserve(skb, ODP_KEY_ATTR_ND, sizeof(*nd_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
nd_key = nla_data(nla);
|
|
memcpy(nd_key->nd_target, &swkey->nd_target,
|
|
sizeof(nd_key->nd_target));
|
|
memcpy(nd_key->nd_sll, swkey->arp_sha, ETH_ALEN);
|
|
memcpy(nd_key->nd_tll, swkey->arp_tha, ETH_ALEN);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
/* Initializes the flow module.
|
|
* Returns zero if successful or a negative error code. */
|
|
int flow_init(void)
|
|
{
|
|
flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
|
|
0, NULL);
|
|
if (flow_cache == NULL)
|
|
return -ENOMEM;
|
|
|
|
get_random_bytes(&hash_seed, sizeof(hash_seed));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Uninitializes the flow module. */
|
|
void flow_exit(void)
|
|
{
|
|
kmem_cache_destroy(flow_cache);
|
|
}
|