2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/tests/test-hash.c

323 lines
11 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2009, 2012, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#undef NDEBUG
#include "hash.h"
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "jhash.h"
#include "ovstest.h"
static void
set_bit(uint32_t array[3], int bit)
{
assert(bit >= 0 && bit <= 96);
memset(array, 0, sizeof(uint32_t) * 3);
if (bit < 96) {
array[bit / 32] = UINT32_C(1) << (bit % 32);
}
}
/* When bit == n_bits, the function just 0 sets the 'values'. */
static void
set_bit128(ovs_u128 *values, int bit, int n_bits)
{
assert(bit >= 0 && bit <= 2048);
memset(values, 0, n_bits/8);
if (bit < n_bits) {
int b = bit % 128;
if (b < 64) {
values[bit / 128].u64.lo = UINT64_C(1) << (b % 64);
} else {
values[bit / 128].u64.hi = UINT64_C(1) << (b % 64);
}
}
}
static uint64_t
get_range128(ovs_u128 *value, int ofs, uint64_t mask)
{
if (ofs == 0) {
return value->u64.lo & mask;
}
return ((ofs < 64 ? (value->u64.lo >> ofs) : 0) & mask)
| ((ofs <= 64 ? (value->u64.hi << (64 - ofs)) : (value->u64.hi >> (ofs - 64)) & mask));
}
static uint32_t
hash_words_cb(uint32_t input)
{
return hash_words(&input, 1, 0);
}
static uint32_t
jhash_words_cb(uint32_t input)
{
return jhash_words(&input, 1, 0);
}
static uint32_t
hash_int_cb(uint32_t input)
{
return hash_int(input, 0);
}
static void
check_word_hash(uint32_t (*hash)(uint32_t), const char *name,
int min_unique)
{
int i, j;
for (i = 0; i <= 32; i++) {
uint32_t in1 = i < 32 ? UINT32_C(1) << i : 0;
for (j = i + 1; j <= 32; j++) {
uint32_t in2 = j < 32 ? UINT32_C(1) << j : 0;
uint32_t out1 = hash(in1);
uint32_t out2 = hash(in2);
const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1;
int ofs;
for (ofs = 0; ofs < 32 - min_unique; ofs++) {
uint32_t bits1 = (out1 >> ofs) & unique_mask;
uint32_t bits2 = (out2 >> ofs) & unique_mask;
if (bits1 == bits2) {
printf("Partial collision for '%s':\n", name);
printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in1, out1);
printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in2, out2);
printf("%d bits of output starting at bit %d "
"are both 0x%"PRIx32"\n", min_unique, ofs, bits1);
}
}
}
}
}
static void
check_3word_hash(uint32_t (*hash)(const uint32_t[], size_t, uint32_t),
const char *name)
{
int i, j;
for (i = 0; i <= 96; i++) {
for (j = i + 1; j <= 96; j++) {
uint32_t in0[3], in1[3], in2[3];
uint32_t out0,out1, out2;
const int min_unique = 12;
const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1;
set_bit(in0, i);
set_bit(in1, i);
set_bit(in2, j);
out0 = hash(in0, 3, 0);
out1 = hash(in1, 3, 0);
out2 = hash(in2, 3, 0);
if (out0 != out1) {
printf("%s hash not the same for non-64 aligned data "
"%08"PRIx32" != %08"PRIx32"\n", name, out0, out1);
}
if ((out1 & unique_mask) == (out2 & unique_mask)) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %d) == %08"PRIx32"\n", i, out1);
printf("hash(1 << %d) == %08"PRIx32"\n", j, out2);
printf("The low-order %d bits of output are both "
"0x%"PRIx32"\n", min_unique, out1 & unique_mask);
}
}
}
}
static void
check_hash_bytes128(void (*hash)(const void *, size_t, uint32_t, ovs_u128 *),
const char *name, const int min_unique)
{
const uint64_t unique_mask = (UINT64_C(1) << min_unique) - 1;
const int n_bits = sizeof(ovs_u128) * 8;
int i, j;
for (i = 0; i <= n_bits; i++) {
OVS_PACKED(struct offset_ovs_u128 {
uint32_t a;
ovs_u128 b;
}) in0;
ovs_u128 in1;
ovs_u128 out0, out1;
set_bit128(&in1, i, n_bits);
in0.b = in1;
hash(&in0.b, sizeof(ovs_u128), 0, &out0);
hash(&in1, sizeof(ovs_u128), 0, &out1);
if (!ovs_u128_equals(out0, out1)) {
printf("%s hash not the same for non-64 aligned data "
"%016"PRIx64"%016"PRIx64" != %016"PRIx64"%016"PRIx64"\n",
name, out0.u64.lo, out0.u64.hi, out1.u64.lo, out1.u64.hi);
}
for (j = i + 1; j <= n_bits; j++) {
ovs_u128 in2;
ovs_u128 out2;
int ofs;
set_bit128(&in2, j, n_bits);
hash(&in2, sizeof(ovs_u128), 0, &out2);
for (ofs = 0; ofs < 128 - min_unique; ofs++) {
uint64_t bits1 = get_range128(&out1, ofs, unique_mask);
uint64_t bits2 = get_range128(&out2, ofs, unique_mask);
if (bits1 == bits2) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %d) == %016"PRIx64"%016"PRIx64"\n",
i, out1.u64.hi, out1.u64.lo);
printf("hash(1 << %d) == %016"PRIx64"%016"PRIx64"\n",
j, out2.u64.hi, out2.u64.lo);
printf("%d bits of output starting at bit %d "
"are both 0x%016"PRIx64"\n", min_unique, ofs, bits1);
}
}
}
}
}
static void
check_256byte_hash(void (*hash)(const void *, size_t, uint32_t, ovs_u128 *),
const char *name, const int min_unique)
{
const uint64_t unique_mask = (UINT64_C(1) << min_unique) - 1;
const int n_bits = sizeof(ovs_u128) * 8 * 16;
int i, j;
for (i = 0; i <= n_bits; i++) {
OVS_PACKED(struct offset_ovs_u128 {
uint32_t a;
ovs_u128 b[16];
}) in0;
ovs_u128 in1[16];
ovs_u128 out0, out1;
set_bit128(in1, i, n_bits);
for (j = 0; j < 16; j++) {
in0.b[j] = in1[j];
}
hash(&in0.b, sizeof(ovs_u128) * 16, 0, &out0);
hash(in1, sizeof(ovs_u128) * 16, 0, &out1);
if (!ovs_u128_equals(out0, out1)) {
printf("%s hash not the same for non-64 aligned data "
"%016"PRIx64"%016"PRIx64" != %016"PRIx64"%016"PRIx64"\n",
name, out0.u64.lo, out0.u64.hi, out1.u64.lo, out1.u64.hi);
}
for (j = i + 1; j <= n_bits; j++) {
ovs_u128 in2[16];
ovs_u128 out2;
set_bit128(in2, j, n_bits);
hash(in2, sizeof(ovs_u128) * 16, 0, &out2);
if ((out1.u64.lo & unique_mask) == (out2.u64.lo & unique_mask)) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %4d) == %016"PRIx64"%016"PRIx64"\n", i,
out1.u64.hi, out1.u64.lo);
printf("hash(1 << %4d) == %016"PRIx64"%016"PRIx64"\n", j,
out2.u64.hi, out2.u64.lo);
printf("The low-order %d bits of output are both "
"0x%"PRIx64"\n", min_unique, out1.u64.lo & unique_mask);
}
}
}
}
static void
test_hash_main(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
/*
* The following tests check that all hashes computed with hash_function
* with one 1-bit (or no 1-bits) set within a X-bit word have different
* values in all N-bit consecutive comparisons.
*
* test_function(hash_function, test_name, N)
*
* Given a random distribution, the probability of at least one collision
* in any set of N bits is approximately
*
* 1 - (prob of no collisions)
* **(combination of all possible comparisons)
* == 1 - ((2**N - 1)/2**N)**C(X+1,2)
* == p
*
* There are (X-N) ways to pick N consecutive bits in a X-bit word, so if we
* assumed independence then the chance of having no collisions in any of
* those X-bit runs would be (1-p)**(X-N) == q. If this q is very small
* and we can also find a relatively small 'magic number' N such that there
* is no collision in any comparison, then it means we have a pretty good
* hash function.
*
* The values of each parameters mentioned above for the tested hash
* functions are summarized as follow:
*
* hash_function X N p q
* ------------- --- --- ------- -------
*
* hash_words_cb 32 11 0.22 0.0044
* jhash_words_cb 32 11 0.22 0.0044
* hash_int_cb 32 12 0.12 0.0078
* hash_bytes128 128 19 0.0156 0.174
*
*/
check_word_hash(hash_words_cb, "hash_words", 11);
check_word_hash(jhash_words_cb, "jhash_words", 11);
check_word_hash(hash_int_cb, "hash_int", 12);
check_hash_bytes128(hash_bytes128, "hash_bytes128", 19);
/*
* The following tests check that all hashes computed with hash_function
* with one 1-bit (or no 1-bits) set within Y X-bit word have different
* values in their lowest N bits.
*
* test_function(hash_function, test_name, N)
*
* Given a random distribution, the probability of at least one collision
* in any set of N bits is approximately
*
* 1 - (prob of no collisions)
* **(combination of all possible comparisons)
* == 1 - ((2**N - 1)/2**N)**C(Y*X+1,2)
* == p
*
* If this p is not very small and we can also find a relatively small
* 'magic number' N such that there is no collision in any comparison,
* then it means we have a pretty good hash function.
*
* The values of each parameters mentioned above for the tested hash
* functions are summarized as follow:
*
* hash_function Y X N p
* ------------- --- --- --- -------
*
* hash_words 3 32 12 0.68
* jhash_words 3 32 12 0.68
* hash_bytes128 16 128 23 0.22
*
*/
check_3word_hash(hash_words, "hash_words");
check_3word_hash(jhash_words, "jhash_words");
check_256byte_hash(hash_bytes128, "hash_bytes128", 23);
}
OVSTEST_REGISTER("test-hash", test_hash_main);