2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/ovs-thread.h

617 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef OVS_THREAD_H
#define OVS_THREAD_H 1
#include <pthread.h>
#include <stddef.h>
#include <sys/types.h>
#include "ovs-atomic.h"
#include "util.h"
/* Mutex. */
struct OVS_LOCKABLE ovs_mutex {
pthread_mutex_t lock;
const char *where;
};
/* "struct ovs_mutex" initializer. */
#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
#define OVS_MUTEX_INITIALIZER { PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP, NULL }
#else
#define OVS_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, NULL }
#endif
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
#define OVS_ADAPTIVE_MUTEX_INITIALIZER \
{ PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP, NULL }
#else
#define OVS_ADAPTIVE_MUTEX_INITIALIZER OVS_MUTEX_INITIALIZER
#endif
/* ovs_mutex functions analogous to pthread_mutex_*() functions.
*
* Most of these functions abort the process with an error message on any
* error. ovs_mutex_trylock() is an exception: it passes through a 0 or EBUSY
* return value to the caller and aborts on any other error. */
void ovs_mutex_init(const struct ovs_mutex *);
void ovs_mutex_init_recursive(const struct ovs_mutex *);
void ovs_mutex_init_adaptive(const struct ovs_mutex *);
void ovs_mutex_destroy(const struct ovs_mutex *);
void ovs_mutex_unlock(const struct ovs_mutex *mutex) OVS_RELEASES(mutex);
void ovs_mutex_lock_at(const struct ovs_mutex *mutex, const char *where)
OVS_ACQUIRES(mutex);
#define ovs_mutex_lock(mutex) \
ovs_mutex_lock_at(mutex, SOURCE_LOCATOR)
int ovs_mutex_trylock_at(const struct ovs_mutex *mutex, const char *where)
OVS_TRY_LOCK(0, mutex);
#define ovs_mutex_trylock(mutex) \
ovs_mutex_trylock_at(mutex, SOURCE_LOCATOR)
void ovs_mutex_cond_wait(pthread_cond_t *, const struct ovs_mutex *);
/* Wrappers for pthread_mutex_*() that abort the process on any error.
* This is still needed when ovs-atomic-pthreads.h is used. */
void xpthread_mutex_lock(pthread_mutex_t *mutex);
void xpthread_mutex_unlock(pthread_mutex_t *mutex);
/* Wrappers for pthread_mutexattr_*() that abort the process on any error. */
void xpthread_mutexattr_init(pthread_mutexattr_t *);
void xpthread_mutexattr_destroy(pthread_mutexattr_t *);
void xpthread_mutexattr_settype(pthread_mutexattr_t *, int type);
void xpthread_mutexattr_gettype(pthread_mutexattr_t *, int *typep);
/* Read-write lock.
*
* An ovs_rwlock does not support recursive readers, because POSIX allows
* taking the reader lock recursively to deadlock when a thread is waiting on
* the write-lock. (NetBSD does deadlock.) glibc rwlocks in their default
* configuration do not deadlock, but ovs_rwlock_init() initializes rwlocks as
* non-recursive (which will deadlock) for two reasons:
*
* - glibc only provides fairness to writers in this mode.
*
* - It's better to find bugs in the primary Open vSwitch target rather
* than exposing them only to porters. */
struct OVS_LOCKABLE ovs_rwlock {
pthread_rwlock_t lock;
const char *where;
};
/* Initializer. */
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
#define OVS_RWLOCK_INITIALIZER \
{ PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP, NULL }
#else
#define OVS_RWLOCK_INITIALIZER { PTHREAD_RWLOCK_INITIALIZER, NULL }
#endif
/* ovs_rwlock functions analogous to pthread_rwlock_*() functions.
*
* Most of these functions abort the process with an error message on any
* error. The "trylock" functions are exception: they pass through a 0 or
* EBUSY return value to the caller and abort on any other error. */
void ovs_rwlock_init(const struct ovs_rwlock *);
void ovs_rwlock_destroy(const struct ovs_rwlock *);
void ovs_rwlock_unlock(const struct ovs_rwlock *rwlock) OVS_RELEASES(rwlock);
/* Wrappers for pthread_rwlockattr_*() that abort the process on any error. */
void xpthread_rwlockattr_init(pthread_rwlockattr_t *);
void xpthread_rwlockattr_destroy(pthread_rwlockattr_t *);
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
void xpthread_rwlockattr_setkind_np(pthread_rwlockattr_t *, int kind);
#endif
void ovs_rwlock_wrlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_ACQ_WRLOCK(rwlock);
#define ovs_rwlock_wrlock(rwlock) \
ovs_rwlock_wrlock_at(rwlock, SOURCE_LOCATOR)
int ovs_rwlock_trywrlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_TRY_WRLOCK(0, rwlock);
#define ovs_rwlock_trywrlock(rwlock) \
ovs_rwlock_trywrlock_at(rwlock, SOURCE_LOCATOR)
void ovs_rwlock_rdlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_ACQ_RDLOCK(rwlock);
#define ovs_rwlock_rdlock(rwlock) \
ovs_rwlock_rdlock_at(rwlock, SOURCE_LOCATOR)
int ovs_rwlock_tryrdlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_TRY_RDLOCK(0, rwlock);
#define ovs_rwlock_tryrdlock(rwlock) \
ovs_rwlock_tryrdlock_at(rwlock, SOURCE_LOCATOR)
/* Wrappers for xpthread_cond_*() that abort the process on any error.
*
* Use ovs_mutex_cond_wait() to wait for a condition. */
void xpthread_cond_init(pthread_cond_t *, pthread_condattr_t *);
void xpthread_cond_destroy(pthread_cond_t *);
void xpthread_cond_signal(pthread_cond_t *);
void xpthread_cond_broadcast(pthread_cond_t *);
/* Wrappers for pthread_barrier_*() that abort the process on any error. */
void xpthread_barrier_init(pthread_barrier_t *, pthread_barrierattr_t *,
unsigned int count);
int xpthread_barrier_wait(pthread_barrier_t *);
void xpthread_barrier_destroy(pthread_barrier_t *);
void xpthread_key_create(pthread_key_t *, void (*destructor)(void *));
void xpthread_key_delete(pthread_key_t);
void xpthread_setspecific(pthread_key_t, const void *);
void xpthread_create(pthread_t *, pthread_attr_t *, void *(*)(void *), void *);
void xpthread_join(pthread_t, void **);
/* Per-thread data.
*
*
* Standard Forms
* ==============
*
* Multiple forms of standard per-thread data exist, each with its own pluses
* and minuses. In general, if one of these forms is appropriate, then it's a
* good idea to use it:
*
* - POSIX per-thread data via pthread_key_t is portable to any pthreads
* implementation, and allows a destructor function to be defined. It
* only (directly) supports per-thread pointers, which are always
* initialized to NULL. It requires once-only allocation of a
* pthread_key_t value. It is relatively slow. Typically few
* "pthread_key_t"s are available (POSIX requires only at least 128,
* glibc supplies only 1024).
*
* - The thread_local feature newly defined in C11 <threads.h> works with
* any data type and initializer, and it is fast. thread_local does not
* require once-only initialization like pthread_key_t. C11 does not
* define what happens if one attempts to access a thread_local object
* from a thread other than the one to which that object belongs. There
* is no provision to call a user-specified destructor when a thread
* ends. Typical implementations allow for an arbitrary amount of
* thread_local storage, but statically allocated only.
*
* - The __thread keyword is a GCC extension similar to thread_local but
* with a longer history. __thread is not portable to every GCC version
* or environment. __thread does not restrict the use of a thread-local
* object outside its own thread.
*
* Here's a handy summary:
*
* pthread_key_t thread_local __thread
* ------------- ------------ -------------
* portability high low medium
* speed low high high
* supports destructors? yes no no
* needs key allocation? yes no no
* arbitrary initializer? no yes yes
* cross-thread access? yes no yes
* amount available? few arbitrary arbitrary
* dynamically allocated? yes no no
*
*
* Extensions
* ==========
*
* OVS provides some extensions and wrappers:
*
* - In a situation where the performance of thread_local or __thread is
* desirable, but portability is required, DEFINE_STATIC_PER_THREAD_DATA
* and DECLARE_EXTERN_PER_THREAD_DATA/DEFINE_EXTERN_PER_THREAD_DATA may
* be appropriate (see below).
*
* - DEFINE_PER_THREAD_MALLOCED_DATA can be convenient for simple
* per-thread malloc()'d buffers.
*
* - struct ovs_tsd provides an alternative to pthread_key_t that isn't
* limited to a small number of keys.
*/
/* For static data, use this macro in a source file:
*
* DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, INITIALIZER).
*
* For global data, "declare" the data in the header and "define" it in
* the source file, with:
*
* DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME).
* DEFINE_EXTERN_PER_THREAD_DATA(NAME, INITIALIZER).
*
* One should prefer to use POSIX per-thread data, via pthread_key_t, when its
* performance is acceptable, because of its portability (see the table above).
* This macro is an alternatives that takes advantage of thread_local (and
* __thread), for its performance, when it is available, and falls back to
* POSIX per-thread data otherwise.
*
* Defines per-thread variable NAME with the given TYPE, initialized to
* INITIALIZER (which must be valid as an initializer for a variable with
* static lifetime).
*
* The public interface to the variable is:
*
* TYPE *NAME_get(void)
* TYPE *NAME_get_unsafe(void)
*
* Returns the address of this thread's instance of NAME.
*
* Use NAME_get() in a context where this might be the first use of the
* per-thread variable in the program. Use NAME_get_unsafe(), which
* avoids a conditional test and is thus slightly faster, in a context
* where one knows that NAME_get() has already been called previously.
*
* There is no "NAME_set()" (or "NAME_set_unsafe()") function. To set the
* value of the per-thread variable, dereference the pointer returned by
* TYPE_get() or TYPE_get_unsafe(), e.g. *TYPE_get() = 0.
*/
#if HAVE_THREAD_LOCAL || HAVE___THREAD
#if HAVE_THREAD_LOCAL
#include <threads.h>
#elif HAVE___THREAD
#define thread_local __thread
#else
#error
#endif
#define DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, ...) \
typedef TYPE NAME##_type; \
\
static NAME##_type * \
NAME##_get_unsafe(void) \
{ \
static thread_local NAME##_type var = __VA_ARGS__; \
return &var; \
} \
\
static NAME##_type * \
NAME##_get(void) \
{ \
return NAME##_get_unsafe(); \
}
#define DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME) \
typedef TYPE NAME##_type; \
extern thread_local NAME##_type NAME##_var; \
\
static inline NAME##_type * \
NAME##_get_unsafe(void) \
{ \
return &NAME##_var; \
} \
\
static inline NAME##_type * \
NAME##_get(void) \
{ \
return NAME##_get_unsafe(); \
}
#define DEFINE_EXTERN_PER_THREAD_DATA(NAME, ...) \
thread_local NAME##_type NAME##_var = __VA_ARGS__;
#else /* no C implementation support for thread-local storage */
#define DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, ...) \
typedef TYPE NAME##_type; \
static pthread_key_t NAME##_key; \
\
static NAME##_type * \
NAME##_get_unsafe(void) \
{ \
return pthread_getspecific(NAME##_key); \
} \
\
static void \
NAME##_once_init(void) \
{ \
if (pthread_key_create(&NAME##_key, free)) { \
abort(); \
} \
} \
\
static NAME##_type * \
NAME##_get(void) \
{ \
static pthread_once_t once = PTHREAD_ONCE_INIT; \
NAME##_type *value; \
\
pthread_once(&once, NAME##_once_init); \
value = NAME##_get_unsafe(); \
if (!value) { \
static const NAME##_type initial_value = __VA_ARGS__; \
\
value = malloc(sizeof *value); \
if (value == NULL) { \
out_of_memory(); \
} \
*value = initial_value; \
xpthread_setspecific(NAME##_key, value); \
} \
return value; \
}
#define DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME) \
typedef TYPE NAME##_type; \
static pthread_key_t NAME##_key; \
\
static inline NAME##_type * \
NAME##_get_unsafe(void) \
{ \
return pthread_getspecific(NAME##_key); \
} \
\
NAME##_type *NAME##_get(void);
#define DEFINE_EXTERN_PER_THREAD_DATA(NAME, ...) \
static void \
NAME##_once_init(void) \
{ \
if (pthread_key_create(&NAME##_key, free)) { \
abort(); \
} \
} \
\
NAME##_type * \
NAME##_get(void) \
{ \
static pthread_once_t once = PTHREAD_ONCE_INIT; \
NAME##_type *value; \
\
pthread_once(&once, NAME##_once_init); \
value = NAME##_get_unsafe(); \
if (!value) { \
static const NAME##_type initial_value = __VA_ARGS__; \
\
value = malloc(sizeof *value); \
if (value == NULL) { \
out_of_memory(); \
} \
*value = initial_value; \
xpthread_setspecific(NAME##_key, value); \
} \
return value; \
}
#endif
/* DEFINE_PER_THREAD_MALLOCED_DATA(TYPE, NAME).
*
* This is a simple wrapper around POSIX per-thread data primitives. It
* defines per-thread variable NAME with the given TYPE, which must be a
* pointer type. In each thread, the per-thread variable is initialized to
* NULL. When a thread terminates, the variable is freed with free().
*
* The public interface to the variable is:
*
* TYPE NAME_get(void)
* TYPE NAME_get_unsafe(void)
*
* Returns the value of per-thread variable NAME in this thread.
*
* Use NAME_get() in a context where this might be the first use of the
* per-thread variable in the program. Use NAME_get_unsafe(), which
* avoids a conditional test and is thus slightly faster, in a context
* where one knows that NAME_get() has already been called previously.
*
* TYPE NAME_set(TYPE new_value)
* TYPE NAME_set_unsafe(TYPE new_value)
*
* Sets the value of per-thread variable NAME to 'new_value' in this
* thread, and returns its previous value.
*
* Use NAME_set() in a context where this might be the first use of the
* per-thread variable in the program. Use NAME_set_unsafe(), which
* avoids a conditional test and is thus slightly faster, in a context
* where one knows that NAME_set() has already been called previously.
*/
#define DEFINE_PER_THREAD_MALLOCED_DATA(TYPE, NAME) \
static pthread_key_t NAME##_key; \
\
static void \
NAME##_once_init(void) \
{ \
if (pthread_key_create(&NAME##_key, free)) { \
abort(); \
} \
} \
\
static void \
NAME##_init(void) \
{ \
static pthread_once_t once = PTHREAD_ONCE_INIT; \
pthread_once(&once, NAME##_once_init); \
} \
\
static TYPE \
NAME##_get_unsafe(void) \
{ \
return pthread_getspecific(NAME##_key); \
} \
\
static OVS_UNUSED TYPE \
NAME##_get(void) \
{ \
NAME##_init(); \
return NAME##_get_unsafe(); \
} \
\
static TYPE \
NAME##_set_unsafe(TYPE value) \
{ \
TYPE old_value = NAME##_get_unsafe(); \
xpthread_setspecific(NAME##_key, value); \
return old_value; \
} \
\
static OVS_UNUSED TYPE \
NAME##_set(TYPE value) \
{ \
NAME##_init(); \
return NAME##_set_unsafe(value); \
}
/* Dynamically allocated thread-specific data with lots of slots.
*
* pthread_key_t can provide as few as 128 pieces of thread-specific data (even
* glibc is limited to 1,024). Thus, one must be careful to allocate only a
* few keys globally. One cannot, for example, allocate a key for every
* instance of a data structure if there might be an arbitrary number of those
* data structures.
*
* This API is similar to the pthread one (simply search and replace pthread_
* by ovsthread_) but it a much larger limit that can be raised if necessary
* (by recompiling). Thus, one may more freely use this form of
* thread-specific data.
*
* ovsthread_key_t also differs from pthread_key_t in the following ways:
*
* - Destructors must not access thread-specific data (via ovsthread_key).
*
* - The pthread_key_t API allows concurrently exiting threads to start
* executing the destructor after pthread_key_delete() returns. The
* ovsthread_key_t API guarantees that, when ovsthread_key_delete()
* returns, all destructors have returned and no new ones will start
* execution.
*/
typedef struct ovsthread_key *ovsthread_key_t;
void ovsthread_key_create(ovsthread_key_t *, void (*destructor)(void *));
void ovsthread_key_delete(ovsthread_key_t);
void ovsthread_setspecific(ovsthread_key_t, const void *);
void *ovsthread_getspecific(ovsthread_key_t);
/* Convenient once-only execution.
*
*
* Problem
* =======
*
* POSIX provides pthread_once_t and pthread_once() as primitives for running a
* set of code only once per process execution. They are used like this:
*
* static void run_once(void) { ...initialization... }
* static pthread_once_t once = PTHREAD_ONCE_INIT;
* ...
* pthread_once(&once, run_once);
*
* pthread_once() does not allow passing any parameters to the initialization
* function, which is often inconvenient, because it means that the function
* can only access data declared at file scope.
*
*
* Solution
* ========
*
* Use ovsthread_once, like this, instead:
*
* static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
*
* if (ovsthread_once_start(&once)) {
* ...initialization...
* ovsthread_once_done(&once);
* }
*/
struct ovsthread_once {
atomic_bool done;
struct ovs_mutex mutex;
};
#define OVSTHREAD_ONCE_INITIALIZER \
{ \
ATOMIC_VAR_INIT(false), \
OVS_MUTEX_INITIALIZER, \
}
static inline bool ovsthread_once_start(struct ovsthread_once *once)
OVS_TRY_LOCK(true, once->mutex);
void ovsthread_once_done(struct ovsthread_once *once)
OVS_RELEASES(once->mutex);
bool ovsthread_once_start__(struct ovsthread_once *once)
OVS_TRY_LOCK(false, once->mutex);
static inline bool
ovsthread_once_is_done__(struct ovsthread_once *once)
{
bool done;
atomic_read_explicit(&once->done, &done, memory_order_relaxed);
return done;
}
/* Returns true if this is the first call to ovsthread_once_start() for
* 'once'. In this case, the caller should perform whatever initialization
* actions it needs to do, then call ovsthread_once_done() for 'once'.
*
* Returns false if this is not the first call to ovsthread_once_start() for
* 'once'. In this case, the call will not return until after
* ovsthread_once_done() has been called. */
static inline bool
ovsthread_once_start(struct ovsthread_once *once)
{
return OVS_UNLIKELY(!ovsthread_once_is_done__(once)
&& !ovsthread_once_start__(once));
}
/* Thread ID.
*
* pthread_t isn't so nice for some purposes. Its size and representation are
* implementation dependent, which means that there is no way to hash it.
* This thread ID avoids the problem.
*/
DECLARE_EXTERN_PER_THREAD_DATA(unsigned int, ovsthread_id);
/* Returns a per-thread identifier unique within the lifetime of the
* process. */
static inline unsigned int
ovsthread_id_self(void)
{
return *ovsthread_id_get();
}
/* Simulated global counter.
*
* Incrementing such a counter is meant to be cheaper than incrementing a
* global counter protected by a lock. It is probably more expensive than
* incrementing a truly thread-local variable, but such a variable has no
* straightforward way to get the sum.
*
*
* Thread-safety
* =============
*
* Fully thread-safe. */
struct ovsthread_counter *ovsthread_counter_create(void);
void ovsthread_counter_destroy(struct ovsthread_counter *);
void ovsthread_counter_inc(struct ovsthread_counter *, unsigned long long int);
unsigned long long int ovsthread_counter_read(
const struct ovsthread_counter *);
void assert_single_threaded_at(const char *where);
#define assert_single_threaded() assert_single_threaded_at(SOURCE_LOCATOR)
#ifndef _WIN32
pid_t xfork_at(const char *where);
#define xfork() xfork_at(SOURCE_LOCATOR)
#endif
void forbid_forking(const char *reason);
bool may_fork(void);
/* Useful functions related to threading. */
int count_cpu_cores(void);
#endif /* ovs-thread.h */