2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 18:07:40 +00:00
ovs/lib/packets.c

355 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010, 2011 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "packets.h"
#include <assert.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include "byte-order.h"
#include "dynamic-string.h"
#include "ofpbuf.h"
const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
* success stores the dpid into '*dpidp' and returns true, on failure stores 0
* into '*dpidp' and returns false.
*
* Rejects an all-zeros dpid as invalid. */
bool
dpid_from_string(const char *s, uint64_t *dpidp)
{
*dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
? strtoull(s, NULL, 16)
: 0);
return *dpidp != 0;
}
bool
eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
{
if (sscanf(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))
== ETH_ADDR_SCAN_COUNT) {
return true;
} else {
memset(ea, 0, ETH_ADDR_LEN);
return false;
}
}
/* Fills 'b' with an 802.2 SNAP packet with Ethernet source address 'eth_src',
* the Nicira OUI as SNAP organization and 'snap_type' as SNAP type. The text
* string in 'tag' is enclosed as the packet payload.
*
* This function is used by Open vSwitch to compose packets in cases where
* context is important but content doesn't (or shouldn't) matter. For this
* purpose, 'snap_type' should be a random number and 'tag' should be an
* English phrase that explains the purpose of the packet. (The English phrase
* gives hapless admins running Wireshark the opportunity to figure out what's
* going on.) */
void
compose_benign_packet(struct ofpbuf *b, const char *tag, uint16_t snap_type,
const uint8_t eth_src[ETH_ADDR_LEN])
{
size_t tag_size = strlen(tag) + 1;
char *payload;
payload = snap_compose(b, eth_addr_broadcast, eth_src, 0x002320, snap_type,
tag_size + ETH_ADDR_LEN);
memcpy(payload, tag, tag_size);
memcpy(payload + tag_size, eth_src, ETH_ADDR_LEN);
}
/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
* packet.
*
* Also sets 'packet->l2' to point to the new Ethernet header. */
void
eth_push_vlan(struct ofpbuf *packet, ovs_be16 tci)
{
struct eth_header *eh = packet->data;
struct vlan_eth_header *veh;
/* Insert new 802.1Q header. */
struct vlan_eth_header tmp;
memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
tmp.veth_type = htons(ETH_TYPE_VLAN);
tmp.veth_tci = tci;
tmp.veth_next_type = eh->eth_type;
veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
memcpy(veh, &tmp, sizeof tmp);
packet->l2 = packet->data;
}
/* Removes outermost VLAN header (if any is present) from 'packet'.
*
* 'packet->l2' must initially point to 'packet''s Ethernet header. */
void
eth_pop_vlan(struct ofpbuf *packet)
{
struct vlan_eth_header *veh = packet->l2;
if (packet->size >= sizeof *veh
&& veh->veth_type == htons(ETH_TYPE_VLAN)) {
struct eth_header tmp;
memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
tmp.eth_type = veh->veth_next_type;
ofpbuf_pull(packet, VLAN_HEADER_LEN);
packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
memcpy(packet->data, &tmp, sizeof tmp);
}
}
/* Given the IP netmask 'netmask', returns the number of bits of the IP address
* that it specifies, that is, the number of 1-bits in 'netmask'. 'netmask'
* must be a CIDR netmask (see ip_is_cidr()). */
int
ip_count_cidr_bits(ovs_be32 netmask)
{
assert(ip_is_cidr(netmask));
return 32 - ctz(ntohl(netmask));
}
void
ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
{
ds_put_format(s, IP_FMT, IP_ARGS(&ip));
if (mask != htonl(UINT32_MAX)) {
if (ip_is_cidr(mask)) {
ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
} else {
ds_put_format(s, "/"IP_FMT, IP_ARGS(&mask));
}
}
}
/* Stores the string representation of the IPv6 address 'addr' into the
* character array 'addr_str', which must be at least INET6_ADDRSTRLEN
* bytes long. */
void
format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
{
inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
}
void
print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
{
char *dst;
ds_reserve(string, string->length + INET6_ADDRSTRLEN);
dst = string->string + string->length;
format_ipv6_addr(dst, addr);
string->length += strlen(dst);
}
void
print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
const struct in6_addr *mask)
{
print_ipv6_addr(s, addr);
if (mask && !ipv6_mask_is_exact(mask)) {
if (ipv6_is_cidr(mask)) {
int cidr_bits = ipv6_count_cidr_bits(mask);
ds_put_format(s, "/%d", cidr_bits);
} else {
ds_put_char(s, '/');
print_ipv6_addr(s, mask);
}
}
}
struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
const struct in6_addr *b)
{
int i;
struct in6_addr dst;
#ifdef s6_addr32
for (i=0; i<4; i++) {
dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
}
#else
for (i=0; i<16; i++) {
dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
}
#endif
return dst;
}
/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
* low-order 0-bits. */
struct in6_addr
ipv6_create_mask(int mask)
{
struct in6_addr netmask;
uint8_t *netmaskp = &netmask.s6_addr[0];
memset(&netmask, 0, sizeof netmask);
while (mask > 8) {
*netmaskp = 0xff;
netmaskp++;
mask -= 8;
}
if (mask) {
*netmaskp = 0xff << (8 - mask);
}
return netmask;
}
/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
* address that it specifies, that is, the number of 1-bits in 'netmask'.
* 'netmask' must be a CIDR netmask (see ipv6_is_cidr()). */
int
ipv6_count_cidr_bits(const struct in6_addr *netmask)
{
int i;
int count = 0;
const uint8_t *netmaskp = &netmask->s6_addr[0];
assert(ipv6_is_cidr(netmask));
for (i=0; i<16; i++) {
if (netmaskp[i] == 0xff) {
count += 8;
} else {
uint8_t nm;
for(nm = netmaskp[i]; nm; nm <<= 1) {
count++;
}
break;
}
}
return count;
}
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
* high-order 1-bits and 128-N low-order 0-bits. */
bool
ipv6_is_cidr(const struct in6_addr *netmask)
{
const uint8_t *netmaskp = &netmask->s6_addr[0];
int i;
for (i=0; i<16; i++) {
if (netmaskp[i] != 0xff) {
uint8_t x = ~netmaskp[i];
if (x & (x + 1)) {
return false;
}
while (++i < 16) {
if (netmaskp[i]) {
return false;
}
}
}
}
return true;
}
/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
* 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
* in 'b' and returned. This payload may be populated with appropriate
* information by the caller. Sets 'b''s 'l2' and 'l3' pointers to the
* Ethernet header and payload respectively.
*
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
* desired. */
void *
eth_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
size_t size)
{
void *data;
struct eth_header *eth;
ofpbuf_clear(b);
ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
ofpbuf_reserve(b, VLAN_HEADER_LEN);
eth = ofpbuf_put_uninit(b, ETH_HEADER_LEN);
data = ofpbuf_put_uninit(b, size);
memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
eth->eth_type = htons(eth_type);
b->l2 = eth;
b->l3 = data;
return data;
}
/* Populates 'b' with an Ethernet LLC+SNAP packet headed with the given
* 'eth_dst', 'eth_src', 'snap_org', and 'snap_type'. A payload of 'size'
* bytes is allocated in 'b' and returned. This payload may be populated with
* appropriate information by the caller.
*
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
* desired. */
void *
snap_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
const uint8_t eth_src[ETH_ADDR_LEN],
unsigned int oui, uint16_t snap_type, size_t size)
{
struct eth_header *eth;
struct llc_snap_header *llc_snap;
void *payload;
/* Compose basic packet structure. (We need the payload size to stick into
* the 802.2 header.) */
ofpbuf_clear(b);
ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN
+ LLC_SNAP_HEADER_LEN + size);
ofpbuf_reserve(b, VLAN_HEADER_LEN);
eth = ofpbuf_put_zeros(b, ETH_HEADER_LEN);
llc_snap = ofpbuf_put_zeros(b, LLC_SNAP_HEADER_LEN);
payload = ofpbuf_put_uninit(b, size);
/* Compose 802.2 header. */
memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
eth->eth_type = htons(b->size - ETH_HEADER_LEN);
/* Compose LLC, SNAP headers. */
llc_snap->llc.llc_dsap = LLC_DSAP_SNAP;
llc_snap->llc.llc_ssap = LLC_SSAP_SNAP;
llc_snap->llc.llc_cntl = LLC_CNTL_SNAP;
llc_snap->snap.snap_org[0] = oui >> 16;
llc_snap->snap.snap_org[1] = oui >> 8;
llc_snap->snap.snap_org[2] = oui;
llc_snap->snap.snap_type = htons(snap_type);
return payload;
}