2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 18:07:40 +00:00
ovs/lib/learning-switch.c

422 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, 2009, 2010 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "learning-switch.h"
#include <errno.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <time.h>
#include "flow.h"
#include "mac-learning.h"
#include "ofpbuf.h"
#include "ofp-parse.h"
#include "ofp-print.h"
#include "ofp-util.h"
#include "openflow/openflow.h"
#include "poll-loop.h"
#include "queue.h"
#include "rconn.h"
#include "timeval.h"
#include "vconn.h"
#include "vlog.h"
#include "xtoxll.h"
VLOG_DEFINE_THIS_MODULE(learning_switch)
struct lswitch {
/* If nonnegative, the switch sets up flows that expire after the given
* number of seconds (or never expire, if the value is OFP_FLOW_PERMANENT).
* Otherwise, the switch processes every packet. */
int max_idle;
unsigned long long int datapath_id;
time_t last_features_request;
struct mac_learning *ml; /* NULL to act as hub instead of switch. */
uint32_t wildcards; /* Wildcards to apply to flows. */
bool action_normal; /* Use OFPP_NORMAL? */
uint32_t queue; /* OpenFlow queue to use, or UINT32_MAX. */
/* Number of outgoing queued packets on the rconn. */
struct rconn_packet_counter *queued;
};
/* The log messages here could actually be useful in debugging, so keep the
* rate limit relatively high. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
static void queue_tx(struct lswitch *, struct rconn *, struct ofpbuf *);
static void send_features_request(struct lswitch *, struct rconn *);
static void send_default_flows(struct lswitch *sw, struct rconn *rconn,
FILE *default_flows);
typedef void packet_handler_func(struct lswitch *, struct rconn *, void *);
static packet_handler_func process_switch_features;
static packet_handler_func process_packet_in;
static packet_handler_func process_echo_request;
/* Creates and returns a new learning switch.
*
* If 'learn_macs' is true, the new switch will learn the ports on which MAC
* addresses appear. Otherwise, the new switch will flood all packets.
*
* If 'max_idle' is nonnegative, the new switch will set up flows that expire
* after the given number of seconds (or never expire, if 'max_idle' is
* OFP_FLOW_PERMANENT). Otherwise, the new switch will process every packet.
*
* The caller may provide the file stream 'default_flows' that defines
* default flows that should be pushed when a switch connects. Each
* line is a flow entry in the format described for "add-flows" command
* in the Flow Syntax section of the ovs-ofct(8) man page. The caller
* is responsible for closing the stream.
*
* 'rconn' is used to send out an OpenFlow features request. */
struct lswitch *
lswitch_create(struct rconn *rconn, bool learn_macs,
bool exact_flows, int max_idle, bool action_normal,
FILE *default_flows)
{
struct lswitch *sw;
sw = xzalloc(sizeof *sw);
sw->max_idle = max_idle;
sw->datapath_id = 0;
sw->last_features_request = time_now() - 1;
sw->ml = learn_macs ? mac_learning_create() : NULL;
sw->action_normal = action_normal;
if (exact_flows) {
/* Exact match. */
sw->wildcards = 0;
} else {
/* We cannot wildcard all fields.
* We need in_port to detect moves.
* We need both SA and DA to do learning. */
sw->wildcards = (OFPFW_DL_TYPE | OFPFW_NW_SRC_MASK | OFPFW_NW_DST_MASK
| OFPFW_NW_PROTO | OFPFW_TP_SRC | OFPFW_TP_DST);
}
sw->queue = UINT32_MAX;
sw->queued = rconn_packet_counter_create();
send_features_request(sw, rconn);
if (default_flows) {
send_default_flows(sw, rconn, default_flows);
}
return sw;
}
/* Destroys 'sw'. */
void
lswitch_destroy(struct lswitch *sw)
{
if (sw) {
mac_learning_destroy(sw->ml);
rconn_packet_counter_destroy(sw->queued);
free(sw);
}
}
/* Sets 'queue' as the OpenFlow queue used by packets and flows set up by 'sw'.
* Specify UINT32_MAX to avoid specifying a particular queue, which is also the
* default if this function is never called for 'sw'. */
void
lswitch_set_queue(struct lswitch *sw, uint32_t queue)
{
sw->queue = queue;
}
/* Takes care of necessary 'sw' activity, except for receiving packets (which
* the caller must do). */
void
lswitch_run(struct lswitch *sw)
{
if (sw->ml) {
mac_learning_run(sw->ml, NULL);
}
}
void
lswitch_wait(struct lswitch *sw)
{
if (sw->ml) {
mac_learning_wait(sw->ml);
}
}
/* Processes 'msg', which should be an OpenFlow received on 'rconn', according
* to the learning switch state in 'sw'. The most likely result of processing
* is that flow-setup and packet-out OpenFlow messages will be sent out on
* 'rconn'. */
void
lswitch_process_packet(struct lswitch *sw, struct rconn *rconn,
const struct ofpbuf *msg)
{
struct processor {
uint8_t type;
size_t min_size;
packet_handler_func *handler;
};
static const struct processor processors[] = {
{
OFPT_ECHO_REQUEST,
sizeof(struct ofp_header),
process_echo_request
},
{
OFPT_FEATURES_REPLY,
sizeof(struct ofp_switch_features),
process_switch_features
},
{
OFPT_PACKET_IN,
offsetof(struct ofp_packet_in, data),
process_packet_in
},
{
OFPT_FLOW_REMOVED,
sizeof(struct ofp_flow_removed),
NULL
},
};
const size_t n_processors = ARRAY_SIZE(processors);
const struct processor *p;
struct ofp_header *oh;
oh = msg->data;
if (sw->datapath_id == 0
&& oh->type != OFPT_ECHO_REQUEST
&& oh->type != OFPT_FEATURES_REPLY) {
send_features_request(sw, rconn);
return;
}
for (p = processors; p < &processors[n_processors]; p++) {
if (oh->type == p->type) {
if (msg->size < p->min_size) {
VLOG_WARN_RL(&rl, "%016llx: %s: too short (%zu bytes) for "
"type %"PRIu8" (min %zu)", sw->datapath_id,
rconn_get_name(rconn), msg->size, oh->type,
p->min_size);
return;
}
if (p->handler) {
(p->handler)(sw, rconn, msg->data);
}
return;
}
}
if (VLOG_IS_DBG_ENABLED()) {
char *s = ofp_to_string(msg->data, msg->size, 2);
VLOG_DBG_RL(&rl, "%016llx: OpenFlow packet ignored: %s",
sw->datapath_id, s);
free(s);
}
}
static void
send_features_request(struct lswitch *sw, struct rconn *rconn)
{
time_t now = time_now();
if (now >= sw->last_features_request + 1) {
struct ofpbuf *b;
struct ofp_switch_config *osc;
/* Send OFPT_FEATURES_REQUEST. */
make_openflow(sizeof(struct ofp_header), OFPT_FEATURES_REQUEST, &b);
queue_tx(sw, rconn, b);
/* Send OFPT_SET_CONFIG. */
osc = make_openflow(sizeof *osc, OFPT_SET_CONFIG, &b);
osc->miss_send_len = htons(OFP_DEFAULT_MISS_SEND_LEN);
queue_tx(sw, rconn, b);
sw->last_features_request = now;
}
}
static void
send_default_flows(struct lswitch *sw, struct rconn *rconn,
FILE *default_flows)
{
struct ofpbuf *b;
while ((b = parse_ofp_add_flow_file(default_flows)) != NULL) {
queue_tx(sw, rconn, b);
}
}
static void
queue_tx(struct lswitch *sw, struct rconn *rconn, struct ofpbuf *b)
{
int retval = rconn_send_with_limit(rconn, b, sw->queued, 10);
if (retval && retval != ENOTCONN) {
if (retval == EAGAIN) {
VLOG_INFO_RL(&rl, "%016llx: %s: tx queue overflow",
sw->datapath_id, rconn_get_name(rconn));
} else {
VLOG_WARN_RL(&rl, "%016llx: %s: send: %s",
sw->datapath_id, rconn_get_name(rconn),
strerror(retval));
}
}
}
static void
process_switch_features(struct lswitch *sw, struct rconn *rconn OVS_UNUSED,
void *osf_)
{
struct ofp_switch_features *osf = osf_;
sw->datapath_id = ntohll(osf->datapath_id);
}
static uint16_t
lswitch_choose_destination(struct lswitch *sw, const flow_t *flow)
{
uint16_t out_port;
/* Learn the source MAC. */
if (sw->ml) {
if (mac_learning_learn(sw->ml, flow->dl_src, 0, flow->in_port,
GRAT_ARP_LOCK_NONE)) {
VLOG_DBG_RL(&rl, "%016llx: learned that "ETH_ADDR_FMT" is on "
"port %"PRIu16, sw->datapath_id,
ETH_ADDR_ARGS(flow->dl_src), flow->in_port);
}
}
/* Drop frames for reserved multicast addresses. */
if (eth_addr_is_reserved(flow->dl_dst)) {
return OFPP_NONE;
}
out_port = OFPP_FLOOD;
if (sw->ml) {
int learned_port = mac_learning_lookup(sw->ml, flow->dl_dst, 0, NULL);
if (learned_port >= 0) {
out_port = learned_port;
if (out_port == flow->in_port) {
/* Don't send a packet back out its input port. */
return OFPP_NONE;
}
}
}
/* Check if we need to use "NORMAL" action. */
if (sw->action_normal && out_port != OFPP_FLOOD) {
return OFPP_NORMAL;
}
return out_port;
}
static void
process_packet_in(struct lswitch *sw, struct rconn *rconn, void *opi_)
{
struct ofp_packet_in *opi = opi_;
uint16_t in_port = ntohs(opi->in_port);
uint16_t out_port;
struct ofp_action_header actions[2];
size_t actions_len;
size_t pkt_ofs, pkt_len;
struct ofpbuf pkt;
flow_t flow;
/* Ignore packets sent via output to OFPP_CONTROLLER. This library never
* uses such an action. You never know what experiments might be going on,
* though, and it seems best not to interfere with them. */
if (opi->reason != OFPR_NO_MATCH) {
return;
}
/* Extract flow data from 'opi' into 'flow'. */
pkt_ofs = offsetof(struct ofp_packet_in, data);
pkt_len = ntohs(opi->header.length) - pkt_ofs;
pkt.data = opi->data;
pkt.size = pkt_len;
flow_extract(&pkt, 0, in_port, &flow);
/* Choose output port. */
out_port = lswitch_choose_destination(sw, &flow);
/* Make actions. */
if (out_port == OFPP_NONE) {
actions_len = 0;
} else if (sw->queue == UINT32_MAX || out_port >= OFPP_MAX) {
struct ofp_action_output oao;
memset(&oao, 0, sizeof oao);
oao.type = htons(OFPAT_OUTPUT);
oao.len = htons(sizeof oao);
oao.port = htons(out_port);
memcpy(actions, &oao, sizeof oao);
actions_len = sizeof oao;
} else {
struct ofp_action_enqueue oae;
memset(&oae, 0, sizeof oae);
oae.type = htons(OFPAT_ENQUEUE);
oae.len = htons(sizeof oae);
oae.port = htons(out_port);
oae.queue_id = htonl(sw->queue);
memcpy(actions, &oae, sizeof oae);
actions_len = sizeof oae;
}
assert(actions_len <= sizeof actions);
/* Send the packet, and possibly the whole flow, to the output port. */
if (sw->max_idle >= 0 && (!sw->ml || out_port != OFPP_FLOOD)) {
struct ofpbuf *buffer;
struct ofp_flow_mod *ofm;
/* The output port is known, or we always flood everything, so add a
* new flow. */
buffer = make_add_flow(&flow, ntohl(opi->buffer_id),
sw->max_idle, actions_len);
ofpbuf_put(buffer, actions, actions_len);
ofm = buffer->data;
ofm->match.wildcards = htonl(sw->wildcards);
queue_tx(sw, rconn, buffer);
/* If the switch didn't buffer the packet, we need to send a copy. */
if (ntohl(opi->buffer_id) == UINT32_MAX && actions_len > 0) {
queue_tx(sw, rconn,
make_packet_out(&pkt, UINT32_MAX, in_port,
actions, actions_len / sizeof *actions));
}
} else {
/* We don't know that MAC, or we don't set up flows. Send along the
* packet without setting up a flow. */
if (ntohl(opi->buffer_id) != UINT32_MAX || actions_len > 0) {
queue_tx(sw, rconn,
make_packet_out(&pkt, ntohl(opi->buffer_id), in_port,
actions, actions_len / sizeof *actions));
}
}
}
static void
process_echo_request(struct lswitch *sw, struct rconn *rconn, void *rq_)
{
struct ofp_header *rq = rq_;
queue_tx(sw, rconn, make_echo_reply(rq));
}