2009-07-08 13:19:16 -07:00
|
|
|
/*
|
2011-03-22 09:47:02 -07:00
|
|
|
* Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks.
|
2009-07-08 13:19:16 -07:00
|
|
|
*
|
2009-06-15 15:11:30 -07:00
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at:
|
2009-07-08 13:19:16 -07:00
|
|
|
*
|
2009-06-15 15:11:30 -07:00
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
2009-07-08 13:19:16 -07:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <config.h>
|
|
|
|
#include "mac-learning.h"
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
2009-11-06 17:13:51 -08:00
|
|
|
#include "bitmap.h"
|
2009-07-08 13:19:16 -07:00
|
|
|
#include "coverage.h"
|
|
|
|
#include "hash.h"
|
|
|
|
#include "list.h"
|
|
|
|
#include "poll-loop.h"
|
|
|
|
#include "tag.h"
|
|
|
|
#include "timeval.h"
|
|
|
|
#include "util.h"
|
2011-04-08 13:19:33 -07:00
|
|
|
#include "vlan-bitmap.h"
|
2009-07-08 13:19:16 -07:00
|
|
|
#include "vlog.h"
|
|
|
|
|
2010-10-19 14:47:01 -07:00
|
|
|
VLOG_DEFINE_THIS_MODULE(mac_learning);
|
2010-07-16 11:02:49 -07:00
|
|
|
|
coverage: Make the coverage counters catalog program-specific.
Until now, the collection of coverage counters supported by a given OVS
program was not specific to that program. That means that, for example,
even though ovs-dpctl does not have anything to do with mac_learning, it
still has a coverage counter for it. This is confusing, at best.
This commit fixes the problem on some systems, in particular on ones that
use GCC and the GNU linker. It uses the feature of the GNU linker
described in its manual as:
If an orphaned section's name is representable as a C identifier then
the linker will automatically see PROVIDE two symbols: __start_SECNAME
and __end_SECNAME, where SECNAME is the name of the section. These
indicate the start address and end address of the orphaned section
respectively.
Systems that don't support these features retain the earlier behavior.
This commit also fixes the annoyance that files that include coverage
counters must be listed on COVERAGE_FILES in lib/automake.mk.
This commit also fixes the annoyance that modifying any source file that
includes a coverage counter caused all programs that link against
libopenvswitch.a to relink, even programs that the source file was not
linked into. For example, modifying ofproto/ofproto.c (which includes
coverage counters) caused tests/test-aes128 to relink, even though
test-aes128 does not link again ofproto.o.
2010-11-01 14:14:27 -07:00
|
|
|
COVERAGE_DEFINE(mac_learning_learned);
|
|
|
|
COVERAGE_DEFINE(mac_learning_expired);
|
|
|
|
|
2009-07-15 11:02:24 -07:00
|
|
|
/* Returns the number of seconds since 'e' was last learned. */
|
|
|
|
int
|
|
|
|
mac_entry_age(const struct mac_entry *e)
|
|
|
|
{
|
|
|
|
time_t remaining = e->expires - time_now();
|
|
|
|
return MAC_ENTRY_IDLE_TIME - remaining;
|
|
|
|
}
|
|
|
|
|
2009-07-08 13:19:16 -07:00
|
|
|
static uint32_t
|
|
|
|
mac_table_hash(const uint8_t mac[ETH_ADDR_LEN], uint16_t vlan)
|
|
|
|
{
|
|
|
|
return hash_bytes(mac, ETH_ADDR_LEN, vlan);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mac_entry *
|
|
|
|
mac_entry_from_lru_node(struct list *list)
|
|
|
|
{
|
|
|
|
return CONTAINER_OF(list, struct mac_entry, lru_node);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns a tag that represents that 'mac' is on an unknown port in 'vlan'.
|
|
|
|
* (When we learn where 'mac' is in 'vlan', this allows flows that were
|
|
|
|
* flooded to be revalidated.) */
|
|
|
|
static tag_type
|
|
|
|
make_unknown_mac_tag(const struct mac_learning *ml,
|
|
|
|
const uint8_t mac[ETH_ADDR_LEN], uint16_t vlan)
|
|
|
|
{
|
|
|
|
uint32_t h = hash_int(ml->secret, mac_table_hash(mac, vlan));
|
|
|
|
return tag_create_deterministic(h);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct list *
|
|
|
|
mac_table_bucket(const struct mac_learning *ml,
|
|
|
|
const uint8_t mac[ETH_ADDR_LEN],
|
|
|
|
uint16_t vlan)
|
|
|
|
{
|
|
|
|
uint32_t hash = mac_table_hash(mac, vlan);
|
|
|
|
const struct list *list = &ml->table[hash & MAC_HASH_BITS];
|
|
|
|
return (struct list *) list;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mac_entry *
|
|
|
|
search_bucket(struct list *bucket, const uint8_t mac[ETH_ADDR_LEN],
|
|
|
|
uint16_t vlan)
|
|
|
|
{
|
|
|
|
struct mac_entry *e;
|
2010-09-17 10:33:10 -07:00
|
|
|
LIST_FOR_EACH (e, hash_node, bucket) {
|
2009-07-08 13:19:16 -07:00
|
|
|
if (eth_addr_equals(e->mac, mac) && e->vlan == vlan) {
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the LRU list is not empty, stores the least-recently-used entry in '*e'
|
|
|
|
* and returns true. Otherwise, if the LRU list is empty, stores NULL in '*e'
|
|
|
|
* and return false. */
|
|
|
|
static bool
|
|
|
|
get_lru(struct mac_learning *ml, struct mac_entry **e)
|
|
|
|
{
|
|
|
|
if (!list_is_empty(&ml->lrus)) {
|
|
|
|
*e = mac_entry_from_lru_node(ml->lrus.next);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
*e = NULL;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Creates and returns a new MAC learning table. */
|
|
|
|
struct mac_learning *
|
|
|
|
mac_learning_create(void)
|
|
|
|
{
|
|
|
|
struct mac_learning *ml;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ml = xmalloc(sizeof *ml);
|
|
|
|
list_init(&ml->lrus);
|
|
|
|
list_init(&ml->free);
|
|
|
|
for (i = 0; i < MAC_HASH_SIZE; i++) {
|
|
|
|
list_init(&ml->table[i]);
|
|
|
|
}
|
|
|
|
for (i = 0; i < MAC_MAX; i++) {
|
|
|
|
struct mac_entry *s = &ml->entries[i];
|
|
|
|
list_push_front(&ml->free, &s->lru_node);
|
|
|
|
}
|
|
|
|
ml->secret = random_uint32();
|
2010-01-19 10:41:46 -08:00
|
|
|
ml->flood_vlans = NULL;
|
2009-07-08 13:19:16 -07:00
|
|
|
return ml;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Destroys MAC learning table 'ml'. */
|
|
|
|
void
|
|
|
|
mac_learning_destroy(struct mac_learning *ml)
|
|
|
|
{
|
2009-11-06 17:13:51 -08:00
|
|
|
if (ml) {
|
2010-01-19 10:41:46 -08:00
|
|
|
bitmap_free(ml->flood_vlans);
|
2009-11-06 17:13:51 -08:00
|
|
|
}
|
2009-07-08 13:19:16 -07:00
|
|
|
free(ml);
|
|
|
|
}
|
|
|
|
|
2010-01-19 10:41:46 -08:00
|
|
|
/* Provides a bitmap of VLANs which have learning disabled, that is, VLANs on
|
2011-04-06 15:31:22 -07:00
|
|
|
* which all packets are flooded. Returns true if the set has changed from the
|
|
|
|
* previous value. */
|
2009-11-06 17:13:51 -08:00
|
|
|
bool
|
2011-04-06 15:31:22 -07:00
|
|
|
mac_learning_set_flood_vlans(struct mac_learning *ml,
|
|
|
|
const unsigned long *bitmap)
|
2009-11-06 17:13:51 -08:00
|
|
|
{
|
2011-04-06 15:31:22 -07:00
|
|
|
if (vlan_bitmap_equal(ml->flood_vlans, bitmap)) {
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
bitmap_free(ml->flood_vlans);
|
|
|
|
ml->flood_vlans = vlan_bitmap_clone(bitmap);
|
|
|
|
return true;
|
|
|
|
}
|
2009-11-06 17:13:51 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
is_learning_vlan(const struct mac_learning *ml, uint16_t vlan)
|
|
|
|
{
|
2011-04-08 13:19:33 -07:00
|
|
|
return vlan_bitmap_contains(ml->flood_vlans, vlan);
|
2009-11-06 17:13:51 -08:00
|
|
|
}
|
|
|
|
|
2011-03-22 09:47:02 -07:00
|
|
|
/* Returns true if 'src_mac' may be learned on 'vlan' for 'ml'.
|
|
|
|
* Returns false if 'ml' is NULL, if src_mac is not valid for learning, or if
|
|
|
|
* 'vlan' is configured on 'ml' to flood all packets. */
|
|
|
|
bool
|
|
|
|
mac_learning_may_learn(const struct mac_learning *ml,
|
|
|
|
const uint8_t src_mac[ETH_ADDR_LEN], uint16_t vlan)
|
|
|
|
{
|
|
|
|
return ml && is_learning_vlan(ml, vlan) && !eth_addr_is_multicast(src_mac);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Searches 'ml' for and returns a MAC learning entry for 'src_mac' in 'vlan',
|
|
|
|
* inserting a new entry if necessary. The caller must have already verified,
|
|
|
|
* by calling mac_learning_may_learn(), that 'src_mac' and 'vlan' are
|
|
|
|
* learnable.
|
2010-06-02 16:26:46 -07:00
|
|
|
*
|
2011-03-22 09:47:02 -07:00
|
|
|
* If the returned MAC entry is new (as may be determined by calling
|
|
|
|
* mac_entry_is_new()), then the caller must pass the new entry to
|
|
|
|
* mac_learning_changed(). The caller must also initialize the new entry's
|
|
|
|
* 'port' member. Otherwise calling those functions is at the caller's
|
|
|
|
* discretion. */
|
|
|
|
struct mac_entry *
|
|
|
|
mac_learning_insert(struct mac_learning *ml,
|
|
|
|
const uint8_t src_mac[ETH_ADDR_LEN], uint16_t vlan)
|
2009-07-08 13:19:16 -07:00
|
|
|
{
|
|
|
|
struct mac_entry *e;
|
|
|
|
struct list *bucket;
|
|
|
|
|
|
|
|
bucket = mac_table_bucket(ml, src_mac, vlan);
|
|
|
|
e = search_bucket(bucket, src_mac, vlan);
|
|
|
|
if (!e) {
|
|
|
|
if (!list_is_empty(&ml->free)) {
|
|
|
|
e = mac_entry_from_lru_node(ml->free.next);
|
|
|
|
} else {
|
|
|
|
e = mac_entry_from_lru_node(ml->lrus.next);
|
|
|
|
list_remove(&e->hash_node);
|
|
|
|
}
|
|
|
|
list_push_front(bucket, &e->hash_node);
|
2011-03-22 09:47:02 -07:00
|
|
|
memcpy(e->mac, src_mac, ETH_ADDR_LEN);
|
2009-07-08 13:19:16 -07:00
|
|
|
e->vlan = vlan;
|
2011-03-22 09:47:02 -07:00
|
|
|
e->tag = 0;
|
2010-06-02 16:26:46 -07:00
|
|
|
e->grat_arp_lock = TIME_MIN;
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
|
2011-03-22 09:47:02 -07:00
|
|
|
/* Mark 'e' as recently used. */
|
|
|
|
list_remove(&e->lru_node);
|
|
|
|
list_push_back(&ml->lrus, &e->lru_node);
|
|
|
|
e->expires = time_now() + MAC_ENTRY_IDLE_TIME;
|
2010-06-02 16:26:46 -07:00
|
|
|
|
2011-03-22 09:47:02 -07:00
|
|
|
return e;
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
|
2011-03-22 09:47:02 -07:00
|
|
|
/* Changes 'e''s tag to a new, randomly selected one, and returns the tag that
|
|
|
|
* would have been previously used for this entry's MAC and VLAN (either before
|
|
|
|
* 'e' was inserted, if it is new, or otherwise before its port was updated.)
|
|
|
|
*
|
|
|
|
* The client should call this function after obtaining a MAC learning entry
|
|
|
|
* from mac_learning_insert(), if the entry is either new or if its learned
|
|
|
|
* port has changed. */
|
|
|
|
tag_type
|
|
|
|
mac_learning_changed(struct mac_learning *ml, struct mac_entry *e)
|
2009-07-08 13:19:16 -07:00
|
|
|
{
|
2011-03-22 09:47:02 -07:00
|
|
|
tag_type old_tag = e->tag;
|
|
|
|
|
|
|
|
COVERAGE_INC(mac_learning_learned);
|
|
|
|
|
|
|
|
e->tag = tag_create_random();
|
|
|
|
return old_tag ? old_tag : make_unknown_mac_tag(ml, e->mac, e->vlan);
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
|
2011-03-22 09:47:02 -07:00
|
|
|
/* Looks up MAC 'dst' for VLAN 'vlan' in 'ml' and returns the associated MAC
|
|
|
|
* learning entry, if any. If 'tag' is nonnull, then the tag that associates
|
|
|
|
* 'dst' and 'vlan' with its currently learned port will be OR'd into
|
|
|
|
* '*tag'. */
|
|
|
|
struct mac_entry *
|
|
|
|
mac_learning_lookup(const struct mac_learning *ml,
|
|
|
|
const uint8_t dst[ETH_ADDR_LEN], uint16_t vlan,
|
|
|
|
tag_type *tag)
|
2009-07-08 13:19:16 -07:00
|
|
|
{
|
2011-03-22 09:47:02 -07:00
|
|
|
if (eth_addr_is_multicast(dst)) {
|
|
|
|
/* No tag because the treatment of multicast destinations never
|
|
|
|
* changes. */
|
|
|
|
return NULL;
|
|
|
|
} else if (!is_learning_vlan(ml, vlan)) {
|
|
|
|
/* We don't tag this property. The set of learning VLANs changes so
|
|
|
|
* rarely that we revalidate every flow when it changes. */
|
|
|
|
return NULL;
|
2009-07-08 13:19:16 -07:00
|
|
|
} else {
|
|
|
|
struct mac_entry *e = search_bucket(mac_table_bucket(ml, dst, vlan),
|
|
|
|
dst, vlan);
|
2011-03-22 09:47:02 -07:00
|
|
|
assert(e == NULL || e->tag != 0);
|
|
|
|
if (tag) {
|
|
|
|
/* Tag either the learned port or the lack thereof. */
|
|
|
|
*tag |= e ? e->tag : make_unknown_mac_tag(ml, dst, vlan);
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
2011-03-22 09:47:02 -07:00
|
|
|
return e;
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-03-18 15:28:21 -07:00
|
|
|
/* Expires 'e' from the 'ml' hash table. 'e' must not already be on the free
|
|
|
|
* list. */
|
|
|
|
void
|
|
|
|
mac_learning_expire(struct mac_learning *ml, struct mac_entry *e)
|
|
|
|
{
|
|
|
|
list_remove(&e->hash_node);
|
|
|
|
list_remove(&e->lru_node);
|
|
|
|
list_push_front(&ml->free, &e->lru_node);
|
|
|
|
}
|
|
|
|
|
2009-07-08 13:19:16 -07:00
|
|
|
/* Expires all the mac-learning entries in 'ml'. The tags in 'ml' are
|
|
|
|
* discarded, so the client is responsible for revalidating any flows that
|
|
|
|
* depend on 'ml', if necessary. */
|
|
|
|
void
|
|
|
|
mac_learning_flush(struct mac_learning *ml)
|
|
|
|
{
|
|
|
|
struct mac_entry *e;
|
|
|
|
while (get_lru(ml, &e)){
|
2011-03-18 15:28:21 -07:00
|
|
|
mac_learning_expire(ml, e);
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
mac_learning_run(struct mac_learning *ml, struct tag_set *set)
|
|
|
|
{
|
|
|
|
struct mac_entry *e;
|
|
|
|
while (get_lru(ml, &e) && time_now() >= e->expires) {
|
|
|
|
COVERAGE_INC(mac_learning_expired);
|
|
|
|
if (set) {
|
|
|
|
tag_set_add(set, e->tag);
|
|
|
|
}
|
2011-03-18 15:28:21 -07:00
|
|
|
mac_learning_expire(ml, e);
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
mac_learning_wait(struct mac_learning *ml)
|
|
|
|
{
|
|
|
|
if (!list_is_empty(&ml->lrus)) {
|
|
|
|
struct mac_entry *e = mac_entry_from_lru_node(ml->lrus.next);
|
2010-05-12 12:53:07 -07:00
|
|
|
poll_timer_wait_until(e->expires * 1000LL);
|
2009-07-08 13:19:16 -07:00
|
|
|
}
|
|
|
|
}
|