2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/ofproto/ofproto-dpif-xlate.c

3301 lines
106 KiB
C
Raw Normal View History

/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <config.h>
#include "ofproto/ofproto-dpif-xlate.h"
#include <errno.h>
#include "bfd.h"
#include "bitmap.h"
#include "bond.h"
#include "bundle.h"
#include "byte-order.h"
#include "cfm.h"
#include "connmgr.h"
#include "coverage.h"
#include "dpif.h"
#include "dynamic-string.h"
#include "in-band.h"
#include "lacp.h"
#include "learn.h"
#include "list.h"
#include "mac-learning.h"
#include "meta-flow.h"
#include "multipath.h"
#include "netdev-vport.h"
#include "netlink.h"
#include "nx-match.h"
#include "odp-execute.h"
#include "ofp-actions.h"
#include "ofproto/ofproto-dpif-ipfix.h"
#include "ofproto/ofproto-dpif-mirror.h"
#include "ofproto/ofproto-dpif-monitor.h"
#include "ofproto/ofproto-dpif-sflow.h"
#include "ofproto/ofproto-dpif.h"
#include "ofproto/ofproto-provider.h"
#include "tunnel.h"
#include "vlog.h"
COVERAGE_DEFINE(xlate_actions);
COVERAGE_DEFINE(xlate_actions_oversize);
COVERAGE_DEFINE(xlate_actions_mpls_overflow);
VLOG_DEFINE_THIS_MODULE(ofproto_dpif_xlate);
/* Maximum depth of flow table recursion (due to resubmit actions) in a
* flow translation. */
#define MAX_RESUBMIT_RECURSION 64
#define MAX_INTERNAL_RESUBMITS 1 /* Max resbmits allowed using rules in
internal table. */
/* Maximum number of resubmit actions in a flow translation, whether they are
* recursive or not. */
#define MAX_RESUBMITS (MAX_RESUBMIT_RECURSION * MAX_RESUBMIT_RECURSION)
struct ovs_rwlock xlate_rwlock = OVS_RWLOCK_INITIALIZER;
struct xbridge {
struct hmap_node hmap_node; /* Node in global 'xbridges' map. */
struct ofproto_dpif *ofproto; /* Key in global 'xbridges' map. */
struct list xbundles; /* Owned xbundles. */
struct hmap xports; /* Indexed by ofp_port. */
char *name; /* Name used in log messages. */
struct dpif *dpif; /* Datapath interface. */
struct mac_learning *ml; /* Mac learning handle. */
struct mbridge *mbridge; /* Mirroring. */
struct dpif_sflow *sflow; /* SFlow handle, or null. */
struct dpif_ipfix *ipfix; /* Ipfix handle, or null. */
struct netflow *netflow; /* Netflow handle, or null. */
struct stp *stp; /* STP or null if disabled. */
/* Special rules installed by ofproto-dpif. */
struct rule_dpif *miss_rule;
struct rule_dpif *no_packet_in_rule;
enum ofp_config_flags frag; /* Fragmentation handling. */
bool has_in_band; /* Bridge has in band control? */
bool forward_bpdu; /* Bridge forwards STP BPDUs? */
/* True if the datapath supports recirculation. */
bool enable_recirc;
/* True if the datapath supports variable-length
* OVS_USERSPACE_ATTR_USERDATA in OVS_ACTION_ATTR_USERSPACE actions.
* False if the datapath supports only 8-byte (or shorter) userdata. */
bool variable_length_userdata;
/* Number of MPLS label stack entries that the datapath supports
* in matches. */
size_t max_mpls_depth;
};
struct xbundle {
struct hmap_node hmap_node; /* In global 'xbundles' map. */
struct ofbundle *ofbundle; /* Key in global 'xbundles' map. */
struct list list_node; /* In parent 'xbridges' list. */
struct xbridge *xbridge; /* Parent xbridge. */
struct list xports; /* Contains "struct xport"s. */
char *name; /* Name used in log messages. */
struct bond *bond; /* Nonnull iff more than one port. */
struct lacp *lacp; /* LACP handle or null. */
enum port_vlan_mode vlan_mode; /* VLAN mode. */
int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
* NULL if all VLANs are trunked. */
bool use_priority_tags; /* Use 802.1p tag for frames in VLAN 0? */
bool floodable; /* No port has OFPUTIL_PC_NO_FLOOD set? */
};
struct xport {
struct hmap_node hmap_node; /* Node in global 'xports' map. */
struct ofport_dpif *ofport; /* Key in global 'xports map. */
struct hmap_node ofp_node; /* Node in parent xbridge 'xports' map. */
ofp_port_t ofp_port; /* Key in parent xbridge 'xports' map. */
odp_port_t odp_port; /* Datapath port number or ODPP_NONE. */
struct list bundle_node; /* In parent xbundle (if it exists). */
struct xbundle *xbundle; /* Parent xbundle or null. */
struct netdev *netdev; /* 'ofport''s netdev. */
struct xbridge *xbridge; /* Parent bridge. */
struct xport *peer; /* Patch port peer or null. */
enum ofputil_port_config config; /* OpenFlow port configuration. */
enum ofputil_port_state state; /* OpenFlow port state. */
int stp_port_no; /* STP port number or -1 if not in use. */
struct hmap skb_priorities; /* Map of 'skb_priority_to_dscp's. */
bool may_enable; /* May be enabled in bonds. */
bool is_tunnel; /* Is a tunnel port. */
struct cfm *cfm; /* CFM handle or null. */
struct bfd *bfd; /* BFD handle or null. */
};
struct xlate_ctx {
struct xlate_in *xin;
struct xlate_out *xout;
const struct xbridge *xbridge;
/* Flow at the last commit. */
struct flow base_flow;
/* Tunnel IP destination address as received. This is stored separately
* as the base_flow.tunnel is cleared on init to reflect the datapath
* behavior. Used to make sure not to send tunneled output to ourselves,
* which might lead to an infinite loop. This could happen easily
* if a tunnel is marked as 'ip_remote=flow', and the flow does not
* actually set the tun_dst field. */
ovs_be32 orig_tunnel_ip_dst;
/* Stack for the push and pop actions. Each stack element is of type
* "union mf_subvalue". */
union mf_subvalue init_stack[1024 / sizeof(union mf_subvalue)];
struct ofpbuf stack;
/* The rule that we are currently translating, or NULL. */
struct rule_dpif *rule;
/* Resubmit statistics, via xlate_table_action(). */
int recurse; /* Current resubmit nesting depth. */
int resubmits; /* Total number of resubmits. */
bool in_group; /* Currently translating ofgroup, if true. */
uint32_t orig_skb_priority; /* Priority when packet arrived. */
uint8_t table_id; /* OpenFlow table ID where flow was found. */
uint32_t sflow_n_outputs; /* Number of output ports. */
odp_port_t sflow_odp_port; /* Output port for composing sFlow action. */
uint16_t user_cookie_offset;/* Used for user_action_cookie fixup. */
bool exit; /* No further actions should be processed. */
/* OpenFlow 1.1+ action set.
*
* 'action_set' accumulates "struct ofpact"s added by OFPACT_WRITE_ACTIONS.
* When translation is otherwise complete, ofpacts_execute_action_set()
* converts it to a set of "struct ofpact"s that can be translated into
* datapath actions. */
struct ofpbuf action_set; /* Action set. */
uint64_t action_set_stub[1024 / 8];
};
/* A controller may use OFPP_NONE as the ingress port to indicate that
* it did not arrive on a "real" port. 'ofpp_none_bundle' exists for
* when an input bundle is needed for validation (e.g., mirroring or
* OFPP_NORMAL processing). It is not connected to an 'ofproto' or have
* any 'port' structs, so care must be taken when dealing with it. */
static struct xbundle ofpp_none_bundle = {
.name = "OFPP_NONE",
.vlan_mode = PORT_VLAN_TRUNK
};
/* Node in 'xport''s 'skb_priorities' map. Used to maintain a map from
* 'priority' (the datapath's term for QoS queue) to the dscp bits which all
* traffic egressing the 'ofport' with that priority should be marked with. */
struct skb_priority_to_dscp {
struct hmap_node hmap_node; /* Node in 'ofport_dpif''s 'skb_priorities'. */
uint32_t skb_priority; /* Priority of this queue (see struct flow). */
uint8_t dscp; /* DSCP bits to mark outgoing traffic with. */
};
static struct hmap xbridges = HMAP_INITIALIZER(&xbridges);
static struct hmap xbundles = HMAP_INITIALIZER(&xbundles);
static struct hmap xports = HMAP_INITIALIZER(&xports);
static bool may_receive(const struct xport *, struct xlate_ctx *);
static void do_xlate_actions(const struct ofpact *, size_t ofpacts_len,
struct xlate_ctx *);
static void xlate_actions__(struct xlate_in *, struct xlate_out *)
OVS_REQ_RDLOCK(xlate_rwlock);
static void xlate_normal(struct xlate_ctx *);
static void xlate_report(struct xlate_ctx *, const char *);
static void xlate_table_action(struct xlate_ctx *, ofp_port_t in_port,
uint8_t table_id, bool may_packet_in,
bool honor_table_miss);
static bool input_vid_is_valid(uint16_t vid, struct xbundle *, bool warn);
static uint16_t input_vid_to_vlan(const struct xbundle *, uint16_t vid);
static void output_normal(struct xlate_ctx *, const struct xbundle *,
uint16_t vlan);
static void compose_output_action(struct xlate_ctx *, ofp_port_t ofp_port);
static struct xbridge *xbridge_lookup(const struct ofproto_dpif *);
static struct xbundle *xbundle_lookup(const struct ofbundle *);
static struct xport *xport_lookup(const struct ofport_dpif *);
static struct xport *get_ofp_port(const struct xbridge *, ofp_port_t ofp_port);
static struct skb_priority_to_dscp *get_skb_priority(const struct xport *,
uint32_t skb_priority);
static void clear_skb_priorities(struct xport *);
static bool dscp_from_skb_priority(const struct xport *, uint32_t skb_priority,
uint8_t *dscp);
void
xlate_ofproto_set(struct ofproto_dpif *ofproto, const char *name,
struct dpif *dpif, struct rule_dpif *miss_rule,
struct rule_dpif *no_packet_in_rule,
const struct mac_learning *ml, struct stp *stp,
const struct mbridge *mbridge,
const struct dpif_sflow *sflow,
const struct dpif_ipfix *ipfix,
const struct netflow *netflow, enum ofp_config_flags frag,
bool forward_bpdu, bool has_in_band,
bool enable_recirc,
bool variable_length_userdata,
size_t max_mpls_depth)
{
struct xbridge *xbridge = xbridge_lookup(ofproto);
if (!xbridge) {
xbridge = xzalloc(sizeof *xbridge);
xbridge->ofproto = ofproto;
hmap_insert(&xbridges, &xbridge->hmap_node, hash_pointer(ofproto, 0));
hmap_init(&xbridge->xports);
list_init(&xbridge->xbundles);
}
if (xbridge->ml != ml) {
mac_learning_unref(xbridge->ml);
xbridge->ml = mac_learning_ref(ml);
}
if (xbridge->mbridge != mbridge) {
mbridge_unref(xbridge->mbridge);
xbridge->mbridge = mbridge_ref(mbridge);
}
if (xbridge->sflow != sflow) {
dpif_sflow_unref(xbridge->sflow);
xbridge->sflow = dpif_sflow_ref(sflow);
}
if (xbridge->ipfix != ipfix) {
dpif_ipfix_unref(xbridge->ipfix);
xbridge->ipfix = dpif_ipfix_ref(ipfix);
}
if (xbridge->stp != stp) {
stp_unref(xbridge->stp);
xbridge->stp = stp_ref(stp);
}
if (xbridge->netflow != netflow) {
netflow_unref(xbridge->netflow);
xbridge->netflow = netflow_ref(netflow);
}
free(xbridge->name);
xbridge->name = xstrdup(name);
xbridge->dpif = dpif;
xbridge->forward_bpdu = forward_bpdu;
xbridge->has_in_band = has_in_band;
xbridge->frag = frag;
xbridge->miss_rule = miss_rule;
xbridge->no_packet_in_rule = no_packet_in_rule;
xbridge->enable_recirc = enable_recirc;
xbridge->variable_length_userdata = variable_length_userdata;
xbridge->max_mpls_depth = max_mpls_depth;
}
void
xlate_remove_ofproto(struct ofproto_dpif *ofproto)
{
struct xbridge *xbridge = xbridge_lookup(ofproto);
struct xbundle *xbundle, *next_xbundle;
struct xport *xport, *next_xport;
if (!xbridge) {
return;
}
HMAP_FOR_EACH_SAFE (xport, next_xport, ofp_node, &xbridge->xports) {
xlate_ofport_remove(xport->ofport);
}
LIST_FOR_EACH_SAFE (xbundle, next_xbundle, list_node, &xbridge->xbundles) {
xlate_bundle_remove(xbundle->ofbundle);
}
hmap_remove(&xbridges, &xbridge->hmap_node);
mac_learning_unref(xbridge->ml);
mbridge_unref(xbridge->mbridge);
dpif_sflow_unref(xbridge->sflow);
dpif_ipfix_unref(xbridge->ipfix);
stp_unref(xbridge->stp);
hmap_destroy(&xbridge->xports);
free(xbridge->name);
free(xbridge);
}
void
xlate_bundle_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
const char *name, enum port_vlan_mode vlan_mode, int vlan,
unsigned long *trunks, bool use_priority_tags,
const struct bond *bond, const struct lacp *lacp,
bool floodable)
{
struct xbundle *xbundle = xbundle_lookup(ofbundle);
if (!xbundle) {
xbundle = xzalloc(sizeof *xbundle);
xbundle->ofbundle = ofbundle;
xbundle->xbridge = xbridge_lookup(ofproto);
hmap_insert(&xbundles, &xbundle->hmap_node, hash_pointer(ofbundle, 0));
list_insert(&xbundle->xbridge->xbundles, &xbundle->list_node);
list_init(&xbundle->xports);
}
ovs_assert(xbundle->xbridge);
free(xbundle->name);
xbundle->name = xstrdup(name);
xbundle->vlan_mode = vlan_mode;
xbundle->vlan = vlan;
xbundle->trunks = trunks;
xbundle->use_priority_tags = use_priority_tags;
xbundle->floodable = floodable;
if (xbundle->bond != bond) {
bond_unref(xbundle->bond);
xbundle->bond = bond_ref(bond);
}
if (xbundle->lacp != lacp) {
lacp_unref(xbundle->lacp);
xbundle->lacp = lacp_ref(lacp);
}
}
void
xlate_bundle_remove(struct ofbundle *ofbundle)
{
struct xbundle *xbundle = xbundle_lookup(ofbundle);
struct xport *xport, *next;
if (!xbundle) {
return;
}
LIST_FOR_EACH_SAFE (xport, next, bundle_node, &xbundle->xports) {
list_remove(&xport->bundle_node);
xport->xbundle = NULL;
}
hmap_remove(&xbundles, &xbundle->hmap_node);
list_remove(&xbundle->list_node);
bond_unref(xbundle->bond);
lacp_unref(xbundle->lacp);
free(xbundle->name);
free(xbundle);
}
void
xlate_ofport_set(struct ofproto_dpif *ofproto, struct ofbundle *ofbundle,
struct ofport_dpif *ofport, ofp_port_t ofp_port,
odp_port_t odp_port, const struct netdev *netdev,
const struct cfm *cfm, const struct bfd *bfd,
struct ofport_dpif *peer, int stp_port_no,
const struct ofproto_port_queue *qdscp_list, size_t n_qdscp,
enum ofputil_port_config config,
enum ofputil_port_state state, bool is_tunnel,
bool may_enable)
{
struct xport *xport = xport_lookup(ofport);
size_t i;
if (!xport) {
xport = xzalloc(sizeof *xport);
xport->ofport = ofport;
xport->xbridge = xbridge_lookup(ofproto);
xport->ofp_port = ofp_port;
hmap_init(&xport->skb_priorities);
hmap_insert(&xports, &xport->hmap_node, hash_pointer(ofport, 0));
hmap_insert(&xport->xbridge->xports, &xport->ofp_node,
hash_ofp_port(xport->ofp_port));
}
ovs_assert(xport->ofp_port == ofp_port);
xport->config = config;
xport->state = state;
xport->stp_port_no = stp_port_no;
xport->is_tunnel = is_tunnel;
xport->may_enable = may_enable;
xport->odp_port = odp_port;
if (xport->netdev != netdev) {
netdev_close(xport->netdev);
xport->netdev = netdev_ref(netdev);
}
if (xport->cfm != cfm) {
cfm_unref(xport->cfm);
xport->cfm = cfm_ref(cfm);
}
if (xport->bfd != bfd) {
bfd_unref(xport->bfd);
xport->bfd = bfd_ref(bfd);
}
if (xport->peer) {
xport->peer->peer = NULL;
}
xport->peer = xport_lookup(peer);
if (xport->peer) {
xport->peer->peer = xport;
}
if (xport->xbundle) {
list_remove(&xport->bundle_node);
}
xport->xbundle = xbundle_lookup(ofbundle);
if (xport->xbundle) {
list_insert(&xport->xbundle->xports, &xport->bundle_node);
}
clear_skb_priorities(xport);
for (i = 0; i < n_qdscp; i++) {
struct skb_priority_to_dscp *pdscp;
uint32_t skb_priority;
if (dpif_queue_to_priority(xport->xbridge->dpif, qdscp_list[i].queue,
&skb_priority)) {
continue;
}
pdscp = xmalloc(sizeof *pdscp);
pdscp->skb_priority = skb_priority;
pdscp->dscp = (qdscp_list[i].dscp << 2) & IP_DSCP_MASK;
hmap_insert(&xport->skb_priorities, &pdscp->hmap_node,
hash_int(pdscp->skb_priority, 0));
}
}
void
xlate_ofport_remove(struct ofport_dpif *ofport)
{
struct xport *xport = xport_lookup(ofport);
if (!xport) {
return;
}
if (xport->peer) {
xport->peer->peer = NULL;
xport->peer = NULL;
}
if (xport->xbundle) {
list_remove(&xport->bundle_node);
}
clear_skb_priorities(xport);
hmap_destroy(&xport->skb_priorities);
hmap_remove(&xports, &xport->hmap_node);
hmap_remove(&xport->xbridge->xports, &xport->ofp_node);
netdev_close(xport->netdev);
cfm_unref(xport->cfm);
bfd_unref(xport->bfd);
free(xport);
}
/* Given a datpath, packet, and flow metadata ('backer', 'packet', and 'key'
* respectively), populates 'flow' with the result of odp_flow_key_to_flow().
* Optionally populates 'ofproto' with the ofproto_dpif, 'odp_in_port' with
* the datapath in_port, that 'packet' ingressed, and 'ipfix', 'sflow', and
* 'netflow' with the appropriate handles for those protocols if they're
* enabled. Caller is responsible for unrefing them.
*
* If 'ofproto' is nonnull, requires 'flow''s in_port to exist. Otherwise sets
* 'flow''s in_port to OFPP_NONE.
*
* This function does post-processing on data returned from
* odp_flow_key_to_flow() to help make VLAN splinters transparent to the rest
* of the upcall processing logic. In particular, if the extracted in_port is
* a VLAN splinter port, it replaces flow->in_port by the "real" port, sets
* flow->vlan_tci correctly for the VLAN of the VLAN splinter port, and pushes
* a VLAN header onto 'packet' (if it is nonnull).
*
* Similarly, this function also includes some logic to help with tunnels. It
* may modify 'flow' as necessary to make the tunneling implementation
* transparent to the upcall processing logic.
*
* Returns 0 if successful, ENODEV if the parsed flow has no associated ofport,
* or some other positive errno if there are other problems. */
int
xlate_receive(const struct dpif_backer *backer, struct ofpbuf *packet,
const struct nlattr *key, size_t key_len, struct flow *flow,
struct ofproto_dpif **ofproto, struct dpif_ipfix **ipfix,
struct dpif_sflow **sflow, struct netflow **netflow,
odp_port_t *odp_in_port)
{
const struct xport *xport;
int error = ENODEV;
ovs_rwlock_rdlock(&xlate_rwlock);
if (odp_flow_key_to_flow(key, key_len, flow) == ODP_FIT_ERROR) {
error = EINVAL;
goto exit;
}
if (odp_in_port) {
*odp_in_port = flow->in_port.odp_port;
}
xport = xport_lookup(tnl_port_should_receive(flow)
? tnl_port_receive(flow)
: odp_port_to_ofport(backer, flow->in_port.odp_port));
flow->in_port.ofp_port = xport ? xport->ofp_port : OFPP_NONE;
if (!xport) {
goto exit;
}
if (vsp_adjust_flow(xport->xbridge->ofproto, flow)) {
if (packet) {
/* Make the packet resemble the flow, so that it gets sent to
* an OpenFlow controller properly, so that it looks correct
* for sFlow, and so that flow_extract() will get the correct
* vlan_tci if it is called on 'packet'. */
eth_push_vlan(packet, htons(ETH_TYPE_VLAN), flow->vlan_tci);
}
}
error = 0;
if (ofproto) {
*ofproto = xport->xbridge->ofproto;
}
if (ipfix) {
*ipfix = dpif_ipfix_ref(xport->xbridge->ipfix);
}
if (sflow) {
*sflow = dpif_sflow_ref(xport->xbridge->sflow);
}
if (netflow) {
*netflow = netflow_ref(xport->xbridge->netflow);
}
exit:
ovs_rwlock_unlock(&xlate_rwlock);
return error;
}
static struct xbridge *
xbridge_lookup(const struct ofproto_dpif *ofproto)
{
struct xbridge *xbridge;
if (!ofproto) {
return NULL;
}
HMAP_FOR_EACH_IN_BUCKET (xbridge, hmap_node, hash_pointer(ofproto, 0),
&xbridges) {
if (xbridge->ofproto == ofproto) {
return xbridge;
}
}
return NULL;
}
static struct xbundle *
xbundle_lookup(const struct ofbundle *ofbundle)
{
struct xbundle *xbundle;
if (!ofbundle) {
return NULL;
}
HMAP_FOR_EACH_IN_BUCKET (xbundle, hmap_node, hash_pointer(ofbundle, 0),
&xbundles) {
if (xbundle->ofbundle == ofbundle) {
return xbundle;
}
}
return NULL;
}
static struct xport *
xport_lookup(const struct ofport_dpif *ofport)
{
struct xport *xport;
if (!ofport) {
return NULL;
}
HMAP_FOR_EACH_IN_BUCKET (xport, hmap_node, hash_pointer(ofport, 0),
&xports) {
if (xport->ofport == ofport) {
return xport;
}
}
return NULL;
}
static struct stp_port *
xport_get_stp_port(const struct xport *xport)
{
return xport->xbridge->stp && xport->stp_port_no != -1
? stp_get_port(xport->xbridge->stp, xport->stp_port_no)
: NULL;
}
static bool
xport_stp_learn_state(const struct xport *xport)
{
struct stp_port *sp = xport_get_stp_port(xport);
return stp_learn_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
}
static bool
xport_stp_forward_state(const struct xport *xport)
{
struct stp_port *sp = xport_get_stp_port(xport);
return stp_forward_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
}
static bool
xport_stp_listen_state(const struct xport *xport)
{
struct stp_port *sp = xport_get_stp_port(xport);
return stp_listen_in_state(sp ? stp_port_get_state(sp) : STP_DISABLED);
}
/* Returns true if STP should process 'flow'. Sets fields in 'wc' that
* were used to make the determination.*/
static bool
stp_should_process_flow(const struct flow *flow, struct flow_wildcards *wc)
{
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
return eth_addr_equals(flow->dl_dst, eth_addr_stp);
}
static void
stp_process_packet(const struct xport *xport, const struct ofpbuf *packet)
{
struct stp_port *sp = xport_get_stp_port(xport);
struct ofpbuf payload = *packet;
struct eth_header *eth = ofpbuf_data(&payload);
/* Sink packets on ports that have STP disabled when the bridge has
* STP enabled. */
if (!sp || stp_port_get_state(sp) == STP_DISABLED) {
return;
}
/* Trim off padding on payload. */
if (ofpbuf_size(&payload) > ntohs(eth->eth_type) + ETH_HEADER_LEN) {
ofpbuf_set_size(&payload, ntohs(eth->eth_type) + ETH_HEADER_LEN);
}
if (ofpbuf_try_pull(&payload, ETH_HEADER_LEN + LLC_HEADER_LEN)) {
stp_received_bpdu(sp, ofpbuf_data(&payload), ofpbuf_size(&payload));
}
}
static struct xport *
get_ofp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
{
struct xport *xport;
HMAP_FOR_EACH_IN_BUCKET (xport, ofp_node, hash_ofp_port(ofp_port),
&xbridge->xports) {
if (xport->ofp_port == ofp_port) {
return xport;
}
}
return NULL;
}
static odp_port_t
ofp_port_to_odp_port(const struct xbridge *xbridge, ofp_port_t ofp_port)
{
const struct xport *xport = get_ofp_port(xbridge, ofp_port);
return xport ? xport->odp_port : ODPP_NONE;
}
static bool
odp_port_is_alive(const struct xlate_ctx *ctx, ofp_port_t ofp_port)
{
struct xport *xport;
xport = get_ofp_port(ctx->xbridge, ofp_port);
if (!xport || xport->config & OFPUTIL_PC_PORT_DOWN ||
xport->state & OFPUTIL_PS_LINK_DOWN) {
return false;
}
return true;
}
static const struct ofputil_bucket *
group_first_live_bucket(const struct xlate_ctx *, const struct group_dpif *,
int depth);
static bool
group_is_alive(const struct xlate_ctx *ctx, uint32_t group_id, int depth)
{
struct group_dpif *group;
bool hit;
hit = group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group);
if (!hit) {
return false;
}
hit = group_first_live_bucket(ctx, group, depth) != NULL;
group_dpif_release(group);
return hit;
}
#define MAX_LIVENESS_RECURSION 128 /* Arbitrary limit */
static bool
bucket_is_alive(const struct xlate_ctx *ctx,
const struct ofputil_bucket *bucket, int depth)
{
if (depth >= MAX_LIVENESS_RECURSION) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
VLOG_WARN_RL(&rl, "bucket chaining exceeded %d links",
MAX_LIVENESS_RECURSION);
return false;
}
return !ofputil_bucket_has_liveness(bucket) ||
(bucket->watch_port != OFPP_ANY &&
odp_port_is_alive(ctx, bucket->watch_port)) ||
(bucket->watch_group != OFPG_ANY &&
group_is_alive(ctx, bucket->watch_group, depth + 1));
}
static const struct ofputil_bucket *
group_first_live_bucket(const struct xlate_ctx *ctx,
const struct group_dpif *group, int depth)
{
struct ofputil_bucket *bucket;
const struct list *buckets;
group_dpif_get_buckets(group, &buckets);
LIST_FOR_EACH (bucket, list_node, buckets) {
if (bucket_is_alive(ctx, bucket, depth)) {
return bucket;
}
}
return NULL;
}
static const struct ofputil_bucket *
group_best_live_bucket(const struct xlate_ctx *ctx,
const struct group_dpif *group,
uint32_t basis)
{
const struct ofputil_bucket *best_bucket = NULL;
uint32_t best_score = 0;
int i = 0;
const struct ofputil_bucket *bucket;
const struct list *buckets;
group_dpif_get_buckets(group, &buckets);
LIST_FOR_EACH (bucket, list_node, buckets) {
if (bucket_is_alive(ctx, bucket, 0)) {
uint32_t score = (hash_int(i, basis) & 0xffff) * bucket->weight;
if (score >= best_score) {
best_bucket = bucket;
best_score = score;
}
}
i++;
}
return best_bucket;
}
static bool
xbundle_trunks_vlan(const struct xbundle *bundle, uint16_t vlan)
{
return (bundle->vlan_mode != PORT_VLAN_ACCESS
&& (!bundle->trunks || bitmap_is_set(bundle->trunks, vlan)));
}
static bool
xbundle_includes_vlan(const struct xbundle *xbundle, uint16_t vlan)
{
return vlan == xbundle->vlan || xbundle_trunks_vlan(xbundle, vlan);
}
static mirror_mask_t
xbundle_mirror_out(const struct xbridge *xbridge, struct xbundle *xbundle)
{
return xbundle != &ofpp_none_bundle
? mirror_bundle_out(xbridge->mbridge, xbundle->ofbundle)
: 0;
}
static mirror_mask_t
xbundle_mirror_src(const struct xbridge *xbridge, struct xbundle *xbundle)
{
return xbundle != &ofpp_none_bundle
? mirror_bundle_src(xbridge->mbridge, xbundle->ofbundle)
: 0;
}
static mirror_mask_t
xbundle_mirror_dst(const struct xbridge *xbridge, struct xbundle *xbundle)
{
return xbundle != &ofpp_none_bundle
? mirror_bundle_dst(xbridge->mbridge, xbundle->ofbundle)
: 0;
}
static struct xbundle *
lookup_input_bundle(const struct xbridge *xbridge, ofp_port_t in_port,
bool warn, struct xport **in_xportp)
{
struct xport *xport;
/* Find the port and bundle for the received packet. */
xport = get_ofp_port(xbridge, in_port);
if (in_xportp) {
*in_xportp = xport;
}
if (xport && xport->xbundle) {
return xport->xbundle;
}
/* Special-case OFPP_NONE, which a controller may use as the ingress
* port for traffic that it is sourcing. */
if (in_port == OFPP_NONE) {
return &ofpp_none_bundle;
}
/* Odd. A few possible reasons here:
*
* - We deleted a port but there are still a few packets queued up
* from it.
*
* - Someone externally added a port (e.g. "ovs-dpctl add-if") that
* we don't know about.
*
* - The ofproto client didn't configure the port as part of a bundle.
* This is particularly likely to happen if a packet was received on the
* port after it was created, but before the client had a chance to
* configure its bundle.
*/
if (warn) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
"port %"PRIu16, xbridge->name, in_port);
}
return NULL;
}
static void
add_mirror_actions(struct xlate_ctx *ctx, const struct flow *orig_flow)
{
const struct xbridge *xbridge = ctx->xbridge;
mirror_mask_t mirrors;
struct xbundle *in_xbundle;
uint16_t vlan;
uint16_t vid;
mirrors = ctx->xout->mirrors;
ctx->xout->mirrors = 0;
in_xbundle = lookup_input_bundle(xbridge, orig_flow->in_port.ofp_port,
ctx->xin->packet != NULL, NULL);
if (!in_xbundle) {
return;
}
mirrors |= xbundle_mirror_src(xbridge, in_xbundle);
/* Drop frames on bundles reserved for mirroring. */
if (xbundle_mirror_out(xbridge, in_xbundle)) {
if (ctx->xin->packet != NULL) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
"%s, which is reserved exclusively for mirroring",
ctx->xbridge->name, in_xbundle->name);
}
ofpbuf_clear(&ctx->xout->odp_actions);
return;
}
/* Check VLAN. */
vid = vlan_tci_to_vid(orig_flow->vlan_tci);
if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
return;
}
vlan = input_vid_to_vlan(in_xbundle, vid);
if (!mirrors) {
return;
}
/* Restore the original packet before adding the mirror actions. */
ctx->xin->flow = *orig_flow;
while (mirrors) {
mirror_mask_t dup_mirrors;
struct ofbundle *out;
unsigned long *vlans;
bool vlan_mirrored;
bool has_mirror;
int out_vlan;
has_mirror = mirror_get(xbridge->mbridge, raw_ctz(mirrors),
&vlans, &dup_mirrors, &out, &out_vlan);
ovs_assert(has_mirror);
if (vlans) {
ctx->xout->wc.masks.vlan_tci |= htons(VLAN_CFI | VLAN_VID_MASK);
}
vlan_mirrored = !vlans || bitmap_is_set(vlans, vlan);
free(vlans);
if (!vlan_mirrored) {
mirrors = zero_rightmost_1bit(mirrors);
continue;
}
mirrors &= ~dup_mirrors;
ctx->xout->mirrors |= dup_mirrors;
if (out) {
struct xbundle *out_xbundle = xbundle_lookup(out);
if (out_xbundle) {
output_normal(ctx, out_xbundle, vlan);
}
} else if (vlan != out_vlan
&& !eth_addr_is_reserved(orig_flow->dl_dst)) {
struct xbundle *xbundle;
LIST_FOR_EACH (xbundle, list_node, &xbridge->xbundles) {
if (xbundle_includes_vlan(xbundle, out_vlan)
&& !xbundle_mirror_out(xbridge, xbundle)) {
output_normal(ctx, xbundle, out_vlan);
}
}
}
}
}
/* Given 'vid', the VID obtained from the 802.1Q header that was received as
* part of a packet (specify 0 if there was no 802.1Q header), and 'in_xbundle',
* the bundle on which the packet was received, returns the VLAN to which the
* packet belongs.
*
* Both 'vid' and the return value are in the range 0...4095. */
static uint16_t
input_vid_to_vlan(const struct xbundle *in_xbundle, uint16_t vid)
{
switch (in_xbundle->vlan_mode) {
case PORT_VLAN_ACCESS:
return in_xbundle->vlan;
break;
case PORT_VLAN_TRUNK:
return vid;
case PORT_VLAN_NATIVE_UNTAGGED:
case PORT_VLAN_NATIVE_TAGGED:
return vid ? vid : in_xbundle->vlan;
default:
OVS_NOT_REACHED();
}
}
/* Checks whether a packet with the given 'vid' may ingress on 'in_xbundle'.
* If so, returns true. Otherwise, returns false and, if 'warn' is true, logs
* a warning.
*
* 'vid' should be the VID obtained from the 802.1Q header that was received as
* part of a packet (specify 0 if there was no 802.1Q header), in the range
* 0...4095. */
static bool
input_vid_is_valid(uint16_t vid, struct xbundle *in_xbundle, bool warn)
{
/* Allow any VID on the OFPP_NONE port. */
if (in_xbundle == &ofpp_none_bundle) {
return true;
}
switch (in_xbundle->vlan_mode) {
case PORT_VLAN_ACCESS:
if (vid) {
if (warn) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" tagged "
"packet received on port %s configured as VLAN "
"%"PRIu16" access port", vid, in_xbundle->name,
in_xbundle->vlan);
}
return false;
}
return true;
case PORT_VLAN_NATIVE_UNTAGGED:
case PORT_VLAN_NATIVE_TAGGED:
if (!vid) {
/* Port must always carry its native VLAN. */
return true;
}
/* Fall through. */
case PORT_VLAN_TRUNK:
if (!xbundle_includes_vlan(in_xbundle, vid)) {
if (warn) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "dropping VLAN %"PRIu16" packet "
"received on port %s not configured for trunking "
"VLAN %"PRIu16, vid, in_xbundle->name, vid);
}
return false;
}
return true;
default:
OVS_NOT_REACHED();
}
}
/* Given 'vlan', the VLAN that a packet belongs to, and
* 'out_xbundle', a bundle on which the packet is to be output, returns the VID
* that should be included in the 802.1Q header. (If the return value is 0,
* then the 802.1Q header should only be included in the packet if there is a
* nonzero PCP.)
*
* Both 'vlan' and the return value are in the range 0...4095. */
static uint16_t
output_vlan_to_vid(const struct xbundle *out_xbundle, uint16_t vlan)
{
switch (out_xbundle->vlan_mode) {
case PORT_VLAN_ACCESS:
return 0;
case PORT_VLAN_TRUNK:
case PORT_VLAN_NATIVE_TAGGED:
return vlan;
case PORT_VLAN_NATIVE_UNTAGGED:
return vlan == out_xbundle->vlan ? 0 : vlan;
default:
OVS_NOT_REACHED();
}
}
static void
output_normal(struct xlate_ctx *ctx, const struct xbundle *out_xbundle,
uint16_t vlan)
{
ovs_be16 *flow_tci = &ctx->xin->flow.vlan_tci;
uint16_t vid;
ovs_be16 tci, old_tci;
struct xport *xport;
vid = output_vlan_to_vid(out_xbundle, vlan);
if (list_is_empty(&out_xbundle->xports)) {
/* Partially configured bundle with no slaves. Drop the packet. */
return;
} else if (!out_xbundle->bond) {
ctx->xout->use_recirc = false;
xport = CONTAINER_OF(list_front(&out_xbundle->xports), struct xport,
bundle_node);
} else {
struct ofport_dpif *ofport;
struct xlate_recirc *xr = &ctx->xout->recirc;
if (ctx->xbridge->enable_recirc) {
ctx->xout->use_recirc = bond_may_recirc(
out_xbundle->bond, &xr->recirc_id, &xr->hash_bias);
if (ctx->xout->use_recirc) {
/* Only TCP mode uses recirculation. */
xr->hash_alg = OVS_RECIRC_HASH_ALG_L4;
bond_update_post_recirc_rules(out_xbundle->bond, false);
}
}
ofport = bond_choose_output_slave(out_xbundle->bond, &ctx->xin->flow,
&ctx->xout->wc, vid);
xport = xport_lookup(ofport);
if (!xport) {
/* No slaves enabled, so drop packet. */
return;
}
if (ctx->xin->resubmit_stats) {
bond_account(out_xbundle->bond, &ctx->xin->flow, vid,
ctx->xin->resubmit_stats->n_bytes);
}
}
old_tci = *flow_tci;
tci = htons(vid);
if (tci || out_xbundle->use_priority_tags) {
tci |= *flow_tci & htons(VLAN_PCP_MASK);
if (tci) {
tci |= htons(VLAN_CFI);
}
}
*flow_tci = tci;
compose_output_action(ctx, xport->ofp_port);
*flow_tci = old_tci;
}
/* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
* migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
* indicate this; newer upstream kernels use gratuitous ARP requests. */
static bool
is_gratuitous_arp(const struct flow *flow, struct flow_wildcards *wc)
{
if (flow->dl_type != htons(ETH_TYPE_ARP)) {
return false;
}
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
if (!eth_addr_is_broadcast(flow->dl_dst)) {
return false;
}
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
if (flow->nw_proto == ARP_OP_REPLY) {
return true;
} else if (flow->nw_proto == ARP_OP_REQUEST) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
return flow->nw_src == flow->nw_dst;
} else {
return false;
}
}
/* Checks whether a MAC learning update is necessary for MAC learning table
* 'ml' given that a packet matching 'flow' was received on 'in_xbundle' in
* 'vlan'.
*
* Most packets processed through the MAC learning table do not actually
* change it in any way. This function requires only a read lock on the MAC
* learning table, so it is much cheaper in this common case.
*
* Keep the code here synchronized with that in update_learning_table__()
* below. */
static bool
is_mac_learning_update_needed(const struct mac_learning *ml,
const struct flow *flow,
struct flow_wildcards *wc,
int vlan, struct xbundle *in_xbundle)
OVS_REQ_RDLOCK(ml->rwlock)
{
struct mac_entry *mac;
if (!mac_learning_may_learn(ml, flow->dl_src, vlan)) {
return false;
}
mac = mac_learning_lookup(ml, flow->dl_src, vlan);
if (!mac || mac_entry_age(ml, mac)) {
return true;
}
if (is_gratuitous_arp(flow, wc)) {
/* We don't want to learn from gratuitous ARP packets that are
* reflected back over bond slaves so we lock the learning table. */
if (!in_xbundle->bond) {
return true;
} else if (mac_entry_is_grat_arp_locked(mac)) {
return false;
}
}
return mac->port.p != in_xbundle->ofbundle;
}
/* Updates MAC learning table 'ml' given that a packet matching 'flow' was
* received on 'in_xbundle' in 'vlan'.
*
* This code repeats all the checks in is_mac_learning_update_needed() because
* the lock was released between there and here and thus the MAC learning state
* could have changed.
*
* Keep the code here synchronized with that in is_mac_learning_update_needed()
* above. */
static void
update_learning_table__(const struct xbridge *xbridge,
const struct flow *flow, struct flow_wildcards *wc,
int vlan, struct xbundle *in_xbundle)
OVS_REQ_WRLOCK(xbridge->ml->rwlock)
{
struct mac_entry *mac;
if (!mac_learning_may_learn(xbridge->ml, flow->dl_src, vlan)) {
return;
}
mac = mac_learning_insert(xbridge->ml, flow->dl_src, vlan);
if (is_gratuitous_arp(flow, wc)) {
/* We don't want to learn from gratuitous ARP packets that are
* reflected back over bond slaves so we lock the learning table. */
if (!in_xbundle->bond) {
mac_entry_set_grat_arp_lock(mac);
} else if (mac_entry_is_grat_arp_locked(mac)) {
return;
}
}
if (mac->port.p != in_xbundle->ofbundle) {
/* The log messages here could actually be useful in debugging,
* so keep the rate limit relatively high. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
"on port %s in VLAN %d",
xbridge->name, ETH_ADDR_ARGS(flow->dl_src),
in_xbundle->name, vlan);
mac->port.p = in_xbundle->ofbundle;
mac_learning_changed(xbridge->ml);
}
}
static void
update_learning_table(const struct xbridge *xbridge,
const struct flow *flow, struct flow_wildcards *wc,
int vlan, struct xbundle *in_xbundle)
{
bool need_update;
/* Don't learn the OFPP_NONE port. */
if (in_xbundle == &ofpp_none_bundle) {
return;
}
/* First try the common case: no change to MAC learning table. */
ovs_rwlock_rdlock(&xbridge->ml->rwlock);
need_update = is_mac_learning_update_needed(xbridge->ml, flow, wc, vlan,
in_xbundle);
ovs_rwlock_unlock(&xbridge->ml->rwlock);
if (need_update) {
/* Slow path: MAC learning table might need an update. */
ovs_rwlock_wrlock(&xbridge->ml->rwlock);
update_learning_table__(xbridge, flow, wc, vlan, in_xbundle);
ovs_rwlock_unlock(&xbridge->ml->rwlock);
}
}
/* Determines whether packets in 'flow' within 'xbridge' should be forwarded or
* dropped. Returns true if they may be forwarded, false if they should be
* dropped.
*
* 'in_port' must be the xport that corresponds to flow->in_port.
* 'in_port' must be part of a bundle (e.g. in_port->bundle must be nonnull).
*
* 'vlan' must be the VLAN that corresponds to flow->vlan_tci on 'in_port', as
* returned by input_vid_to_vlan(). It must be a valid VLAN for 'in_port', as
* checked by input_vid_is_valid().
*
* May also add tags to '*tags', although the current implementation only does
* so in one special case.
*/
static bool
is_admissible(struct xlate_ctx *ctx, struct xport *in_port,
uint16_t vlan)
{
struct xbundle *in_xbundle = in_port->xbundle;
const struct xbridge *xbridge = ctx->xbridge;
struct flow *flow = &ctx->xin->flow;
/* Drop frames for reserved multicast addresses
* only if forward_bpdu option is absent. */
if (!xbridge->forward_bpdu && eth_addr_is_reserved(flow->dl_dst)) {
xlate_report(ctx, "packet has reserved destination MAC, dropping");
return false;
}
if (in_xbundle->bond) {
struct mac_entry *mac;
switch (bond_check_admissibility(in_xbundle->bond, in_port->ofport,
flow->dl_dst)) {
case BV_ACCEPT:
break;
case BV_DROP:
xlate_report(ctx, "bonding refused admissibility, dropping");
return false;
case BV_DROP_IF_MOVED:
ovs_rwlock_rdlock(&xbridge->ml->rwlock);
mac = mac_learning_lookup(xbridge->ml, flow->dl_src, vlan);
if (mac && mac->port.p != in_xbundle->ofbundle &&
(!is_gratuitous_arp(flow, &ctx->xout->wc)
|| mac_entry_is_grat_arp_locked(mac))) {
ovs_rwlock_unlock(&xbridge->ml->rwlock);
xlate_report(ctx, "SLB bond thinks this packet looped back, "
"dropping");
return false;
}
ovs_rwlock_unlock(&xbridge->ml->rwlock);
break;
}
}
return true;
}
static void
xlate_normal(struct xlate_ctx *ctx)
{
struct flow_wildcards *wc = &ctx->xout->wc;
struct flow *flow = &ctx->xin->flow;
struct xbundle *in_xbundle;
struct xport *in_port;
struct mac_entry *mac;
void *mac_port;
uint16_t vlan;
uint16_t vid;
ctx->xout->has_normal = true;
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
in_xbundle = lookup_input_bundle(ctx->xbridge, flow->in_port.ofp_port,
ctx->xin->packet != NULL, &in_port);
if (!in_xbundle) {
xlate_report(ctx, "no input bundle, dropping");
return;
}
/* Drop malformed frames. */
if (flow->dl_type == htons(ETH_TYPE_VLAN) &&
!(flow->vlan_tci & htons(VLAN_CFI))) {
if (ctx->xin->packet != NULL) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "bridge %s: dropping packet with partial "
"VLAN tag received on port %s",
ctx->xbridge->name, in_xbundle->name);
}
xlate_report(ctx, "partial VLAN tag, dropping");
return;
}
/* Drop frames on bundles reserved for mirroring. */
if (xbundle_mirror_out(ctx->xbridge, in_xbundle)) {
if (ctx->xin->packet != NULL) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
"%s, which is reserved exclusively for mirroring",
ctx->xbridge->name, in_xbundle->name);
}
xlate_report(ctx, "input port is mirror output port, dropping");
return;
}
/* Check VLAN. */
vid = vlan_tci_to_vid(flow->vlan_tci);
if (!input_vid_is_valid(vid, in_xbundle, ctx->xin->packet != NULL)) {
xlate_report(ctx, "disallowed VLAN VID for this input port, dropping");
return;
}
vlan = input_vid_to_vlan(in_xbundle, vid);
/* Check other admissibility requirements. */
if (in_port && !is_admissible(ctx, in_port, vlan)) {
return;
}
/* Learn source MAC. */
if (ctx->xin->may_learn) {
update_learning_table(ctx->xbridge, flow, wc, vlan, in_xbundle);
}
/* Determine output bundle. */
ovs_rwlock_rdlock(&ctx->xbridge->ml->rwlock);
mac = mac_learning_lookup(ctx->xbridge->ml, flow->dl_dst, vlan);
mac_port = mac ? mac->port.p : NULL;
ovs_rwlock_unlock(&ctx->xbridge->ml->rwlock);
if (mac_port) {
struct xbundle *mac_xbundle = xbundle_lookup(mac_port);
if (mac_xbundle && mac_xbundle != in_xbundle) {
xlate_report(ctx, "forwarding to learned port");
output_normal(ctx, mac_xbundle, vlan);
} else if (!mac_xbundle) {
xlate_report(ctx, "learned port is unknown, dropping");
} else {
xlate_report(ctx, "learned port is input port, dropping");
}
} else {
struct xbundle *xbundle;
xlate_report(ctx, "no learned MAC for destination, flooding");
LIST_FOR_EACH (xbundle, list_node, &ctx->xbridge->xbundles) {
if (xbundle != in_xbundle
&& xbundle_includes_vlan(xbundle, vlan)
&& xbundle->floodable
&& !xbundle_mirror_out(ctx->xbridge, xbundle)) {
output_normal(ctx, xbundle, vlan);
}
}
ctx->xout->nf_output_iface = NF_OUT_FLOOD;
}
}
/* Compose SAMPLE action for sFlow or IPFIX. The given probability is
* the number of packets out of UINT32_MAX to sample. The given
* cookie is passed back in the callback for each sampled packet.
*/
static size_t
compose_sample_action(const struct xbridge *xbridge,
struct ofpbuf *odp_actions,
const struct flow *flow,
const uint32_t probability,
const union user_action_cookie *cookie,
const size_t cookie_size)
{
size_t sample_offset, actions_offset;
odp_port_t odp_port;
int cookie_offset;
uint32_t pid;
sample_offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SAMPLE);
nl_msg_put_u32(odp_actions, OVS_SAMPLE_ATTR_PROBABILITY, probability);
actions_offset = nl_msg_start_nested(odp_actions, OVS_SAMPLE_ATTR_ACTIONS);
odp_port = ofp_port_to_odp_port(xbridge, flow->in_port.ofp_port);
pid = dpif_port_get_pid(xbridge->dpif, odp_port, 0);
cookie_offset = odp_put_userspace_action(pid, cookie, cookie_size, odp_actions);
nl_msg_end_nested(odp_actions, actions_offset);
nl_msg_end_nested(odp_actions, sample_offset);
return cookie_offset;
}
static void
compose_sflow_cookie(const struct xbridge *xbridge, ovs_be16 vlan_tci,
odp_port_t odp_port, unsigned int n_outputs,
union user_action_cookie *cookie)
{
int ifindex;
cookie->type = USER_ACTION_COOKIE_SFLOW;
cookie->sflow.vlan_tci = vlan_tci;
/* See http://www.sflow.org/sflow_version_5.txt (search for "Input/output
* port information") for the interpretation of cookie->output. */
switch (n_outputs) {
case 0:
/* 0x40000000 | 256 means "packet dropped for unknown reason". */
cookie->sflow.output = 0x40000000 | 256;
break;
case 1:
ifindex = dpif_sflow_odp_port_to_ifindex(xbridge->sflow, odp_port);
if (ifindex) {
cookie->sflow.output = ifindex;
break;
}
/* Fall through. */
default:
/* 0x80000000 means "multiple output ports. */
cookie->sflow.output = 0x80000000 | n_outputs;
break;
}
}
/* Compose SAMPLE action for sFlow bridge sampling. */
static size_t
compose_sflow_action(const struct xbridge *xbridge,
struct ofpbuf *odp_actions,
const struct flow *flow,
odp_port_t odp_port)
{
uint32_t probability;
union user_action_cookie cookie;
if (!xbridge->sflow || flow->in_port.ofp_port == OFPP_NONE) {
return 0;
}
probability = dpif_sflow_get_probability(xbridge->sflow);
compose_sflow_cookie(xbridge, htons(0), odp_port,
odp_port == ODPP_NONE ? 0 : 1, &cookie);
return compose_sample_action(xbridge, odp_actions, flow, probability,
&cookie, sizeof cookie.sflow);
}
static void
compose_flow_sample_cookie(uint16_t probability, uint32_t collector_set_id,
uint32_t obs_domain_id, uint32_t obs_point_id,
union user_action_cookie *cookie)
{
cookie->type = USER_ACTION_COOKIE_FLOW_SAMPLE;
cookie->flow_sample.probability = probability;
cookie->flow_sample.collector_set_id = collector_set_id;
cookie->flow_sample.obs_domain_id = obs_domain_id;
cookie->flow_sample.obs_point_id = obs_point_id;
}
static void
compose_ipfix_cookie(union user_action_cookie *cookie)
{
cookie->type = USER_ACTION_COOKIE_IPFIX;
}
/* Compose SAMPLE action for IPFIX bridge sampling. */
static void
compose_ipfix_action(const struct xbridge *xbridge,
struct ofpbuf *odp_actions,
const struct flow *flow)
{
uint32_t probability;
union user_action_cookie cookie;
if (!xbridge->ipfix || flow->in_port.ofp_port == OFPP_NONE) {
return;
}
probability = dpif_ipfix_get_bridge_exporter_probability(xbridge->ipfix);
compose_ipfix_cookie(&cookie);
compose_sample_action(xbridge, odp_actions, flow, probability,
&cookie, sizeof cookie.ipfix);
}
/* SAMPLE action for sFlow must be first action in any given list of
* actions. At this point we do not have all information required to
* build it. So try to build sample action as complete as possible. */
static void
add_sflow_action(struct xlate_ctx *ctx)
{
ctx->user_cookie_offset = compose_sflow_action(ctx->xbridge,
&ctx->xout->odp_actions,
&ctx->xin->flow, ODPP_NONE);
ctx->sflow_odp_port = 0;
ctx->sflow_n_outputs = 0;
}
/* SAMPLE action for IPFIX must be 1st or 2nd action in any given list
* of actions, eventually after the SAMPLE action for sFlow. */
static void
add_ipfix_action(struct xlate_ctx *ctx)
{
compose_ipfix_action(ctx->xbridge, &ctx->xout->odp_actions,
&ctx->xin->flow);
}
/* Fix SAMPLE action according to data collected while composing ODP actions.
* We need to fix SAMPLE actions OVS_SAMPLE_ATTR_ACTIONS attribute, i.e. nested
* USERSPACE action's user-cookie which is required for sflow. */
static void
fix_sflow_action(struct xlate_ctx *ctx)
{
const struct flow *base = &ctx->base_flow;
union user_action_cookie *cookie;
if (!ctx->user_cookie_offset) {
return;
}
cookie = ofpbuf_at(&ctx->xout->odp_actions, ctx->user_cookie_offset,
sizeof cookie->sflow);
ovs_assert(cookie->type == USER_ACTION_COOKIE_SFLOW);
compose_sflow_cookie(ctx->xbridge, base->vlan_tci,
ctx->sflow_odp_port, ctx->sflow_n_outputs, cookie);
}
static enum slow_path_reason
process_special(struct xlate_ctx *ctx, const struct flow *flow,
const struct xport *xport, const struct ofpbuf *packet)
{
struct flow_wildcards *wc = &ctx->xout->wc;
const struct xbridge *xbridge = ctx->xbridge;
if (!xport) {
return 0;
} else if (xport->cfm && cfm_should_process_flow(xport->cfm, flow, wc)) {
if (packet) {
cfm_process_heartbeat(xport->cfm, packet);
}
return SLOW_CFM;
} else if (xport->bfd && bfd_should_process_flow(xport->bfd, flow, wc)) {
if (packet) {
bfd_process_packet(xport->bfd, flow, packet);
/* If POLL received, immediately sends FINAL back. */
if (bfd_should_send_packet(xport->bfd)) {
if (xport->peer) {
ofproto_dpif_monitor_port_send_soon(xport->ofport);
} else {
ofproto_dpif_monitor_port_send_soon_safe(xport->ofport);
}
}
}
return SLOW_BFD;
} else if (xport->xbundle && xport->xbundle->lacp
&& flow->dl_type == htons(ETH_TYPE_LACP)) {
if (packet) {
lacp_process_packet(xport->xbundle->lacp, xport->ofport, packet);
}
return SLOW_LACP;
} else if (xbridge->stp && stp_should_process_flow(flow, wc)) {
if (packet) {
stp_process_packet(xport, packet);
}
return SLOW_STP;
} else {
return 0;
}
}
static void
compose_output_action__(struct xlate_ctx *ctx, ofp_port_t ofp_port,
bool check_stp)
{
const struct xport *xport = get_ofp_port(ctx->xbridge, ofp_port);
struct flow_wildcards *wc = &ctx->xout->wc;
struct flow *flow = &ctx->xin->flow;
ovs_be16 flow_vlan_tci;
uint32_t flow_pkt_mark;
uint8_t flow_nw_tos;
odp_port_t out_port, odp_port;
uint8_t dscp;
/* If 'struct flow' gets additional metadata, we'll need to zero it out
* before traversing a patch port. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 25);
if (!xport) {
xlate_report(ctx, "Nonexistent output port");
return;
} else if (xport->config & OFPUTIL_PC_NO_FWD) {
xlate_report(ctx, "OFPPC_NO_FWD set, skipping output");
return;
} else if (check_stp) {
if (eth_addr_equals(ctx->base_flow.dl_dst, eth_addr_stp)) {
if (!xport_stp_listen_state(xport)) {
xlate_report(ctx, "STP not in listening state, "
"skipping bpdu output");
return;
}
} else if (!xport_stp_forward_state(xport)) {
xlate_report(ctx, "STP not in forwarding state, "
"skipping output");
return;
}
}
if (mbridge_has_mirrors(ctx->xbridge->mbridge) && xport->xbundle) {
ctx->xout->mirrors |= xbundle_mirror_dst(xport->xbundle->xbridge,
xport->xbundle);
}
if (xport->peer) {
const struct xport *peer = xport->peer;
struct flow old_flow = ctx->xin->flow;
enum slow_path_reason special;
ctx->xbridge = peer->xbridge;
flow->in_port.ofp_port = peer->ofp_port;
flow->metadata = htonll(0);
memset(&flow->tunnel, 0, sizeof flow->tunnel);
memset(flow->regs, 0, sizeof flow->regs);
special = process_special(ctx, &ctx->xin->flow, peer,
ctx->xin->packet);
if (special) {
ctx->xout->slow |= special;
} else if (may_receive(peer, ctx)) {
if (xport_stp_forward_state(peer)) {
xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true);
} else {
/* Forwarding is disabled by STP. Let OFPP_NORMAL and the
* learning action look at the packet, then drop it. */
struct flow old_base_flow = ctx->base_flow;
size_t old_size = ofpbuf_size(&ctx->xout->odp_actions);
mirror_mask_t old_mirrors = ctx->xout->mirrors;
xlate_table_action(ctx, flow->in_port.ofp_port, 0, true, true);
ctx->xout->mirrors = old_mirrors;
ctx->base_flow = old_base_flow;
ofpbuf_set_size(&ctx->xout->odp_actions, old_size);
}
}
ctx->xin->flow = old_flow;
ctx->xbridge = xport->xbridge;
if (ctx->xin->resubmit_stats) {
netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
netdev_vport_inc_rx(peer->netdev, ctx->xin->resubmit_stats);
if (peer->bfd) {
bfd_account_rx(peer->bfd, ctx->xin->resubmit_stats);
}
}
return;
}
flow_vlan_tci = flow->vlan_tci;
flow_pkt_mark = flow->pkt_mark;
flow_nw_tos = flow->nw_tos;
if (dscp_from_skb_priority(xport, flow->skb_priority, &dscp)) {
wc->masks.nw_tos |= IP_ECN_MASK;
flow->nw_tos &= ~IP_DSCP_MASK;
flow->nw_tos |= dscp;
}
if (xport->is_tunnel) {
/* Save tunnel metadata so that changes made due to
* the Logical (tunnel) Port are not visible for any further
* matches, while explicit set actions on tunnel metadata are.
*/
struct flow_tnl flow_tnl = flow->tunnel;
odp_port = tnl_port_send(xport->ofport, flow, &ctx->xout->wc);
if (odp_port == ODPP_NONE) {
xlate_report(ctx, "Tunneling decided against output");
goto out; /* restore flow_nw_tos */
}
if (flow->tunnel.ip_dst == ctx->orig_tunnel_ip_dst) {
xlate_report(ctx, "Not tunneling to our own address");
goto out; /* restore flow_nw_tos */
}
if (ctx->xin->resubmit_stats) {
netdev_vport_inc_tx(xport->netdev, ctx->xin->resubmit_stats);
}
out_port = odp_port;
commit_odp_tunnel_action(flow, &ctx->base_flow,
&ctx->xout->odp_actions);
flow->tunnel = flow_tnl; /* Restore tunnel metadata */
} else {
odp_port = xport->odp_port;
out_port = odp_port;
if (ofproto_has_vlan_splinters(ctx->xbridge->ofproto)) {
ofp_port_t vlandev_port;
wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
vlandev_port = vsp_realdev_to_vlandev(ctx->xbridge->ofproto,
ofp_port, flow->vlan_tci);
if (vlandev_port != ofp_port) {
out_port = ofp_port_to_odp_port(ctx->xbridge, vlandev_port);
flow->vlan_tci = htons(0);
}
}
}
if (out_port != ODPP_NONE) {
ctx->xout->slow |= commit_odp_actions(flow, &ctx->base_flow,
&ctx->xout->odp_actions,
&ctx->xout->wc);
if (ctx->xout->use_recirc) {
struct ovs_action_recirc *act_recirc;
struct xlate_recirc *xr = &ctx->xout->recirc;
act_recirc = nl_msg_put_unspec_uninit(&ctx->xout->odp_actions,
OVS_ACTION_ATTR_RECIRC, sizeof *act_recirc);
act_recirc->recirc_id = xr->recirc_id;
act_recirc->hash_alg = xr->hash_alg;
act_recirc->hash_bias = xr->hash_bias;
} else {
nl_msg_put_odp_port(&ctx->xout->odp_actions, OVS_ACTION_ATTR_OUTPUT,
out_port);
}
ctx->sflow_odp_port = odp_port;
ctx->sflow_n_outputs++;
ctx->xout->nf_output_iface = ofp_port;
}
out:
/* Restore flow */
flow->vlan_tci = flow_vlan_tci;
flow->pkt_mark = flow_pkt_mark;
flow->nw_tos = flow_nw_tos;
}
static void
compose_output_action(struct xlate_ctx *ctx, ofp_port_t ofp_port)
{
compose_output_action__(ctx, ofp_port, true);
}
static void
xlate_recursively(struct xlate_ctx *ctx, struct rule_dpif *rule)
{
struct rule_dpif *old_rule = ctx->rule;
struct rule_actions *actions;
if (ctx->xin->resubmit_stats) {
rule_dpif_credit_stats(rule, ctx->xin->resubmit_stats);
}
ctx->resubmits++;
ctx->recurse++;
ctx->rule = rule;
actions = rule_dpif_get_actions(rule);
do_xlate_actions(actions->ofpacts, actions->ofpacts_len, ctx);
ctx->rule = old_rule;
ctx->recurse--;
}
static bool
xlate_resubmit_resource_check(struct xlate_ctx *ctx)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
if (ctx->recurse >= MAX_RESUBMIT_RECURSION + MAX_INTERNAL_RESUBMITS) {
VLOG_ERR_RL(&rl, "resubmit actions recursed over %d times",
MAX_RESUBMIT_RECURSION);
} else if (ctx->resubmits >= MAX_RESUBMITS + MAX_INTERNAL_RESUBMITS) {
VLOG_ERR_RL(&rl, "over %d resubmit actions", MAX_RESUBMITS);
} else if (ofpbuf_size(&ctx->xout->odp_actions) > UINT16_MAX) {
VLOG_ERR_RL(&rl, "resubmits yielded over 64 kB of actions");
} else if (ofpbuf_size(&ctx->stack) >= 65536) {
VLOG_ERR_RL(&rl, "resubmits yielded over 64 kB of stack");
} else {
return true;
}
return false;
}
static void
xlate_table_action(struct xlate_ctx *ctx, ofp_port_t in_port, uint8_t table_id,
bool may_packet_in, bool honor_table_miss)
{
if (xlate_resubmit_resource_check(ctx)) {
ofp_port_t old_in_port = ctx->xin->flow.in_port.ofp_port;
bool skip_wildcards = ctx->xin->skip_wildcards;
uint8_t old_table_id = ctx->table_id;
struct rule_dpif *rule;
enum rule_dpif_lookup_verdict verdict;
enum ofputil_port_config config = 0;
ctx->table_id = table_id;
/* Look up a flow with 'in_port' as the input port. Then restore the
* original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
* have surprising behavior). */
ctx->xin->flow.in_port.ofp_port = in_port;
verdict = rule_dpif_lookup_from_table(ctx->xbridge->ofproto,
&ctx->xin->flow,
!skip_wildcards
? &ctx->xout->wc : NULL,
honor_table_miss,
&ctx->table_id, &rule);
ctx->xin->flow.in_port.ofp_port = old_in_port;
if (ctx->xin->resubmit_hook) {
ctx->xin->resubmit_hook(ctx->xin, rule, ctx->recurse);
}
switch (verdict) {
case RULE_DPIF_LOOKUP_VERDICT_MATCH:
goto match;
case RULE_DPIF_LOOKUP_VERDICT_CONTROLLER:
if (may_packet_in) {
struct xport *xport;
xport = get_ofp_port(ctx->xbridge,
ctx->xin->flow.in_port.ofp_port);
config = xport ? xport->config : 0;
break;
}
/* Fall through to drop */
case RULE_DPIF_LOOKUP_VERDICT_DROP:
config = OFPUTIL_PC_NO_PACKET_IN;
break;
case RULE_DPIF_LOOKUP_VERDICT_DEFAULT:
if (!ofproto_dpif_wants_packet_in_on_miss(ctx->xbridge->ofproto)) {
config = OFPUTIL_PC_NO_PACKET_IN;
}
break;
default:
OVS_NOT_REACHED();
}
choose_miss_rule(config, ctx->xbridge->miss_rule,
ctx->xbridge->no_packet_in_rule, &rule);
match:
if (rule) {
xlate_recursively(ctx, rule);
rule_dpif_unref(rule);
}
ctx->table_id = old_table_id;
return;
}
ctx->exit = true;
}
static void
xlate_group_bucket(struct xlate_ctx *ctx, const struct ofputil_bucket *bucket)
{
uint64_t action_list_stub[1024 / 8];
struct ofpbuf action_list, action_set;
ofpbuf_use_const(&action_set, bucket->ofpacts, bucket->ofpacts_len);
ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub);
ofpacts_execute_action_set(&action_list, &action_set);
ctx->recurse++;
do_xlate_actions(ofpbuf_data(&action_list), ofpbuf_size(&action_list), ctx);
ctx->recurse--;
ofpbuf_uninit(&action_set);
ofpbuf_uninit(&action_list);
}
static void
xlate_all_group(struct xlate_ctx *ctx, struct group_dpif *group)
{
const struct ofputil_bucket *bucket;
const struct list *buckets;
struct flow old_flow = ctx->xin->flow;
group_dpif_get_buckets(group, &buckets);
LIST_FOR_EACH (bucket, list_node, buckets) {
xlate_group_bucket(ctx, bucket);
/* Roll back flow to previous state.
* This is equivalent to cloning the packet for each bucket.
*
* As a side effect any subsequently applied actions will
* also effectively be applied to a clone of the packet taken
* just before applying the all or indirect group. */
ctx->xin->flow = old_flow;
}
}
static void
xlate_ff_group(struct xlate_ctx *ctx, struct group_dpif *group)
{
const struct ofputil_bucket *bucket;
bucket = group_first_live_bucket(ctx, group, 0);
if (bucket) {
xlate_group_bucket(ctx, bucket);
}
}
static void
xlate_select_group(struct xlate_ctx *ctx, struct group_dpif *group)
{
struct flow_wildcards *wc = &ctx->xout->wc;
const struct ofputil_bucket *bucket;
uint32_t basis;
basis = hash_mac(ctx->xin->flow.dl_dst, 0, 0);
bucket = group_best_live_bucket(ctx, group, basis);
if (bucket) {
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
xlate_group_bucket(ctx, bucket);
}
}
static void
xlate_group_action__(struct xlate_ctx *ctx, struct group_dpif *group)
{
ctx->in_group = true;
switch (group_dpif_get_type(group)) {
case OFPGT11_ALL:
case OFPGT11_INDIRECT:
xlate_all_group(ctx, group);
break;
case OFPGT11_SELECT:
xlate_select_group(ctx, group);
break;
case OFPGT11_FF:
xlate_ff_group(ctx, group);
break;
default:
OVS_NOT_REACHED();
}
group_dpif_release(group);
ctx->in_group = false;
}
static bool
xlate_group_resource_check(struct xlate_ctx *ctx)
{
if (!xlate_resubmit_resource_check(ctx)) {
return false;
} else if (ctx->in_group) {
/* Prevent nested translation of OpenFlow groups.
*
* OpenFlow allows this restriction. We enforce this restriction only
* because, with the current architecture, we would otherwise have to
* take a possibly recursive read lock on the ofgroup rwlock, which is
* unsafe given that POSIX allows taking a read lock to block if there
* is a thread blocked on taking the write lock. Other solutions
* without this restriction are also possible, but seem unwarranted
* given the current limited use of groups. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
VLOG_ERR_RL(&rl, "cannot recursively translate OpenFlow group");
return false;
} else {
return true;
}
}
static bool
xlate_group_action(struct xlate_ctx *ctx, uint32_t group_id)
{
if (xlate_group_resource_check(ctx)) {
struct group_dpif *group;
bool got_group;
got_group = group_dpif_lookup(ctx->xbridge->ofproto, group_id, &group);
if (got_group) {
xlate_group_action__(ctx, group);
} else {
return true;
}
}
return false;
}
static void
xlate_ofpact_resubmit(struct xlate_ctx *ctx,
const struct ofpact_resubmit *resubmit)
{
ofp_port_t in_port;
uint8_t table_id;
bool may_packet_in = false;
bool honor_table_miss = false;
if (ctx->rule && rule_dpif_is_internal(ctx->rule)) {
/* Still allow missed packets to be sent to the controller
* if resubmitting from an internal table. */
may_packet_in = true;
honor_table_miss = true;
}
in_port = resubmit->in_port;
if (in_port == OFPP_IN_PORT) {
in_port = ctx->xin->flow.in_port.ofp_port;
}
table_id = resubmit->table_id;
if (table_id == 255) {
table_id = ctx->table_id;
}
xlate_table_action(ctx, in_port, table_id, may_packet_in,
honor_table_miss);
}
static void
flood_packets(struct xlate_ctx *ctx, bool all)
{
const struct xport *xport;
HMAP_FOR_EACH (xport, ofp_node, &ctx->xbridge->xports) {
if (xport->ofp_port == ctx->xin->flow.in_port.ofp_port) {
continue;
}
if (all) {
compose_output_action__(ctx, xport->ofp_port, false);
} else if (!(xport->config & OFPUTIL_PC_NO_FLOOD)) {
compose_output_action(ctx, xport->ofp_port);
}
}
ctx->xout->nf_output_iface = NF_OUT_FLOOD;
}
static void
execute_controller_action(struct xlate_ctx *ctx, int len,
enum ofp_packet_in_reason reason,
uint16_t controller_id)
{
struct ofproto_packet_in *pin;
struct ofpbuf *packet;
struct pkt_metadata md = PKT_METADATA_INITIALIZER(0);
ctx->xout->slow |= SLOW_CONTROLLER;
if (!ctx->xin->packet) {
return;
}
packet = ofpbuf_clone(ctx->xin->packet);
ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
&ctx->xout->odp_actions,
&ctx->xout->wc);
odp_execute_actions(NULL, packet, false, &md,
ofpbuf_data(&ctx->xout->odp_actions),
ofpbuf_size(&ctx->xout->odp_actions), NULL);
pin = xmalloc(sizeof *pin);
pin->up.packet_len = ofpbuf_size(packet);
pin->up.packet = ofpbuf_steal_data(packet);
pin->up.reason = reason;
pin->up.table_id = ctx->table_id;
pin->up.cookie = (ctx->rule
? rule_dpif_get_flow_cookie(ctx->rule)
: OVS_BE64_MAX);
flow_get_metadata(&ctx->xin->flow, &pin->up.fmd);
pin->controller_id = controller_id;
pin->send_len = len;
/* If a rule is a table-miss rule then this is
* a table-miss handled by a table-miss rule.
*
* Else, if rule is internal and has a controller action,
* the later being implied by the rule being processed here,
* then this is a table-miss handled without a table-miss rule.
*
* Otherwise this is not a table-miss. */
pin->miss_type = OFPROTO_PACKET_IN_NO_MISS;
if (ctx->rule) {
if (rule_dpif_is_table_miss(ctx->rule)) {
pin->miss_type = OFPROTO_PACKET_IN_MISS_FLOW;
} else if (rule_dpif_is_internal(ctx->rule)) {
pin->miss_type = OFPROTO_PACKET_IN_MISS_WITHOUT_FLOW;
}
}
ofproto_dpif_send_packet_in(ctx->xbridge->ofproto, pin);
ofpbuf_delete(packet);
}
static void
compose_mpls_push_action(struct xlate_ctx *ctx, struct ofpact_push_mpls *mpls)
{
struct flow_wildcards *wc = &ctx->xout->wc;
struct flow *flow = &ctx->xin->flow;
int n;
ovs_assert(eth_type_mpls(mpls->ethertype));
n = flow_count_mpls_labels(flow, wc);
if (!n) {
ctx->xout->slow |= commit_odp_actions(flow, &ctx->base_flow,
&ctx->xout->odp_actions,
&ctx->xout->wc);
} else if (n >= FLOW_MAX_MPLS_LABELS) {
if (ctx->xin->packet != NULL) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "bridge %s: dropping packet on which an "
"MPLS push action can't be performed as it would "
"have more MPLS LSEs than the %d supported.",
ctx->xbridge->name, FLOW_MAX_MPLS_LABELS);
}
ctx->exit = true;
return;
} else if (n >= ctx->xbridge->max_mpls_depth) {
COVERAGE_INC(xlate_actions_mpls_overflow);
ctx->xout->slow |= SLOW_ACTION;
}
flow_push_mpls(flow, n, mpls->ethertype, wc);
}
static void
compose_mpls_pop_action(struct xlate_ctx *ctx, ovs_be16 eth_type)
{
struct flow_wildcards *wc = &ctx->xout->wc;
struct flow *flow = &ctx->xin->flow;
int n = flow_count_mpls_labels(flow, wc);
if (!flow_pop_mpls(flow, n, eth_type, wc) && n >= FLOW_MAX_MPLS_LABELS) {
if (ctx->xin->packet != NULL) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rl, "bridge %s: dropping packet on which an "
"MPLS pop action can't be performed as it has "
"more MPLS LSEs than the %d supported.",
ctx->xbridge->name, FLOW_MAX_MPLS_LABELS);
}
ctx->exit = true;
ofpbuf_clear(&ctx->xout->odp_actions);
}
}
static bool
compose_dec_ttl(struct xlate_ctx *ctx, struct ofpact_cnt_ids *ids)
{
struct flow *flow = &ctx->xin->flow;
if (!is_ip_any(flow)) {
return false;
}
ctx->xout->wc.masks.nw_ttl = 0xff;
if (flow->nw_ttl > 1) {
flow->nw_ttl--;
return false;
} else {
size_t i;
for (i = 0; i < ids->n_controllers; i++) {
execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL,
ids->cnt_ids[i]);
}
/* Stop processing for current table. */
return true;
}
}
static void
compose_set_mpls_label_action(struct xlate_ctx *ctx, ovs_be32 label)
{
if (eth_type_mpls(ctx->xin->flow.dl_type)) {
ctx->xout->wc.masks.mpls_lse[0] |= htonl(MPLS_LABEL_MASK);
set_mpls_lse_label(&ctx->xin->flow.mpls_lse[0], label);
}
}
static void
compose_set_mpls_tc_action(struct xlate_ctx *ctx, uint8_t tc)
{
if (eth_type_mpls(ctx->xin->flow.dl_type)) {
ctx->xout->wc.masks.mpls_lse[0] |= htonl(MPLS_TC_MASK);
set_mpls_lse_tc(&ctx->xin->flow.mpls_lse[0], tc);
}
}
static void
compose_set_mpls_ttl_action(struct xlate_ctx *ctx, uint8_t ttl)
{
if (eth_type_mpls(ctx->xin->flow.dl_type)) {
ctx->xout->wc.masks.mpls_lse[0] |= htonl(MPLS_TTL_MASK);
set_mpls_lse_ttl(&ctx->xin->flow.mpls_lse[0], ttl);
}
}
static bool
compose_dec_mpls_ttl_action(struct xlate_ctx *ctx)
{
struct flow *flow = &ctx->xin->flow;
uint8_t ttl = mpls_lse_to_ttl(flow->mpls_lse[0]);
struct flow_wildcards *wc = &ctx->xout->wc;
memset(&wc->masks.mpls_lse, 0xff, sizeof wc->masks.mpls_lse);
if (eth_type_mpls(flow->dl_type)) {
if (ttl > 1) {
ttl--;
set_mpls_lse_ttl(&flow->mpls_lse[0], ttl);
return false;
} else {
execute_controller_action(ctx, UINT16_MAX, OFPR_INVALID_TTL, 0);
/* Stop processing for current table. */
return true;
}
} else {
return true;
}
}
static void
xlate_output_action(struct xlate_ctx *ctx,
ofp_port_t port, uint16_t max_len, bool may_packet_in)
{
ofp_port_t prev_nf_output_iface = ctx->xout->nf_output_iface;
ctx->xout->nf_output_iface = NF_OUT_DROP;
switch (port) {
case OFPP_IN_PORT:
compose_output_action(ctx, ctx->xin->flow.in_port.ofp_port);
break;
case OFPP_TABLE:
xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
0, may_packet_in, true);
break;
case OFPP_NORMAL:
xlate_normal(ctx);
break;
case OFPP_FLOOD:
flood_packets(ctx, false);
break;
case OFPP_ALL:
flood_packets(ctx, true);
break;
case OFPP_CONTROLLER:
execute_controller_action(ctx, max_len, OFPR_ACTION, 0);
break;
case OFPP_NONE:
break;
case OFPP_LOCAL:
default:
if (port != ctx->xin->flow.in_port.ofp_port) {
compose_output_action(ctx, port);
} else {
xlate_report(ctx, "skipping output to input port");
}
break;
}
if (prev_nf_output_iface == NF_OUT_FLOOD) {
ctx->xout->nf_output_iface = NF_OUT_FLOOD;
} else if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
ctx->xout->nf_output_iface = prev_nf_output_iface;
} else if (prev_nf_output_iface != NF_OUT_DROP &&
ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
ctx->xout->nf_output_iface = NF_OUT_MULTI;
}
}
static void
xlate_output_reg_action(struct xlate_ctx *ctx,
const struct ofpact_output_reg *or)
{
uint64_t port = mf_get_subfield(&or->src, &ctx->xin->flow);
if (port <= UINT16_MAX) {
union mf_subvalue value;
memset(&value, 0xff, sizeof value);
mf_write_subfield_flow(&or->src, &value, &ctx->xout->wc.masks);
xlate_output_action(ctx, u16_to_ofp(port),
or->max_len, false);
}
}
static void
xlate_enqueue_action(struct xlate_ctx *ctx,
const struct ofpact_enqueue *enqueue)
{
ofp_port_t ofp_port = enqueue->port;
uint32_t queue_id = enqueue->queue;
uint32_t flow_priority, priority;
int error;
/* Translate queue to priority. */
error = dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &priority);
if (error) {
/* Fall back to ordinary output action. */
xlate_output_action(ctx, enqueue->port, 0, false);
return;
}
/* Check output port. */
if (ofp_port == OFPP_IN_PORT) {
ofp_port = ctx->xin->flow.in_port.ofp_port;
} else if (ofp_port == ctx->xin->flow.in_port.ofp_port) {
return;
}
/* Add datapath actions. */
flow_priority = ctx->xin->flow.skb_priority;
ctx->xin->flow.skb_priority = priority;
compose_output_action(ctx, ofp_port);
ctx->xin->flow.skb_priority = flow_priority;
/* Update NetFlow output port. */
if (ctx->xout->nf_output_iface == NF_OUT_DROP) {
ctx->xout->nf_output_iface = ofp_port;
} else if (ctx->xout->nf_output_iface != NF_OUT_FLOOD) {
ctx->xout->nf_output_iface = NF_OUT_MULTI;
}
}
static void
xlate_set_queue_action(struct xlate_ctx *ctx, uint32_t queue_id)
{
uint32_t skb_priority;
if (!dpif_queue_to_priority(ctx->xbridge->dpif, queue_id, &skb_priority)) {
ctx->xin->flow.skb_priority = skb_priority;
} else {
/* Couldn't translate queue to a priority. Nothing to do. A warning
* has already been logged. */
}
}
static bool
slave_enabled_cb(ofp_port_t ofp_port, void *xbridge_)
{
const struct xbridge *xbridge = xbridge_;
struct xport *port;
switch (ofp_port) {
case OFPP_IN_PORT:
case OFPP_TABLE:
case OFPP_NORMAL:
case OFPP_FLOOD:
case OFPP_ALL:
case OFPP_NONE:
return true;
case OFPP_CONTROLLER: /* Not supported by the bundle action. */
return false;
default:
port = get_ofp_port(xbridge, ofp_port);
return port ? port->may_enable : false;
}
}
static void
xlate_bundle_action(struct xlate_ctx *ctx,
const struct ofpact_bundle *bundle)
{
ofp_port_t port;
port = bundle_execute(bundle, &ctx->xin->flow, &ctx->xout->wc,
slave_enabled_cb,
CONST_CAST(struct xbridge *, ctx->xbridge));
if (bundle->dst.field) {
nxm_reg_load(&bundle->dst, ofp_to_u16(port), &ctx->xin->flow,
&ctx->xout->wc);
} else {
xlate_output_action(ctx, port, 0, false);
}
}
static void
xlate_learn_action(struct xlate_ctx *ctx,
const struct ofpact_learn *learn)
{
uint64_t ofpacts_stub[1024 / 8];
struct ofputil_flow_mod fm;
struct ofpbuf ofpacts;
ctx->xout->has_learn = true;
learn_mask(learn, &ctx->xout->wc);
if (!ctx->xin->may_learn) {
return;
}
ofpbuf_use_stub(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
learn_execute(learn, &ctx->xin->flow, &fm, &ofpacts);
ofproto_dpif_flow_mod(ctx->xbridge->ofproto, &fm);
ofpbuf_uninit(&ofpacts);
}
static void
xlate_fin_timeout(struct xlate_ctx *ctx,
const struct ofpact_fin_timeout *oft)
{
if (ctx->xin->tcp_flags & (TCP_FIN | TCP_RST) && ctx->rule) {
rule_dpif_reduce_timeouts(ctx->rule, oft->fin_idle_timeout,
oft->fin_hard_timeout);
}
}
static void
xlate_sample_action(struct xlate_ctx *ctx,
const struct ofpact_sample *os)
{
union user_action_cookie cookie;
/* Scale the probability from 16-bit to 32-bit while representing
* the same percentage. */
uint32_t probability = (os->probability << 16) | os->probability;
if (!ctx->xbridge->variable_length_userdata) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 1);
VLOG_ERR_RL(&rl, "ignoring NXAST_SAMPLE action because datapath "
"lacks support (needs Linux 3.10+ or kernel module from "
"OVS 1.11+)");
return;
}
ctx->xout->slow |= commit_odp_actions(&ctx->xin->flow, &ctx->base_flow,
&ctx->xout->odp_actions,
&ctx->xout->wc);
compose_flow_sample_cookie(os->probability, os->collector_set_id,
os->obs_domain_id, os->obs_point_id, &cookie);
compose_sample_action(ctx->xbridge, &ctx->xout->odp_actions, &ctx->xin->flow,
probability, &cookie, sizeof cookie.flow_sample);
}
static bool
may_receive(const struct xport *xport, struct xlate_ctx *ctx)
{
if (xport->config & (eth_addr_equals(ctx->xin->flow.dl_dst, eth_addr_stp)
? OFPUTIL_PC_NO_RECV_STP
: OFPUTIL_PC_NO_RECV)) {
return false;
}
/* Only drop packets here if both forwarding and learning are
* disabled. If just learning is enabled, we need to have
* OFPP_NORMAL and the learning action have a look at the packet
* before we can drop it. */
if (!xport_stp_forward_state(xport) && !xport_stp_learn_state(xport)) {
return false;
}
return true;
}
static void
xlate_write_actions(struct xlate_ctx *ctx, const struct ofpact *a)
{
struct ofpact_nest *on = ofpact_get_WRITE_ACTIONS(a);
ofpbuf_put(&ctx->action_set, on->actions, ofpact_nest_get_action_len(on));
ofpact_pad(&ctx->action_set);
}
static void
xlate_action_set(struct xlate_ctx *ctx)
{
uint64_t action_list_stub[1024 / 64];
struct ofpbuf action_list;
ofpbuf_use_stub(&action_list, action_list_stub, sizeof action_list_stub);
ofpacts_execute_action_set(&action_list, &ctx->action_set);
do_xlate_actions(ofpbuf_data(&action_list), ofpbuf_size(&action_list), ctx);
ofpbuf_uninit(&action_list);
}
static void
do_xlate_actions(const struct ofpact *ofpacts, size_t ofpacts_len,
struct xlate_ctx *ctx)
{
struct flow_wildcards *wc = &ctx->xout->wc;
struct flow *flow = &ctx->xin->flow;
const struct ofpact *a;
/* dl_type already in the mask, not set below. */
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
struct ofpact_controller *controller;
const struct ofpact_metadata *metadata;
const struct ofpact_set_field *set_field;
const struct mf_field *mf;
if (ctx->exit) {
break;
}
switch (a->type) {
case OFPACT_OUTPUT:
xlate_output_action(ctx, ofpact_get_OUTPUT(a)->port,
ofpact_get_OUTPUT(a)->max_len, true);
break;
case OFPACT_GROUP:
if (xlate_group_action(ctx, ofpact_get_GROUP(a)->group_id)) {
return;
}
break;
case OFPACT_CONTROLLER:
controller = ofpact_get_CONTROLLER(a);
execute_controller_action(ctx, controller->max_len,
controller->reason,
controller->controller_id);
break;
case OFPACT_ENQUEUE:
xlate_enqueue_action(ctx, ofpact_get_ENQUEUE(a));
break;
case OFPACT_SET_VLAN_VID:
wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
if (flow->vlan_tci & htons(VLAN_CFI) ||
ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) {
flow->vlan_tci &= ~htons(VLAN_VID_MASK);
flow->vlan_tci |= (htons(ofpact_get_SET_VLAN_VID(a)->vlan_vid)
| htons(VLAN_CFI));
}
break;
case OFPACT_SET_VLAN_PCP:
wc->masks.vlan_tci |= htons(VLAN_PCP_MASK | VLAN_CFI);
if (flow->vlan_tci & htons(VLAN_CFI) ||
ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) {
flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
flow->vlan_tci |= htons((ofpact_get_SET_VLAN_PCP(a)->vlan_pcp
<< VLAN_PCP_SHIFT) | VLAN_CFI);
}
break;
case OFPACT_STRIP_VLAN:
memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
flow->vlan_tci = htons(0);
break;
case OFPACT_PUSH_VLAN:
/* XXX 802.1AD(QinQ) */
memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
flow->vlan_tci = htons(VLAN_CFI);
break;
case OFPACT_SET_ETH_SRC:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
memcpy(flow->dl_src, ofpact_get_SET_ETH_SRC(a)->mac, ETH_ADDR_LEN);
break;
case OFPACT_SET_ETH_DST:
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
memcpy(flow->dl_dst, ofpact_get_SET_ETH_DST(a)->mac, ETH_ADDR_LEN);
break;
case OFPACT_SET_IPV4_SRC:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
flow->nw_src = ofpact_get_SET_IPV4_SRC(a)->ipv4;
}
break;
case OFPACT_SET_IPV4_DST:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
flow->nw_dst = ofpact_get_SET_IPV4_DST(a)->ipv4;
}
break;
case OFPACT_SET_IP_DSCP:
if (is_ip_any(flow)) {
wc->masks.nw_tos |= IP_DSCP_MASK;
flow->nw_tos &= ~IP_DSCP_MASK;
flow->nw_tos |= ofpact_get_SET_IP_DSCP(a)->dscp;
}
break;
case OFPACT_SET_IP_ECN:
if (is_ip_any(flow)) {
wc->masks.nw_tos |= IP_ECN_MASK;
flow->nw_tos &= ~IP_ECN_MASK;
flow->nw_tos |= ofpact_get_SET_IP_ECN(a)->ecn;
}
break;
case OFPACT_SET_IP_TTL:
if (is_ip_any(flow)) {
wc->masks.nw_ttl = 0xff;
flow->nw_ttl = ofpact_get_SET_IP_TTL(a)->ttl;
}
break;
case OFPACT_SET_L4_SRC_PORT:
if (is_ip_any(flow)) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
flow->tp_src = htons(ofpact_get_SET_L4_SRC_PORT(a)->port);
}
break;
case OFPACT_SET_L4_DST_PORT:
if (is_ip_any(flow)) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
flow->tp_dst = htons(ofpact_get_SET_L4_DST_PORT(a)->port);
}
break;
case OFPACT_RESUBMIT:
xlate_ofpact_resubmit(ctx, ofpact_get_RESUBMIT(a));
break;
case OFPACT_SET_TUNNEL:
flow->tunnel.tun_id = htonll(ofpact_get_SET_TUNNEL(a)->tun_id);
break;
case OFPACT_SET_QUEUE:
xlate_set_queue_action(ctx, ofpact_get_SET_QUEUE(a)->queue_id);
break;
case OFPACT_POP_QUEUE:
flow->skb_priority = ctx->orig_skb_priority;
break;
case OFPACT_REG_MOVE:
nxm_execute_reg_move(ofpact_get_REG_MOVE(a), flow, wc);
break;
case OFPACT_REG_LOAD:
nxm_execute_reg_load(ofpact_get_REG_LOAD(a), flow, wc);
break;
case OFPACT_SET_FIELD:
set_field = ofpact_get_SET_FIELD(a);
mf = set_field->field;
mf_mask_field_and_prereqs(mf, &wc->masks);
/* Set field action only ever overwrites packet's outermost
* applicable header fields. Do nothing if no header exists. */
if ((mf->id != MFF_VLAN_VID || flow->vlan_tci & htons(VLAN_CFI))
&& ((mf->id != MFF_MPLS_LABEL && mf->id != MFF_MPLS_TC)
|| eth_type_mpls(flow->dl_type))) {
mf_set_flow_value(mf, &set_field->value, flow);
}
break;
case OFPACT_STACK_PUSH:
nxm_execute_stack_push(ofpact_get_STACK_PUSH(a), flow, wc,
&ctx->stack);
break;
case OFPACT_STACK_POP:
nxm_execute_stack_pop(ofpact_get_STACK_POP(a), flow, wc,
&ctx->stack);
break;
case OFPACT_PUSH_MPLS:
compose_mpls_push_action(ctx, ofpact_get_PUSH_MPLS(a));
break;
case OFPACT_POP_MPLS:
compose_mpls_pop_action(ctx, ofpact_get_POP_MPLS(a)->ethertype);
break;
case OFPACT_SET_MPLS_LABEL:
compose_set_mpls_label_action(
ctx, ofpact_get_SET_MPLS_LABEL(a)->label);
break;
case OFPACT_SET_MPLS_TC:
compose_set_mpls_tc_action(ctx, ofpact_get_SET_MPLS_TC(a)->tc);
break;
case OFPACT_SET_MPLS_TTL:
compose_set_mpls_ttl_action(ctx, ofpact_get_SET_MPLS_TTL(a)->ttl);
break;
case OFPACT_DEC_MPLS_TTL:
if (compose_dec_mpls_ttl_action(ctx)) {
return;
}
break;
case OFPACT_DEC_TTL:
wc->masks.nw_ttl = 0xff;
if (compose_dec_ttl(ctx, ofpact_get_DEC_TTL(a))) {
return;
}
break;
case OFPACT_NOTE:
/* Nothing to do. */
break;
case OFPACT_MULTIPATH:
multipath_execute(ofpact_get_MULTIPATH(a), flow, wc);
break;
case OFPACT_BUNDLE:
xlate_bundle_action(ctx, ofpact_get_BUNDLE(a));
break;
case OFPACT_OUTPUT_REG:
xlate_output_reg_action(ctx, ofpact_get_OUTPUT_REG(a));
break;
case OFPACT_LEARN:
xlate_learn_action(ctx, ofpact_get_LEARN(a));
break;
case OFPACT_EXIT:
ctx->exit = true;
break;
case OFPACT_FIN_TIMEOUT:
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
ctx->xout->has_fin_timeout = true;
xlate_fin_timeout(ctx, ofpact_get_FIN_TIMEOUT(a));
break;
case OFPACT_CLEAR_ACTIONS:
ofpbuf_clear(&ctx->action_set);
break;
case OFPACT_WRITE_ACTIONS:
xlate_write_actions(ctx, a);
break;
case OFPACT_WRITE_METADATA:
metadata = ofpact_get_WRITE_METADATA(a);
flow->metadata &= ~metadata->mask;
flow->metadata |= metadata->metadata & metadata->mask;
break;
case OFPACT_METER:
/* Not implemented yet. */
break;
case OFPACT_GOTO_TABLE: {
struct ofpact_goto_table *ogt = ofpact_get_GOTO_TABLE(a);
ovs_assert(ctx->table_id < ogt->table_id);
xlate_table_action(ctx, ctx->xin->flow.in_port.ofp_port,
ogt->table_id, true, true);
break;
}
case OFPACT_SAMPLE:
xlate_sample_action(ctx, ofpact_get_SAMPLE(a));
break;
}
}
}
void
xlate_in_init(struct xlate_in *xin, struct ofproto_dpif *ofproto,
const struct flow *flow, struct rule_dpif *rule,
uint16_t tcp_flags, const struct ofpbuf *packet)
{
xin->ofproto = ofproto;
xin->flow = *flow;
xin->packet = packet;
xin->may_learn = packet != NULL;
xin->rule = rule;
xin->ofpacts = NULL;
xin->ofpacts_len = 0;
xin->tcp_flags = tcp_flags;
xin->resubmit_hook = NULL;
xin->report_hook = NULL;
xin->resubmit_stats = NULL;
xin->skip_wildcards = false;
}
void
xlate_out_uninit(struct xlate_out *xout)
{
if (xout) {
ofpbuf_uninit(&xout->odp_actions);
}
}
/* Translates the 'ofpacts_len' bytes of "struct ofpact"s starting at 'ofpacts'
* into datapath actions, using 'ctx', and discards the datapath actions. */
void
xlate_actions_for_side_effects(struct xlate_in *xin)
{
struct xlate_out xout;
xlate_actions(xin, &xout);
xlate_out_uninit(&xout);
}
static void
xlate_report(struct xlate_ctx *ctx, const char *s)
{
if (ctx->xin->report_hook) {
ctx->xin->report_hook(ctx->xin, s, ctx->recurse);
}
}
void
xlate_out_copy(struct xlate_out *dst, const struct xlate_out *src)
{
dst->wc = src->wc;
dst->slow = src->slow;
dst->has_learn = src->has_learn;
dst->has_normal = src->has_normal;
dst->has_fin_timeout = src->has_fin_timeout;
dst->nf_output_iface = src->nf_output_iface;
dst->mirrors = src->mirrors;
ofpbuf_use_stub(&dst->odp_actions, dst->odp_actions_stub,
sizeof dst->odp_actions_stub);
ofpbuf_put(&dst->odp_actions, ofpbuf_data(&src->odp_actions),
ofpbuf_size(&src->odp_actions));
}
static struct skb_priority_to_dscp *
get_skb_priority(const struct xport *xport, uint32_t skb_priority)
{
struct skb_priority_to_dscp *pdscp;
uint32_t hash;
hash = hash_int(skb_priority, 0);
HMAP_FOR_EACH_IN_BUCKET (pdscp, hmap_node, hash, &xport->skb_priorities) {
if (pdscp->skb_priority == skb_priority) {
return pdscp;
}
}
return NULL;
}
static bool
dscp_from_skb_priority(const struct xport *xport, uint32_t skb_priority,
uint8_t *dscp)
{
struct skb_priority_to_dscp *pdscp = get_skb_priority(xport, skb_priority);
*dscp = pdscp ? pdscp->dscp : 0;
return pdscp != NULL;
}
static void
clear_skb_priorities(struct xport *xport)
{
struct skb_priority_to_dscp *pdscp, *next;
HMAP_FOR_EACH_SAFE (pdscp, next, hmap_node, &xport->skb_priorities) {
hmap_remove(&xport->skb_priorities, &pdscp->hmap_node);
free(pdscp);
}
}
static bool
actions_output_to_local_port(const struct xlate_ctx *ctx)
{
odp_port_t local_odp_port = ofp_port_to_odp_port(ctx->xbridge, OFPP_LOCAL);
const struct nlattr *a;
unsigned int left;
NL_ATTR_FOR_EACH_UNSAFE (a, left, ofpbuf_data(&ctx->xout->odp_actions),
ofpbuf_size(&ctx->xout->odp_actions)) {
if (nl_attr_type(a) == OVS_ACTION_ATTR_OUTPUT
&& nl_attr_get_odp_port(a) == local_odp_port) {
return true;
}
}
return false;
}
/* Thread safe call to xlate_actions__(). */
void
xlate_actions(struct xlate_in *xin, struct xlate_out *xout)
OVS_EXCLUDED(xlate_rwlock)
{
ovs_rwlock_rdlock(&xlate_rwlock);
xlate_actions__(xin, xout);
ovs_rwlock_unlock(&xlate_rwlock);
}
/* Translates the 'ofpacts_len' bytes of "struct ofpacts" starting at 'ofpacts'
* into datapath actions in 'odp_actions', using 'ctx'.
*
* The caller must take responsibility for eventually freeing 'xout', with
* xlate_out_uninit(). */
static void
xlate_actions__(struct xlate_in *xin, struct xlate_out *xout)
OVS_REQ_RDLOCK(xlate_rwlock)
{
struct flow_wildcards *wc = &xout->wc;
struct flow *flow = &xin->flow;
struct rule_dpif *rule = NULL;
struct rule_actions *actions = NULL;
enum slow_path_reason special;
const struct ofpact *ofpacts;
struct xport *in_port;
struct flow orig_flow;
struct xlate_ctx ctx;
size_t ofpacts_len;
bool tnl_may_send;
bool is_icmp;
COVERAGE_INC(xlate_actions);
/* Flow initialization rules:
* - 'base_flow' must match the kernel's view of the packet at the
* time that action processing starts. 'flow' represents any
* transformations we wish to make through actions.
* - By default 'base_flow' and 'flow' are the same since the input
* packet matches the output before any actions are applied.
* - When using VLAN splinters, 'base_flow''s VLAN is set to the value
* of the received packet as seen by the kernel. If we later output
* to another device without any modifications this will cause us to
* insert a new tag since the original one was stripped off by the
* VLAN device.
* - Tunnel metadata as received is retained in 'flow'. This allows
* tunnel metadata matching also in later tables.
* Since a kernel action for setting the tunnel metadata will only be
* generated with actual tunnel output, changing the tunnel metadata
* values in 'flow' (such as tun_id) will only have effect with a later
* tunnel output action.
* - Tunnel 'base_flow' is completely cleared since that is what the
* kernel does. If we wish to maintain the original values an action
* needs to be generated. */
ctx.xin = xin;
ctx.xout = xout;
ctx.xout->slow = 0;
ctx.xout->has_learn = false;
ctx.xout->has_normal = false;
ctx.xout->has_fin_timeout = false;
ctx.xout->nf_output_iface = NF_OUT_DROP;
ctx.xout->mirrors = 0;
ofpbuf_use_stub(&ctx.xout->odp_actions, ctx.xout->odp_actions_stub,
sizeof ctx.xout->odp_actions_stub);
ofpbuf_reserve(&ctx.xout->odp_actions, NL_A_U32_SIZE);
ctx.xbridge = xbridge_lookup(xin->ofproto);
if (!ctx.xbridge) {
goto out;
}
ctx.rule = xin->rule;
ctx.base_flow = *flow;
memset(&ctx.base_flow.tunnel, 0, sizeof ctx.base_flow.tunnel);
ctx.orig_tunnel_ip_dst = flow->tunnel.ip_dst;
flow_wildcards_init_catchall(wc);
memset(&wc->masks.in_port, 0xff, sizeof wc->masks.in_port);
memset(&wc->masks.skb_priority, 0xff, sizeof wc->masks.skb_priority);
memset(&wc->masks.dl_type, 0xff, sizeof wc->masks.dl_type);
if (is_ip_any(flow)) {
wc->masks.nw_frag |= FLOW_NW_FRAG_MASK;
}
is_icmp = is_icmpv4(flow) || is_icmpv6(flow);
tnl_may_send = tnl_xlate_init(&ctx.base_flow, flow, wc);
if (ctx.xbridge->netflow) {
netflow_mask_wc(flow, wc);
}
ctx.recurse = 0;
ctx.resubmits = 0;
ctx.in_group = false;
ctx.orig_skb_priority = flow->skb_priority;
ctx.table_id = 0;
ctx.exit = false;
if (!xin->ofpacts && !ctx.rule) {
ctx.table_id = rule_dpif_lookup(ctx.xbridge->ofproto, flow,
!xin->skip_wildcards ? wc : NULL,
&rule);
if (ctx.xin->resubmit_stats) {
rule_dpif_credit_stats(rule, ctx.xin->resubmit_stats);
}
ctx.rule = rule;
}
xout->fail_open = ctx.rule && rule_dpif_is_fail_open(ctx.rule);
xout->use_recirc = false;
if (xin->ofpacts) {
ofpacts = xin->ofpacts;
ofpacts_len = xin->ofpacts_len;
} else if (ctx.rule) {
actions = rule_dpif_get_actions(ctx.rule);
ofpacts = actions->ofpacts;
ofpacts_len = actions->ofpacts_len;
} else {
OVS_NOT_REACHED();
}
ofpbuf_use_stub(&ctx.stack, ctx.init_stack, sizeof ctx.init_stack);
ofpbuf_use_stub(&ctx.action_set,
ctx.action_set_stub, sizeof ctx.action_set_stub);
if (mbridge_has_mirrors(ctx.xbridge->mbridge)) {
/* Do this conditionally because the copy is expensive enough that it
* shows up in profiles. */
orig_flow = *flow;
}
if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
switch (ctx.xbridge->frag) {
case OFPC_FRAG_NORMAL:
/* We must pretend that transport ports are unavailable. */
flow->tp_src = ctx.base_flow.tp_src = htons(0);
flow->tp_dst = ctx.base_flow.tp_dst = htons(0);
break;
case OFPC_FRAG_DROP:
goto out;
case OFPC_FRAG_REASM:
OVS_NOT_REACHED();
case OFPC_FRAG_NX_MATCH:
/* Nothing to do. */
break;
case OFPC_INVALID_TTL_TO_CONTROLLER:
OVS_NOT_REACHED();
}
}
in_port = get_ofp_port(ctx.xbridge, flow->in_port.ofp_port);
if (in_port && in_port->is_tunnel && ctx.xin->resubmit_stats) {
netdev_vport_inc_rx(in_port->netdev, ctx.xin->resubmit_stats);
if (in_port->bfd) {
bfd_account_rx(in_port->bfd, ctx.xin->resubmit_stats);
}
}
special = process_special(&ctx, flow, in_port, ctx.xin->packet);
if (special) {
ctx.xout->slow |= special;
} else {
size_t sample_actions_len;
if (flow->in_port.ofp_port
!= vsp_realdev_to_vlandev(ctx.xbridge->ofproto,
flow->in_port.ofp_port,
flow->vlan_tci)) {
ctx.base_flow.vlan_tci = 0;
}
add_sflow_action(&ctx);
add_ipfix_action(&ctx);
sample_actions_len = ofpbuf_size(&ctx.xout->odp_actions);
if (tnl_may_send && (!in_port || may_receive(in_port, &ctx))) {
do_xlate_actions(ofpacts, ofpacts_len, &ctx);
/* We've let OFPP_NORMAL and the learning action look at the
* packet, so drop it now if forwarding is disabled. */
if (in_port && !xport_stp_forward_state(in_port)) {
ofpbuf_set_size(&ctx.xout->odp_actions, sample_actions_len);
}
}
if (ofpbuf_size(&ctx.action_set)) {
xlate_action_set(&ctx);
}
if (ctx.xbridge->has_in_band
&& in_band_must_output_to_local_port(flow)
&& !actions_output_to_local_port(&ctx)) {
compose_output_action(&ctx, OFPP_LOCAL);
}
fix_sflow_action(&ctx);
if (mbridge_has_mirrors(ctx.xbridge->mbridge)) {
add_mirror_actions(&ctx, &orig_flow);
}
}
if (nl_attr_oversized(ofpbuf_size(&ctx.xout->odp_actions))) {
/* These datapath actions are too big for a Netlink attribute, so we
* can't hand them to the kernel directly. dpif_execute() can execute
* them one by one with help, so just mark the result as SLOW_ACTION to
* prevent the flow from being installed. */
COVERAGE_INC(xlate_actions_oversize);
ctx.xout->slow |= SLOW_ACTION;
}
if (ctx.xin->resubmit_stats) {
mirror_update_stats(ctx.xbridge->mbridge, xout->mirrors,
ctx.xin->resubmit_stats->n_packets,
ctx.xin->resubmit_stats->n_bytes);
if (ctx.xbridge->netflow) {
const struct ofpact *ofpacts;
size_t ofpacts_len;
ofpacts_len = actions->ofpacts_len;
ofpacts = actions->ofpacts;
if (ofpacts_len == 0
|| ofpacts->type != OFPACT_CONTROLLER
|| ofpact_next(ofpacts) < ofpact_end(ofpacts, ofpacts_len)) {
/* Only update netflow if we don't have controller flow. We don't
* report NetFlow expiration messages for such facets because they
* are just part of the control logic for the network, not real
* traffic. */
netflow_flow_update(ctx.xbridge->netflow, flow,
xout->nf_output_iface,
ctx.xin->resubmit_stats);
}
}
}
ofpbuf_uninit(&ctx.stack);
ofpbuf_uninit(&ctx.action_set);
/* Clear the metadata and register wildcard masks, because we won't
* use non-header fields as part of the cache. */
flow_wildcards_clear_non_packet_fields(wc);
/* ICMPv4 and ICMPv6 have 8-bit "type" and "code" fields. struct flow uses
* the low 8 bits of the 16-bit tp_src and tp_dst members to represent
* these fields. The datapath interface, on the other hand, represents
* them with just 8 bits each. This means that if the high 8 bits of the
* masks for these fields somehow become set, then they will get chopped
* off by a round trip through the datapath, and revalidation will spot
* that as an inconsistency and delete the flow. Avoid the problem here by
* making sure that only the low 8 bits of either field can be unwildcarded
* for ICMP.
*/
if (is_icmp) {
wc->masks.tp_src &= htons(UINT8_MAX);
wc->masks.tp_dst &= htons(UINT8_MAX);
}
out:
rule_dpif_unref(rule);
}
/* Sends 'packet' out 'ofport'.
* May modify 'packet'.
* Returns 0 if successful, otherwise a positive errno value. */
int
xlate_send_packet(const struct ofport_dpif *ofport, struct ofpbuf *packet)
{
struct xport *xport;
struct ofpact_output output;
struct flow flow;
ofpact_init(&output.ofpact, OFPACT_OUTPUT, sizeof output);
/* Use OFPP_NONE as the in_port to avoid special packet processing. */
flow_extract(packet, NULL, &flow);
flow.in_port.ofp_port = OFPP_NONE;
ovs_rwlock_rdlock(&xlate_rwlock);
xport = xport_lookup(ofport);
if (!xport) {
ovs_rwlock_unlock(&xlate_rwlock);
return EINVAL;
}
output.port = xport->ofp_port;
output.max_len = 0;
ovs_rwlock_unlock(&xlate_rwlock);
return ofproto_dpif_execute_actions(xport->xbridge->ofproto, &flow, NULL,
&output.ofpact, sizeof output,
packet);
}