2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-29 05:18:13 +00:00
ovs/tests/test-classifier.c

998 lines
33 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* "White box" tests for classifier.
*
* With very few exceptions, these tests obtain complete coverage of every
* basic block and every branch in the classifier implementation, e.g. a clean
* report from "gcov -b". (Covering the exceptions would require finding
* collisions in the hash function used for flow data, etc.)
*
* This test should receive a clean report from "valgrind --leak-check=full":
* it frees every heap block that it allocates.
*/
#include <config.h>
#include "classifier.h"
#include <errno.h>
#include <limits.h>
#include "command-line.h"
#include "flow.h"
#include "packets.h"
#undef NDEBUG
#include <assert.h>
struct test_rule {
int aux; /* Auxiliary data. */
struct cls_rule cls_rule; /* Classifier rule data. */
};
static struct test_rule *
test_rule_from_cls_rule(const struct cls_rule *rule)
{
return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
}
/* Trivial (linear) classifier. */
struct tcls {
size_t n_rules;
size_t allocated_rules;
struct test_rule **rules;
};
static void
tcls_init(struct tcls *tcls)
{
tcls->n_rules = 0;
tcls->allocated_rules = 0;
tcls->rules = NULL;
}
static void
tcls_destroy(struct tcls *tcls)
{
if (tcls) {
size_t i;
for (i = 0; i < tcls->n_rules; i++) {
free(tcls->rules[i]);
}
free(tcls->rules);
}
}
static int
tcls_count_exact(const struct tcls *tcls)
{
int n_exact;
size_t i;
n_exact = 0;
for (i = 0; i < tcls->n_rules; i++) {
n_exact += tcls->rules[i]->cls_rule.wc.wildcards == 0;
}
return n_exact;
}
static bool
tcls_is_empty(const struct tcls *tcls)
{
return tcls->n_rules == 0;
}
static struct test_rule *
tcls_insert(struct tcls *tcls, const struct test_rule *rule)
{
size_t i;
assert(rule->cls_rule.wc.wildcards || rule->cls_rule.priority == UINT_MAX);
for (i = 0; i < tcls->n_rules; i++) {
const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
if (pos->priority == rule->cls_rule.priority
&& pos->wc.wildcards == rule->cls_rule.wc.wildcards
&& flow_equal(&pos->flow, &rule->cls_rule.flow)) {
/* Exact match.
* XXX flow_equal should ignore wildcarded fields */
free(tcls->rules[i]);
tcls->rules[i] = xmemdup(rule, sizeof *rule);
return tcls->rules[i];
} else if (pos->priority < rule->cls_rule.priority) {
break;
}
}
if (tcls->n_rules >= tcls->allocated_rules) {
tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
sizeof *tcls->rules);
}
if (i != tcls->n_rules) {
memmove(&tcls->rules[i + 1], &tcls->rules[i],
sizeof *tcls->rules * (tcls->n_rules - i));
}
tcls->rules[i] = xmemdup(rule, sizeof *rule);
tcls->n_rules++;
return tcls->rules[i];
}
static void
tcls_remove(struct tcls *cls, const struct test_rule *rule)
{
size_t i;
for (i = 0; i < cls->n_rules; i++) {
struct test_rule *pos = cls->rules[i];
if (pos == rule) {
free(pos);
memmove(&cls->rules[i], &cls->rules[i + 1],
sizeof *cls->rules * (cls->n_rules - i - 1));
cls->n_rules--;
return;
}
}
NOT_REACHED();
}
static uint32_t
read_uint32(const void *p)
{
uint32_t x;
memcpy(&x, p, sizeof x);
return x;
}
static bool
match(const struct cls_rule *wild, const struct flow *fixed)
{
int f_idx;
for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
const struct cls_field *f = &cls_fields[f_idx];
void *wild_field = (char *) &wild->flow + f->ofs;
void *fixed_field = (char *) fixed + f->ofs;
if ((wild->wc.wildcards & f->wildcards) == f->wildcards ||
!memcmp(wild_field, fixed_field, f->len)) {
/* Definite match. */
continue;
}
if (wild->wc.wildcards & f->wildcards) {
uint32_t test = read_uint32(wild_field);
uint32_t ip = read_uint32(fixed_field);
int shift = (f_idx == CLS_F_IDX_NW_SRC
? OFPFW_NW_SRC_SHIFT : OFPFW_NW_DST_SHIFT);
uint32_t mask = flow_nw_bits_to_mask(wild->wc.wildcards, shift);
if (!((test ^ ip) & mask)) {
continue;
}
}
return false;
}
return true;
}
static struct cls_rule *
tcls_lookup(const struct tcls *cls, const struct flow *flow, int include)
{
size_t i;
for (i = 0; i < cls->n_rules; i++) {
struct test_rule *pos = cls->rules[i];
uint32_t wildcards = pos->cls_rule.wc.wildcards;
if (include & (wildcards ? CLS_INC_WILD : CLS_INC_EXACT)
&& match(&pos->cls_rule, flow)) {
return &pos->cls_rule;
}
}
return NULL;
}
static void
tcls_delete_matches(struct tcls *cls,
const struct cls_rule *target,
int include)
{
size_t i;
for (i = 0; i < cls->n_rules; ) {
struct test_rule *pos = cls->rules[i];
uint32_t wildcards = pos->cls_rule.wc.wildcards;
if (include & (wildcards ? CLS_INC_WILD : CLS_INC_EXACT)
&& match(target, &pos->cls_rule.flow)) {
tcls_remove(cls, pos);
} else {
i++;
}
}
}
#ifdef WORDS_BIGENDIAN
#define T_HTONL(VALUE) ((uint32_t) (VALUE))
#define T_HTONS(VALUE) ((uint32_t) (VALUE))
#else
#define T_HTONL(VALUE) (((((uint32_t) (VALUE)) & 0x000000ff) << 24) | \
((((uint32_t) (VALUE)) & 0x0000ff00) << 8) | \
((((uint32_t) (VALUE)) & 0x00ff0000) >> 8) | \
((((uint32_t) (VALUE)) & 0xff000000) >> 24))
#define T_HTONS(VALUE) (((((uint16_t) (VALUE)) & 0xff00) >> 8) | \
((((uint16_t) (VALUE)) & 0x00ff) << 8))
#endif
static uint32_t nw_src_values[] = { T_HTONL(0xc0a80001),
T_HTONL(0xc0a04455) };
static uint32_t nw_dst_values[] = { T_HTONL(0xc0a80002),
T_HTONL(0xc0a04455) };
static uint32_t tun_id_values[] = { 0, 0xffff0000 };
static uint16_t in_port_values[] = { T_HTONS(1), T_HTONS(OFPP_LOCAL) };
static uint16_t dl_vlan_values[] = { T_HTONS(101), T_HTONS(0) };
static uint8_t dl_vlan_pcp_values[] = { 7, 0 };
static uint16_t dl_type_values[]
= { T_HTONS(ETH_TYPE_IP), T_HTONS(ETH_TYPE_ARP) };
static uint16_t tp_src_values[] = { T_HTONS(49362), T_HTONS(80) };
static uint16_t tp_dst_values[] = { T_HTONS(6667), T_HTONS(22) };
static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
{ 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
static uint8_t nw_proto_values[] = { IP_TYPE_TCP, IP_TYPE_ICMP };
static uint8_t nw_tos_values[] = { 49, 0 };
static void *values[CLS_N_FIELDS][2];
static void
init_values(void)
{
values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
values[CLS_F_IDX_DL_VLAN][0] = &dl_vlan_values[0];
values[CLS_F_IDX_DL_VLAN][1] = &dl_vlan_values[1];
values[CLS_F_IDX_DL_VLAN_PCP][0] = &dl_vlan_pcp_values[0];
values[CLS_F_IDX_DL_VLAN_PCP][1] = &dl_vlan_pcp_values[1];
values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
values[CLS_F_IDX_NW_TOS][0] = &nw_tos_values[0];
values[CLS_F_IDX_NW_TOS][1] = &nw_tos_values[1];
values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
}
#define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
#define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
#define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
#define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
#define N_DL_VLAN_VALUES ARRAY_SIZE(dl_vlan_values)
#define N_DL_VLAN_PCP_VALUES ARRAY_SIZE(dl_vlan_pcp_values)
#define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
#define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
#define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
#define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
#define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
#define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
#define N_NW_TOS_VALUES ARRAY_SIZE(nw_tos_values)
#define N_FLOW_VALUES (N_NW_SRC_VALUES * \
N_NW_DST_VALUES * \
N_TUN_ID_VALUES * \
N_IN_PORT_VALUES * \
N_DL_VLAN_VALUES * \
N_DL_VLAN_PCP_VALUES * \
N_DL_TYPE_VALUES * \
N_TP_SRC_VALUES * \
N_TP_DST_VALUES * \
N_DL_SRC_VALUES * \
N_DL_DST_VALUES * \
N_NW_PROTO_VALUES * \
N_NW_TOS_VALUES)
static unsigned int
get_value(unsigned int *x, unsigned n_values)
{
unsigned int rem = *x % n_values;
*x /= n_values;
return rem;
}
static struct cls_rule *
lookup_with_include_bits(const struct classifier *cls,
const struct flow *flow, int include)
{
switch (include) {
case CLS_INC_WILD:
return classifier_lookup_wild(cls, flow);
case CLS_INC_EXACT:
return classifier_lookup_exact(cls, flow);
case CLS_INC_WILD | CLS_INC_EXACT:
return classifier_lookup(cls, flow);
default:
abort();
}
}
static void
compare_classifiers(struct classifier *cls, struct tcls *tcls)
{
static const int confidence = 500;
unsigned int i;
assert(classifier_count(cls) == tcls->n_rules);
assert(classifier_count_exact(cls) == tcls_count_exact(tcls));
for (i = 0; i < confidence; i++) {
struct cls_rule *cr0, *cr1;
struct flow flow;
unsigned int x;
int include;
x = rand () % N_FLOW_VALUES;
flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
flow.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
flow.in_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)];
flow.dl_vlan = dl_vlan_values[get_value(&x, N_DL_VLAN_VALUES)];
flow.dl_vlan_pcp = dl_vlan_pcp_values[get_value(&x,
N_DL_VLAN_PCP_VALUES)];
flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
ETH_ADDR_LEN);
memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
ETH_ADDR_LEN);
flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
flow.nw_tos = nw_tos_values[get_value(&x, N_NW_TOS_VALUES)];
for (include = 1; include <= 3; include++) {
cr0 = lookup_with_include_bits(cls, &flow, include);
cr1 = tcls_lookup(tcls, &flow, include);
assert((cr0 == NULL) == (cr1 == NULL));
if (cr0 != NULL) {
const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
assert(flow_equal(&cr0->flow, &cr1->flow));
assert(cr0->wc.wildcards == cr1->wc.wildcards);
assert(cr0->priority == cr1->priority);
/* Skip nw_src_mask and nw_dst_mask, because they are derived
* members whose values are used only for optimization. */
assert(tr0->aux == tr1->aux);
}
}
}
}
static void
free_rule(struct cls_rule *cls_rule, void *cls)
{
classifier_remove(cls, cls_rule);
free(test_rule_from_cls_rule(cls_rule));
}
static void
destroy_classifier(struct classifier *cls)
{
classifier_for_each(cls, CLS_INC_ALL, free_rule, cls);
classifier_destroy(cls);
}
static void
check_tables(const struct classifier *cls,
int n_tables, int n_buckets, int n_rules)
{
int found_tables = 0;
int found_buckets = 0;
int found_rules = 0;
int i;
BUILD_ASSERT(CLS_N_FIELDS == ARRAY_SIZE(cls->tables));
for (i = 0; i < CLS_N_FIELDS; i++) {
const struct cls_bucket *bucket;
if (!hmap_is_empty(&cls->tables[i])) {
found_tables++;
}
HMAP_FOR_EACH (bucket, hmap_node, &cls->tables[i]) {
found_buckets++;
assert(!list_is_empty(&bucket->rules));
found_rules += list_size(&bucket->rules);
}
}
if (!hmap_is_empty(&cls->exact_table)) {
found_tables++;
found_buckets++;
found_rules += hmap_count(&cls->exact_table);
}
assert(n_tables == -1 || found_tables == n_tables);
assert(n_rules == -1 || found_rules == n_rules);
assert(n_buckets == -1 || found_buckets == n_buckets);
}
static struct test_rule *
make_rule(int wc_fields, unsigned int priority, int value_pat)
{
const struct cls_field *f;
struct test_rule *rule;
uint32_t wildcards;
struct flow flow;
wildcards = 0;
memset(&flow, 0, sizeof flow);
for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
int f_idx = f - cls_fields;
if (wc_fields & (1u << f_idx)) {
wildcards |= f->wildcards;
} else {
int value_idx = (value_pat & (1u << f_idx)) != 0;
memcpy((char *) &flow + f->ofs, values[f_idx][value_idx], f->len);
}
}
rule = xzalloc(sizeof *rule);
cls_rule_from_flow(&flow, wildcards, !wildcards ? UINT_MAX : priority,
&rule->cls_rule);
return rule;
}
static void
shuffle(unsigned int *p, size_t n)
{
for (; n > 1; n--, p++) {
unsigned int *q = &p[rand() % n];
unsigned int tmp = *p;
*p = *q;
*q = tmp;
}
}
/* Tests an empty classifier. */
static void
test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
struct classifier cls;
struct tcls tcls;
classifier_init(&cls);
tcls_init(&tcls);
assert(classifier_is_empty(&cls));
assert(tcls_is_empty(&tcls));
compare_classifiers(&cls, &tcls);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
/* Destroys a null classifier. */
static void
test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
classifier_destroy(NULL);
}
/* Tests classification with one rule at a time. */
static void
test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
unsigned int wc_fields; /* Hilarious. */
for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
struct classifier cls;
struct test_rule *rule, *tcls_rule;
struct tcls tcls;
rule = make_rule(wc_fields,
hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
classifier_init(&cls);
tcls_init(&tcls);
tcls_rule = tcls_insert(&tcls, rule);
if (wc_fields) {
assert(!classifier_insert(&cls, &rule->cls_rule));
} else {
classifier_insert_exact(&cls, &rule->cls_rule);
}
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
classifier_remove(&cls, &rule->cls_rule);
tcls_remove(&tcls, tcls_rule);
assert(classifier_is_empty(&cls));
assert(tcls_is_empty(&tcls));
compare_classifiers(&cls, &tcls);
free(rule);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
/* Tests replacing one rule by another. */
static void
test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
unsigned int wc_fields;
for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
struct classifier cls;
struct test_rule *rule1;
struct test_rule *rule2;
struct tcls tcls;
rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
rule2->aux += 5;
rule2->aux += 5;
classifier_init(&cls);
tcls_init(&tcls);
tcls_insert(&tcls, rule1);
assert(!classifier_insert(&cls, &rule1->cls_rule));
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
tcls_destroy(&tcls);
tcls_init(&tcls);
tcls_insert(&tcls, rule2);
assert(test_rule_from_cls_rule(
classifier_insert(&cls, &rule2->cls_rule)) == rule1);
free(rule1);
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
tcls_destroy(&tcls);
destroy_classifier(&cls);
}
}
static int
table_mask(int table)
{
return ((1u << CLS_N_FIELDS) - 1) & ~((1u << table) - 1);
}
static int
random_wcf_in_table(int table, int seed)
{
int wc_fields = (1u << table) | hash_int(seed, 0);
return wc_fields & table_mask(table);
}
/* Tests classification with two rules at a time that fall into the same
* bucket. */
static void
test_two_rules_in_one_bucket(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
int table, rel_pri, wcf_pat, value_pat;
for (table = 0; table <= CLS_N_FIELDS; table++) {
for (rel_pri = -1; rel_pri <= +1; rel_pri++) {
for (wcf_pat = 0; wcf_pat < 4; wcf_pat++) {
int n_value_pats = table == CLS_N_FIELDS - 1 ? 1 : 2;
for (value_pat = 0; value_pat < n_value_pats; value_pat++) {
struct test_rule *rule1, *tcls_rule1;
struct test_rule *rule2, *tcls_rule2;
struct test_rule *displaced_rule;
struct classifier cls;
struct tcls tcls;
unsigned int pri1, pri2;
int wcf1, wcf2;
if (table != CLS_F_IDX_EXACT) {
/* We can use identical priorities in this test because
* the classifier always chooses the rule added later
* for equal-priority rules that fall into the same
* bucket. */
pri1 = table * 257 + 50;
pri2 = pri1 + rel_pri;
wcf1 = (wcf_pat & 1
? random_wcf_in_table(table, pri1)
: 1u << table);
wcf2 = (wcf_pat & 2
? random_wcf_in_table(table, pri2)
: 1u << table);
if (value_pat) {
wcf1 &= ~(1u << (CLS_N_FIELDS - 1));
wcf2 &= ~(1u << (CLS_N_FIELDS - 1));
}
} else {
/* This classifier always puts exact-match rules at
* maximum priority. */
pri1 = pri2 = UINT_MAX;
/* No wildcard fields. */
wcf1 = wcf2 = 0;
}
rule1 = make_rule(wcf1, pri1, 0);
rule2 = make_rule(wcf2, pri2,
value_pat << (CLS_N_FIELDS - 1));
classifier_init(&cls);
tcls_init(&tcls);
tcls_rule1 = tcls_insert(&tcls, rule1);
tcls_rule2 = tcls_insert(&tcls, rule2);
assert(!classifier_insert(&cls, &rule1->cls_rule));
displaced_rule = test_rule_from_cls_rule(
classifier_insert(&cls, &rule2->cls_rule));
if (wcf1 != wcf2 || pri1 != pri2 || value_pat) {
assert(!displaced_rule);
check_tables(&cls, 1, 1, 2);
compare_classifiers(&cls, &tcls);
classifier_remove(&cls, &rule1->cls_rule);
tcls_remove(&tcls, tcls_rule1);
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
} else {
assert(displaced_rule == rule1);
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
}
free(rule1);
classifier_remove(&cls, &rule2->cls_rule);
tcls_remove(&tcls, tcls_rule2);
compare_classifiers(&cls, &tcls);
free(rule2);
destroy_classifier(&cls);
tcls_destroy(&tcls);
}
}
}
}
}
/* Tests classification with two rules at a time that fall into the same
* table but different buckets. */
static void
test_two_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
int table, rel_pri, wcf_pat;
/* Skip tables 0 and CLS_F_IDX_EXACT because they have one bucket. */
for (table = 1; table < CLS_N_FIELDS; table++) {
for (rel_pri = -1; rel_pri <= +1; rel_pri++) {
for (wcf_pat = 0; wcf_pat < 5; wcf_pat++) {
struct test_rule *rule1, *tcls_rule1;
struct test_rule *rule2, *tcls_rule2;
struct classifier cls;
struct tcls tcls;
unsigned int pri1, pri2;
int wcf1, wcf2;
int value_mask, value_pat1, value_pat2;
int i;
/* We can use identical priorities in this test because the
* classifier always chooses the rule added later for
* equal-priority rules that fall into the same table. */
pri1 = table * 257 + 50;
pri2 = pri1 + rel_pri;
if (wcf_pat & 4) {
wcf1 = wcf2 = random_wcf_in_table(table, pri1);
} else {
wcf1 = (wcf_pat & 1
? random_wcf_in_table(table, pri1)
: 1u << table);
wcf2 = (wcf_pat & 2
? random_wcf_in_table(table, pri2)
: 1u << table);
}
/* Generate value patterns that will put the two rules into
* different buckets. */
value_mask = ((1u << table) - 1);
value_pat1 = hash_int(pri1, 1) & value_mask;
i = 0;
do {
value_pat2 = (hash_int(pri2, i++) & value_mask);
} while (value_pat1 == value_pat2);
rule1 = make_rule(wcf1, pri1, value_pat1);
rule2 = make_rule(wcf2, pri2, value_pat2);
classifier_init(&cls);
tcls_init(&tcls);
tcls_rule1 = tcls_insert(&tcls, rule1);
tcls_rule2 = tcls_insert(&tcls, rule2);
assert(!classifier_insert(&cls, &rule1->cls_rule));
assert(!classifier_insert(&cls, &rule2->cls_rule));
check_tables(&cls, 1, 2, 2);
compare_classifiers(&cls, &tcls);
classifier_remove(&cls, &rule1->cls_rule);
tcls_remove(&tcls, tcls_rule1);
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
free(rule1);
classifier_remove(&cls, &rule2->cls_rule);
tcls_remove(&tcls, tcls_rule2);
compare_classifiers(&cls, &tcls);
free(rule2);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
}
}
/* Tests classification with two rules at a time that fall into different
* tables. */
static void
test_two_rules_in_different_tables(int argc OVS_UNUSED,
char *argv[] OVS_UNUSED)
{
int table1, table2, rel_pri, wcf_pat;
for (table1 = 0; table1 < CLS_N_FIELDS; table1++) {
for (table2 = table1 + 1; table2 <= CLS_N_FIELDS; table2++) {
for (rel_pri = 0; rel_pri < 2; rel_pri++) {
for (wcf_pat = 0; wcf_pat < 4; wcf_pat++) {
struct test_rule *rule1, *tcls_rule1;
struct test_rule *rule2, *tcls_rule2;
struct classifier cls;
struct tcls tcls;
unsigned int pri1, pri2;
int wcf1, wcf2;
/* We must use unique priorities in this test because the
* classifier makes the rule choice undefined for rules of
* equal priority that fall into different tables. (In
* practice, lower-numbered tables win.) */
pri1 = table1 * 257 + 50;
pri2 = rel_pri ? pri1 - 1 : pri1 + 1;
wcf1 = (wcf_pat & 1
? random_wcf_in_table(table1, pri1)
: 1u << table1);
wcf2 = (wcf_pat & 2
? random_wcf_in_table(table2, pri2)
: 1u << table2);
if (table2 == CLS_F_IDX_EXACT) {
pri2 = UINT16_MAX;
wcf2 = 0;
}
rule1 = make_rule(wcf1, pri1, 0);
rule2 = make_rule(wcf2, pri2, 0);
classifier_init(&cls);
tcls_init(&tcls);
tcls_rule1 = tcls_insert(&tcls, rule1);
tcls_rule2 = tcls_insert(&tcls, rule2);
assert(!classifier_insert(&cls, &rule1->cls_rule));
assert(!classifier_insert(&cls, &rule2->cls_rule));
check_tables(&cls, 2, 2, 2);
compare_classifiers(&cls, &tcls);
classifier_remove(&cls, &rule1->cls_rule);
tcls_remove(&tcls, tcls_rule1);
check_tables(&cls, 1, 1, 1);
compare_classifiers(&cls, &tcls);
free(rule1);
classifier_remove(&cls, &rule2->cls_rule);
tcls_remove(&tcls, tcls_rule2);
compare_classifiers(&cls, &tcls);
free(rule2);
classifier_destroy(&cls);
tcls_destroy(&tcls);
}
}
}
}
}
/* Tests classification with many rules at a time that fall into the same
* bucket but have unique priorities (and various wildcards). */
static void
test_many_rules_in_one_bucket(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
enum { MAX_RULES = 50 };
int iteration, table;
for (iteration = 0; iteration < 3; iteration++) {
for (table = 0; table <= CLS_N_FIELDS; table++) {
unsigned int priorities[MAX_RULES];
struct classifier cls;
struct tcls tcls;
int i;
srand(hash_int(table, iteration));
for (i = 0; i < MAX_RULES; i++) {
priorities[i] = i * 129;
}
shuffle(priorities, ARRAY_SIZE(priorities));
classifier_init(&cls);
tcls_init(&tcls);
for (i = 0; i < MAX_RULES; i++) {
struct test_rule *rule;
unsigned int priority = priorities[i];
int wcf;
wcf = random_wcf_in_table(table, priority);
rule = make_rule(wcf, priority,
table == CLS_F_IDX_EXACT ? i : 1234);
tcls_insert(&tcls, rule);
assert(!classifier_insert(&cls, &rule->cls_rule));
check_tables(&cls, 1, 1, i + 1);
compare_classifiers(&cls, &tcls);
}
destroy_classifier(&cls);
tcls_destroy(&tcls);
}
}
}
/* Tests classification with many rules at a time that fall into the same
* table but random buckets. */
static void
test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
enum { MAX_RULES = 50 };
int iteration, table;
for (iteration = 0; iteration < 3; iteration++) {
for (table = 0; table < CLS_N_FIELDS; table++) {
unsigned int priorities[MAX_RULES];
struct classifier cls;
struct tcls tcls;
int i;
srand(hash_int(table, iteration));
for (i = 0; i < MAX_RULES; i++) {
priorities[i] = i * 129;
}
shuffle(priorities, ARRAY_SIZE(priorities));
classifier_init(&cls);
tcls_init(&tcls);
for (i = 0; i < MAX_RULES; i++) {
struct test_rule *rule;
unsigned int priority = priorities[i];
int wcf;
wcf = random_wcf_in_table(table, priority);
rule = make_rule(wcf, priority, hash_int(priority, 1));
tcls_insert(&tcls, rule);
assert(!classifier_insert(&cls, &rule->cls_rule));
check_tables(&cls, 1, -1, i + 1);
compare_classifiers(&cls, &tcls);
}
destroy_classifier(&cls);
tcls_destroy(&tcls);
}
}
}
/* Tests classification with many rules at a time that fall into random buckets
* in random tables. */
static void
test_many_rules_in_different_tables(int argc OVS_UNUSED,
char *argv[] OVS_UNUSED)
{
enum { MAX_RULES = 50 };
int iteration;
for (iteration = 0; iteration < 30; iteration++) {
unsigned int priorities[MAX_RULES];
struct classifier cls;
struct tcls tcls;
int i;
srand(iteration);
for (i = 0; i < MAX_RULES; i++) {
priorities[i] = i * 129;
}
shuffle(priorities, ARRAY_SIZE(priorities));
classifier_init(&cls);
tcls_init(&tcls);
for (i = 0; i < MAX_RULES; i++) {
struct test_rule *rule;
unsigned int priority = priorities[i];
int table = rand() % (CLS_N_FIELDS + 1);
int wcf = random_wcf_in_table(table, rand());
int value_pat = rand() & ((1u << CLS_N_FIELDS) - 1);
rule = make_rule(wcf, priority, value_pat);
tcls_insert(&tcls, rule);
assert(!classifier_insert(&cls, &rule->cls_rule));
check_tables(&cls, -1, -1, i + 1);
compare_classifiers(&cls, &tcls);
}
while (!classifier_is_empty(&cls)) {
struct test_rule *rule = xmemdup(tcls.rules[rand() % tcls.n_rules],
sizeof(struct test_rule));
int include = rand() % 2 ? CLS_INC_WILD : CLS_INC_EXACT;
include |= (rule->cls_rule.wc.wildcards
? CLS_INC_WILD : CLS_INC_EXACT);
classifier_for_each_match(&cls, &rule->cls_rule, include,
free_rule, &cls);
tcls_delete_matches(&tcls, &rule->cls_rule, include);
compare_classifiers(&cls, &tcls);
free(rule);
}
destroy_classifier(&cls);
tcls_destroy(&tcls);
}
}
static const struct command commands[] = {
{"empty", 0, 0, test_empty},
{"destroy-null", 0, 0, test_destroy_null},
{"single-rule", 0, 0, test_single_rule},
{"rule-replacement", 0, 0, test_rule_replacement},
{"two-rules-in-one-bucket", 0, 0, test_two_rules_in_one_bucket},
{"two-rules-in-one-table", 0, 0, test_two_rules_in_one_table},
{"two-rules-in-different-tables", 0, 0,
test_two_rules_in_different_tables},
{"many-rules-in-one-bucket", 0, 0, test_many_rules_in_one_bucket},
{"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
{"many-rules-in-different-tables", 0, 0,
test_many_rules_in_different_tables},
{NULL, 0, 0, NULL},
};
int
main(int argc, char *argv[])
{
init_values();
run_command(argc - 1, argv + 1, commands);
return 0;
}