2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-28 21:07:47 +00:00
ovs/lib/vconn.c

1480 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, 2009 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "vconn-provider.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <poll.h>
#include <stdlib.h>
#include <string.h>
#include "coverage.h"
#include "dynamic-string.h"
#include "flow.h"
#include "ofp-print.h"
#include "ofpbuf.h"
#include "openflow/nicira-ext.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "poll-loop.h"
#include "random.h"
#include "util.h"
#define THIS_MODULE VLM_vconn
#include "vlog.h"
/* State of an active vconn.*/
enum vconn_state {
/* This is the ordinary progression of states. */
VCS_CONNECTING, /* Underlying vconn is not connected. */
VCS_SEND_HELLO, /* Waiting to send OFPT_HELLO message. */
VCS_RECV_HELLO, /* Waiting to receive OFPT_HELLO message. */
VCS_CONNECTED, /* Connection established. */
/* These states are entered only when something goes wrong. */
VCS_SEND_ERROR, /* Sending OFPT_ERROR message. */
VCS_DISCONNECTED /* Connection failed or connection closed. */
};
static struct vconn_class *vconn_classes[] = {
&tcp_vconn_class,
&unix_vconn_class,
#ifdef HAVE_OPENSSL
&ssl_vconn_class,
#endif
};
static struct pvconn_class *pvconn_classes[] = {
&ptcp_pvconn_class,
&punix_pvconn_class,
#ifdef HAVE_OPENSSL
&pssl_pvconn_class,
#endif
};
/* Rate limit for individual OpenFlow messages going over the vconn, output at
* DBG level. This is very high because, if these are enabled, it is because
* we really need to see them. */
static struct vlog_rate_limit ofmsg_rl = VLOG_RATE_LIMIT_INIT(600, 600);
/* Rate limit for OpenFlow message parse errors. These always indicate a bug
* in the peer and so there's not much point in showing a lot of them. */
static struct vlog_rate_limit bad_ofmsg_rl = VLOG_RATE_LIMIT_INIT(1, 5);
static int do_recv(struct vconn *, struct ofpbuf **);
static int do_send(struct vconn *, struct ofpbuf *);
/* Check the validity of the vconn class structures. */
static void
check_vconn_classes(void)
{
#ifndef NDEBUG
size_t i;
for (i = 0; i < ARRAY_SIZE(vconn_classes); i++) {
struct vconn_class *class = vconn_classes[i];
assert(class->name != NULL);
assert(class->open != NULL);
if (class->close || class->recv || class->send || class->wait) {
assert(class->close != NULL);
assert(class->recv != NULL);
assert(class->send != NULL);
assert(class->wait != NULL);
} else {
/* This class delegates to another one. */
}
}
for (i = 0; i < ARRAY_SIZE(pvconn_classes); i++) {
struct pvconn_class *class = pvconn_classes[i];
assert(class->name != NULL);
assert(class->listen != NULL);
if (class->close || class->accept || class->wait) {
assert(class->close != NULL);
assert(class->accept != NULL);
assert(class->wait != NULL);
} else {
/* This class delegates to another one. */
}
}
#endif
}
/* Prints information on active (if 'active') and passive (if 'passive')
* connection methods supported by the vconn. If 'bootstrap' is true, also
* advertises options to bootstrap the CA certificate. */
void
vconn_usage(bool active, bool passive, bool bootstrap UNUSED)
{
/* Really this should be implemented via callbacks into the vconn
* providers, but that seems too heavy-weight to bother with at the
* moment. */
printf("\n");
if (active) {
printf("Active OpenFlow connection methods:\n");
printf(" tcp:IP[:PORT] "
"PORT (default: %d) at remote IP\n", OFP_TCP_PORT);
#ifdef HAVE_OPENSSL
printf(" ssl:IP[:PORT] "
"SSL PORT (default: %d) at remote IP\n", OFP_SSL_PORT);
#endif
printf(" unix:FILE Unix domain socket named FILE\n");
}
if (passive) {
printf("Passive OpenFlow connection methods:\n");
printf(" ptcp:[PORT][:IP] "
"listen to TCP PORT (default: %d) on IP\n",
OFP_TCP_PORT);
#ifdef HAVE_OPENSSL
printf(" pssl:[PORT][:IP] "
"listen for SSL on PORT (default: %d) on IP\n",
OFP_SSL_PORT);
#endif
printf(" punix:FILE "
"listen on Unix domain socket FILE\n");
}
#ifdef HAVE_OPENSSL
printf("PKI configuration (required to use SSL):\n"
" -p, --private-key=FILE file with private key\n"
" -c, --certificate=FILE file with certificate for private key\n"
" -C, --ca-cert=FILE file with peer CA certificate\n");
if (bootstrap) {
printf(" --bootstrap-ca-cert=FILE file with peer CA certificate "
"to read or create\n");
}
#endif
}
/* Attempts to connect to an OpenFlow device. 'name' is a connection name in
* the form "TYPE:ARGS", where TYPE is an active vconn class's name and ARGS
* are vconn class-specific.
*
* The vconn will automatically negotiate an OpenFlow protocol version
* acceptable to both peers on the connection. The version negotiated will be
* no lower than 'min_version' and no higher than OFP_VERSION.
*
* Returns 0 if successful, otherwise a positive errno value. If successful,
* stores a pointer to the new connection in '*vconnp', otherwise a null
* pointer. */
int
vconn_open(const char *name, int min_version, struct vconn **vconnp)
{
size_t prefix_len;
size_t i;
COVERAGE_INC(vconn_open);
check_vconn_classes();
*vconnp = NULL;
prefix_len = strcspn(name, ":");
if (prefix_len == strlen(name)) {
return EAFNOSUPPORT;
}
for (i = 0; i < ARRAY_SIZE(vconn_classes); i++) {
struct vconn_class *class = vconn_classes[i];
if (strlen(class->name) == prefix_len
&& !memcmp(class->name, name, prefix_len)) {
struct vconn *vconn;
char *suffix_copy = xstrdup(name + prefix_len + 1);
int retval = class->open(name, suffix_copy, &vconn);
free(suffix_copy);
if (!retval) {
assert(vconn->state != VCS_CONNECTING
|| vconn->class->connect);
vconn->min_version = min_version;
*vconnp = vconn;
}
return retval;
}
}
return EAFNOSUPPORT;
}
int
vconn_open_block(const char *name, int min_version, struct vconn **vconnp)
{
struct vconn *vconn;
int error;
error = vconn_open(name, min_version, &vconn);
while (error == EAGAIN) {
vconn_connect_wait(vconn);
poll_block();
error = vconn_connect(vconn);
assert(error != EINPROGRESS);
}
if (error) {
vconn_close(vconn);
*vconnp = NULL;
} else {
*vconnp = vconn;
}
return error;
}
/* Closes 'vconn'. */
void
vconn_close(struct vconn *vconn)
{
if (vconn != NULL) {
char *name = vconn->name;
(vconn->class->close)(vconn);
free(name);
}
}
/* Returns the name of 'vconn', that is, the string passed to vconn_open(). */
const char *
vconn_get_name(const struct vconn *vconn)
{
return vconn->name;
}
/* Returns the IP address of the peer, or 0 if the peer is not connected over
* an IP-based protocol or if its IP address is not yet known. */
uint32_t
vconn_get_remote_ip(const struct vconn *vconn)
{
return vconn->remote_ip;
}
/* Returns the transport port of the peer, or 0 if the connection does not
* contain a port or if the port is not yet known. */
uint16_t
vconn_get_remote_port(const struct vconn *vconn)
{
return vconn->remote_port;
}
/* Returns the IP address used to connect to the peer, or 0 if the
* connection is not an IP-based protocol or if its IP address is not
* yet known. */
uint32_t
vconn_get_local_ip(const struct vconn *vconn)
{
return vconn->local_ip;
}
/* Returns the transport port used to connect to the peer, or 0 if the
* connection does not contain a port or if the port is not yet known. */
uint16_t
vconn_get_local_port(const struct vconn *vconn)
{
return vconn->local_port;
}
static void
vcs_connecting(struct vconn *vconn)
{
int retval = (vconn->class->connect)(vconn);
assert(retval != EINPROGRESS);
if (!retval) {
vconn->state = VCS_SEND_HELLO;
} else if (retval != EAGAIN) {
vconn->state = VCS_DISCONNECTED;
vconn->error = retval;
}
}
static void
vcs_send_hello(struct vconn *vconn)
{
struct ofpbuf *b;
int retval;
make_openflow(sizeof(struct ofp_header), OFPT_HELLO, &b);
retval = do_send(vconn, b);
if (!retval) {
vconn->state = VCS_RECV_HELLO;
} else {
ofpbuf_delete(b);
if (retval != EAGAIN) {
vconn->state = VCS_DISCONNECTED;
vconn->error = retval;
}
}
}
static void
vcs_recv_hello(struct vconn *vconn)
{
struct ofpbuf *b;
int retval;
retval = do_recv(vconn, &b);
if (!retval) {
struct ofp_header *oh = b->data;
if (oh->type == OFPT_HELLO) {
if (b->size > sizeof *oh) {
struct ds msg = DS_EMPTY_INITIALIZER;
ds_put_format(&msg, "%s: extra-long hello:\n", vconn->name);
ds_put_hex_dump(&msg, b->data, b->size, 0, true);
VLOG_WARN_RL(&bad_ofmsg_rl, "%s", ds_cstr(&msg));
ds_destroy(&msg);
}
vconn->version = MIN(OFP_VERSION, oh->version);
if (vconn->version < vconn->min_version) {
VLOG_WARN_RL(&bad_ofmsg_rl,
"%s: version negotiation failed: we support "
"versions 0x%02x to 0x%02x inclusive but peer "
"supports no later than version 0x%02"PRIx8,
vconn->name, vconn->min_version, OFP_VERSION,
oh->version);
vconn->state = VCS_SEND_ERROR;
} else {
VLOG_DBG("%s: negotiated OpenFlow version 0x%02x "
"(we support versions 0x%02x to 0x%02x inclusive, "
"peer no later than version 0x%02"PRIx8")",
vconn->name, vconn->version, vconn->min_version,
OFP_VERSION, oh->version);
vconn->state = VCS_CONNECTED;
}
ofpbuf_delete(b);
return;
} else {
char *s = ofp_to_string(b->data, b->size, 1);
VLOG_WARN_RL(&bad_ofmsg_rl,
"%s: received message while expecting hello: %s",
vconn->name, s);
free(s);
retval = EPROTO;
ofpbuf_delete(b);
}
}
if (retval != EAGAIN) {
vconn->state = VCS_DISCONNECTED;
vconn->error = retval == EOF ? ECONNRESET : retval;
}
}
static void
vcs_send_error(struct vconn *vconn)
{
struct ofp_error_msg *error;
struct ofpbuf *b;
char s[128];
int retval;
snprintf(s, sizeof s, "We support versions 0x%02x to 0x%02x inclusive but "
"you support no later than version 0x%02"PRIx8".",
vconn->min_version, OFP_VERSION, vconn->version);
error = make_openflow(sizeof *error, OFPT_ERROR, &b);
error->type = htons(OFPET_HELLO_FAILED);
error->code = htons(OFPHFC_INCOMPATIBLE);
ofpbuf_put(b, s, strlen(s));
update_openflow_length(b);
retval = do_send(vconn, b);
if (retval) {
ofpbuf_delete(b);
}
if (retval != EAGAIN) {
vconn->state = VCS_DISCONNECTED;
vconn->error = retval ? retval : EPROTO;
}
}
/* Tries to complete the connection on 'vconn', which must be an active
* vconn. If 'vconn''s connection is complete, returns 0 if the connection
* was successful or a positive errno value if it failed. If the
* connection is still in progress, returns EAGAIN. */
int
vconn_connect(struct vconn *vconn)
{
enum vconn_state last_state;
assert(vconn->min_version >= 0);
do {
last_state = vconn->state;
switch (vconn->state) {
case VCS_CONNECTING:
vcs_connecting(vconn);
break;
case VCS_SEND_HELLO:
vcs_send_hello(vconn);
break;
case VCS_RECV_HELLO:
vcs_recv_hello(vconn);
break;
case VCS_CONNECTED:
return 0;
case VCS_SEND_ERROR:
vcs_send_error(vconn);
break;
case VCS_DISCONNECTED:
return vconn->error;
default:
NOT_REACHED();
}
} while (vconn->state != last_state);
return EAGAIN;
}
/* Tries to receive an OpenFlow message from 'vconn', which must be an active
* vconn. If successful, stores the received message into '*msgp' and returns
* 0. The caller is responsible for destroying the message with
* ofpbuf_delete(). On failure, returns a positive errno value and stores a
* null pointer into '*msgp'. On normal connection close, returns EOF.
*
* vconn_recv will not block waiting for a packet to arrive. If no packets
* have been received, it returns EAGAIN immediately. */
int
vconn_recv(struct vconn *vconn, struct ofpbuf **msgp)
{
int retval = vconn_connect(vconn);
if (!retval) {
retval = do_recv(vconn, msgp);
}
return retval;
}
static int
do_recv(struct vconn *vconn, struct ofpbuf **msgp)
{
int retval = (vconn->class->recv)(vconn, msgp);
if (!retval) {
struct ofp_header *oh;
COVERAGE_INC(vconn_received);
if (VLOG_IS_DBG_ENABLED()) {
char *s = ofp_to_string((*msgp)->data, (*msgp)->size, 1);
VLOG_DBG_RL(&ofmsg_rl, "%s: received: %s", vconn->name, s);
free(s);
}
oh = ofpbuf_at_assert(*msgp, 0, sizeof *oh);
if (oh->version != vconn->version
&& oh->type != OFPT_HELLO
&& oh->type != OFPT_ERROR
&& oh->type != OFPT_ECHO_REQUEST
&& oh->type != OFPT_ECHO_REPLY
&& oh->type != OFPT_VENDOR)
{
if (vconn->version < 0) {
VLOG_ERR_RL(&bad_ofmsg_rl,
"%s: received OpenFlow message type %"PRIu8" "
"before version negotiation complete",
vconn->name, oh->type);
} else {
VLOG_ERR_RL(&bad_ofmsg_rl,
"%s: received OpenFlow version 0x%02"PRIx8" "
"!= expected %02x",
vconn->name, oh->version, vconn->version);
}
ofpbuf_delete(*msgp);
retval = EPROTO;
}
}
if (retval) {
*msgp = NULL;
}
return retval;
}
/* Tries to queue 'msg' for transmission on 'vconn', which must be an active
* vconn. If successful, returns 0, in which case ownership of 'msg' is
* transferred to the vconn. Success does not guarantee that 'msg' has been or
* ever will be delivered to the peer, only that it has been queued for
* transmission.
*
* Returns a positive errno value on failure, in which case the caller
* retains ownership of 'msg'.
*
* vconn_send will not block. If 'msg' cannot be immediately accepted for
* transmission, it returns EAGAIN immediately. */
int
vconn_send(struct vconn *vconn, struct ofpbuf *msg)
{
int retval = vconn_connect(vconn);
if (!retval) {
retval = do_send(vconn, msg);
}
return retval;
}
static int
do_send(struct vconn *vconn, struct ofpbuf *msg)
{
int retval;
assert(msg->size >= sizeof(struct ofp_header));
assert(((struct ofp_header *) msg->data)->length == htons(msg->size));
if (!VLOG_IS_DBG_ENABLED()) {
COVERAGE_INC(vconn_sent);
retval = (vconn->class->send)(vconn, msg);
} else {
char *s = ofp_to_string(msg->data, msg->size, 1);
retval = (vconn->class->send)(vconn, msg);
if (retval != EAGAIN) {
VLOG_DBG_RL(&ofmsg_rl, "%s: sent (%s): %s",
vconn->name, strerror(retval), s);
}
free(s);
}
return retval;
}
/* Same as vconn_send, except that it waits until 'msg' can be transmitted. */
int
vconn_send_block(struct vconn *vconn, struct ofpbuf *msg)
{
int retval;
while ((retval = vconn_send(vconn, msg)) == EAGAIN) {
vconn_send_wait(vconn);
poll_block();
}
return retval;
}
/* Same as vconn_recv, except that it waits until a message is received. */
int
vconn_recv_block(struct vconn *vconn, struct ofpbuf **msgp)
{
int retval;
while ((retval = vconn_recv(vconn, msgp)) == EAGAIN) {
vconn_recv_wait(vconn);
poll_block();
}
return retval;
}
/* Waits until a message with a transaction ID matching 'xid' is recived on
* 'vconn'. Returns 0 if successful, in which case the reply is stored in
* '*replyp' for the caller to examine and free. Otherwise returns a positive
* errno value, or EOF, and sets '*replyp' to null.
*
* 'request' is always destroyed, regardless of the return value. */
int
vconn_recv_xid(struct vconn *vconn, uint32_t xid, struct ofpbuf **replyp)
{
for (;;) {
uint32_t recv_xid;
struct ofpbuf *reply;
int error;
error = vconn_recv_block(vconn, &reply);
if (error) {
*replyp = NULL;
return error;
}
recv_xid = ((struct ofp_header *) reply->data)->xid;
if (xid == recv_xid) {
*replyp = reply;
return 0;
}
VLOG_DBG_RL(&bad_ofmsg_rl, "%s: received reply with xid %08"PRIx32
" != expected %08"PRIx32, vconn->name, recv_xid, xid);
ofpbuf_delete(reply);
}
}
/* Sends 'request' to 'vconn' and blocks until it receives a reply with a
* matching transaction ID. Returns 0 if successful, in which case the reply
* is stored in '*replyp' for the caller to examine and free. Otherwise
* returns a positive errno value, or EOF, and sets '*replyp' to null.
*
* 'request' is always destroyed, regardless of the return value. */
int
vconn_transact(struct vconn *vconn, struct ofpbuf *request,
struct ofpbuf **replyp)
{
uint32_t send_xid = ((struct ofp_header *) request->data)->xid;
int error;
*replyp = NULL;
error = vconn_send_block(vconn, request);
if (error) {
ofpbuf_delete(request);
}
return error ? error : vconn_recv_xid(vconn, send_xid, replyp);
}
void
vconn_wait(struct vconn *vconn, enum vconn_wait_type wait)
{
assert(wait == WAIT_CONNECT || wait == WAIT_RECV || wait == WAIT_SEND);
switch (vconn->state) {
case VCS_CONNECTING:
wait = WAIT_CONNECT;
break;
case VCS_SEND_HELLO:
case VCS_SEND_ERROR:
wait = WAIT_SEND;
break;
case VCS_RECV_HELLO:
wait = WAIT_RECV;
break;
case VCS_CONNECTED:
break;
case VCS_DISCONNECTED:
poll_immediate_wake();
return;
}
(vconn->class->wait)(vconn, wait);
}
void
vconn_connect_wait(struct vconn *vconn)
{
vconn_wait(vconn, WAIT_CONNECT);
}
void
vconn_recv_wait(struct vconn *vconn)
{
vconn_wait(vconn, WAIT_RECV);
}
void
vconn_send_wait(struct vconn *vconn)
{
vconn_wait(vconn, WAIT_SEND);
}
/* Attempts to start listening for OpenFlow connections. 'name' is a
* connection name in the form "TYPE:ARGS", where TYPE is an passive vconn
* class's name and ARGS are vconn class-specific.
*
* Returns 0 if successful, otherwise a positive errno value. If successful,
* stores a pointer to the new connection in '*pvconnp', otherwise a null
* pointer. */
int
pvconn_open(const char *name, struct pvconn **pvconnp)
{
size_t prefix_len;
size_t i;
check_vconn_classes();
*pvconnp = NULL;
prefix_len = strcspn(name, ":");
if (prefix_len == strlen(name)) {
return EAFNOSUPPORT;
}
for (i = 0; i < ARRAY_SIZE(pvconn_classes); i++) {
struct pvconn_class *class = pvconn_classes[i];
if (strlen(class->name) == prefix_len
&& !memcmp(class->name, name, prefix_len)) {
char *suffix_copy = xstrdup(name + prefix_len + 1);
int retval = class->listen(name, suffix_copy, pvconnp);
free(suffix_copy);
if (retval) {
*pvconnp = NULL;
}
return retval;
}
}
return EAFNOSUPPORT;
}
/* Returns the name that was used to open 'pvconn'. The caller must not
* modify or free the name. */
const char *
pvconn_get_name(const struct pvconn *pvconn)
{
return pvconn->name;
}
/* Closes 'pvconn'. */
void
pvconn_close(struct pvconn *pvconn)
{
if (pvconn != NULL) {
char *name = pvconn->name;
(pvconn->class->close)(pvconn);
free(name);
}
}
/* Tries to accept a new connection on 'pvconn'. If successful, stores the new
* connection in '*new_vconn' and returns 0. Otherwise, returns a positive
* errno value.
*
* The new vconn will automatically negotiate an OpenFlow protocol version
* acceptable to both peers on the connection. The version negotiated will be
* no lower than 'min_version' and no higher than OFP_VERSION.
*
* pvconn_accept() will not block waiting for a connection. If no connection
* is ready to be accepted, it returns EAGAIN immediately. */
int
pvconn_accept(struct pvconn *pvconn, int min_version, struct vconn **new_vconn)
{
int retval = (pvconn->class->accept)(pvconn, new_vconn);
if (retval) {
*new_vconn = NULL;
} else {
assert((*new_vconn)->state != VCS_CONNECTING
|| (*new_vconn)->class->connect);
(*new_vconn)->min_version = min_version;
}
return retval;
}
void
pvconn_wait(struct pvconn *pvconn)
{
(pvconn->class->wait)(pvconn);
}
/* XXX we should really use consecutive xids to avoid probabilistic
* failures. */
static inline uint32_t
alloc_xid(void)
{
return random_uint32();
}
/* Allocates and stores in '*bufferp' a new ofpbuf with a size of
* 'openflow_len', starting with an OpenFlow header with the given 'type' and
* an arbitrary transaction id. Allocated bytes beyond the header, if any, are
* zeroed.
*
* The caller is responsible for freeing '*bufferp' when it is no longer
* needed.
*
* The OpenFlow header length is initially set to 'openflow_len'; if the
* message is later extended, the length should be updated with
* update_openflow_length() before sending.
*
* Returns the header. */
void *
make_openflow(size_t openflow_len, uint8_t type, struct ofpbuf **bufferp)
{
*bufferp = ofpbuf_new(openflow_len);
return put_openflow_xid(openflow_len, type, alloc_xid(), *bufferp);
}
/* Allocates and stores in '*bufferp' a new ofpbuf with a size of
* 'openflow_len', starting with an OpenFlow header with the given 'type' and
* transaction id 'xid'. Allocated bytes beyond the header, if any, are
* zeroed.
*
* The caller is responsible for freeing '*bufferp' when it is no longer
* needed.
*
* The OpenFlow header length is initially set to 'openflow_len'; if the
* message is later extended, the length should be updated with
* update_openflow_length() before sending.
*
* Returns the header. */
void *
make_openflow_xid(size_t openflow_len, uint8_t type, uint32_t xid,
struct ofpbuf **bufferp)
{
*bufferp = ofpbuf_new(openflow_len);
return put_openflow_xid(openflow_len, type, xid, *bufferp);
}
/* Appends 'openflow_len' bytes to 'buffer', starting with an OpenFlow header
* with the given 'type' and an arbitrary transaction id. Allocated bytes
* beyond the header, if any, are zeroed.
*
* The OpenFlow header length is initially set to 'openflow_len'; if the
* message is later extended, the length should be updated with
* update_openflow_length() before sending.
*
* Returns the header. */
void *
put_openflow(size_t openflow_len, uint8_t type, struct ofpbuf *buffer)
{
return put_openflow_xid(openflow_len, type, alloc_xid(), buffer);
}
/* Appends 'openflow_len' bytes to 'buffer', starting with an OpenFlow header
* with the given 'type' and an transaction id 'xid'. Allocated bytes beyond
* the header, if any, are zeroed.
*
* The OpenFlow header length is initially set to 'openflow_len'; if the
* message is later extended, the length should be updated with
* update_openflow_length() before sending.
*
* Returns the header. */
void *
put_openflow_xid(size_t openflow_len, uint8_t type, uint32_t xid,
struct ofpbuf *buffer)
{
struct ofp_header *oh;
assert(openflow_len >= sizeof *oh);
assert(openflow_len <= UINT16_MAX);
oh = ofpbuf_put_uninit(buffer, openflow_len);
oh->version = OFP_VERSION;
oh->type = type;
oh->length = htons(openflow_len);
oh->xid = xid;
memset(oh + 1, 0, openflow_len - sizeof *oh);
return oh;
}
/* Updates the 'length' field of the OpenFlow message in 'buffer' to
* 'buffer->size'. */
void
update_openflow_length(struct ofpbuf *buffer)
{
struct ofp_header *oh = ofpbuf_at_assert(buffer, 0, sizeof *oh);
oh->length = htons(buffer->size);
}
struct ofpbuf *
make_flow_mod(uint16_t command, const flow_t *flow, size_t actions_len)
{
struct ofp_flow_mod *ofm;
size_t size = sizeof *ofm + actions_len;
struct ofpbuf *out = ofpbuf_new(size);
ofm = ofpbuf_put_zeros(out, sizeof *ofm);
ofm->header.version = OFP_VERSION;
ofm->header.type = OFPT_FLOW_MOD;
ofm->header.length = htons(size);
ofm->match.wildcards = htonl(0);
ofm->match.in_port = htons(flow->in_port == ODPP_LOCAL ? OFPP_LOCAL
: flow->in_port);
memcpy(ofm->match.dl_src, flow->dl_src, sizeof ofm->match.dl_src);
memcpy(ofm->match.dl_dst, flow->dl_dst, sizeof ofm->match.dl_dst);
ofm->match.dl_vlan = flow->dl_vlan;
ofm->match.dl_type = flow->dl_type;
ofm->match.nw_src = flow->nw_src;
ofm->match.nw_dst = flow->nw_dst;
ofm->match.nw_proto = flow->nw_proto;
ofm->match.tp_src = flow->tp_src;
ofm->match.tp_dst = flow->tp_dst;
ofm->command = htons(command);
return out;
}
struct ofpbuf *
make_add_flow(const flow_t *flow, uint32_t buffer_id,
uint16_t idle_timeout, size_t actions_len)
{
struct ofpbuf *out = make_flow_mod(OFPFC_ADD, flow, actions_len);
struct ofp_flow_mod *ofm = out->data;
ofm->idle_timeout = htons(idle_timeout);
ofm->hard_timeout = htons(OFP_FLOW_PERMANENT);
ofm->buffer_id = htonl(buffer_id);
return out;
}
struct ofpbuf *
make_del_flow(const flow_t *flow)
{
struct ofpbuf *out = make_flow_mod(OFPFC_DELETE_STRICT, flow, 0);
struct ofp_flow_mod *ofm = out->data;
ofm->out_port = htons(OFPP_NONE);
return out;
}
struct ofpbuf *
make_add_simple_flow(const flow_t *flow,
uint32_t buffer_id, uint16_t out_port,
uint16_t idle_timeout)
{
struct ofp_action_output *oao;
struct ofpbuf *buffer = make_add_flow(flow, buffer_id, idle_timeout,
sizeof *oao);
oao = ofpbuf_put_zeros(buffer, sizeof *oao);
oao->type = htons(OFPAT_OUTPUT);
oao->len = htons(sizeof *oao);
oao->port = htons(out_port);
return buffer;
}
struct ofpbuf *
make_packet_in(uint32_t buffer_id, uint16_t in_port, uint8_t reason,
const struct ofpbuf *payload, int max_send_len)
{
struct ofp_packet_in *opi;
struct ofpbuf *buf;
int send_len;
send_len = MIN(max_send_len, payload->size);
buf = ofpbuf_new(sizeof *opi + send_len);
opi = put_openflow_xid(offsetof(struct ofp_packet_in, data),
OFPT_PACKET_IN, 0, buf);
opi->buffer_id = htonl(buffer_id);
opi->total_len = htons(payload->size);
opi->in_port = htons(in_port);
opi->reason = reason;
ofpbuf_put(buf, payload->data, send_len);
update_openflow_length(buf);
return buf;
}
struct ofpbuf *
make_packet_out(const struct ofpbuf *packet, uint32_t buffer_id,
uint16_t in_port,
const struct ofp_action_header *actions, size_t n_actions)
{
size_t actions_len = n_actions * sizeof *actions;
struct ofp_packet_out *opo;
size_t size = sizeof *opo + actions_len + (packet ? packet->size : 0);
struct ofpbuf *out = ofpbuf_new(size);
opo = ofpbuf_put_uninit(out, sizeof *opo);
opo->header.version = OFP_VERSION;
opo->header.type = OFPT_PACKET_OUT;
opo->header.length = htons(size);
opo->header.xid = htonl(0);
opo->buffer_id = htonl(buffer_id);
opo->in_port = htons(in_port == ODPP_LOCAL ? OFPP_LOCAL : in_port);
opo->actions_len = htons(actions_len);
ofpbuf_put(out, actions, actions_len);
if (packet) {
ofpbuf_put(out, packet->data, packet->size);
}
return out;
}
struct ofpbuf *
make_unbuffered_packet_out(const struct ofpbuf *packet,
uint16_t in_port, uint16_t out_port)
{
struct ofp_action_output action;
action.type = htons(OFPAT_OUTPUT);
action.len = htons(sizeof action);
action.port = htons(out_port);
return make_packet_out(packet, UINT32_MAX, in_port,
(struct ofp_action_header *) &action, 1);
}
struct ofpbuf *
make_buffered_packet_out(uint32_t buffer_id,
uint16_t in_port, uint16_t out_port)
{
struct ofp_action_output action;
action.type = htons(OFPAT_OUTPUT);
action.len = htons(sizeof action);
action.port = htons(out_port);
return make_packet_out(NULL, buffer_id, in_port,
(struct ofp_action_header *) &action, 1);
}
/* Creates and returns an OFPT_ECHO_REQUEST message with an empty payload. */
struct ofpbuf *
make_echo_request(void)
{
struct ofp_header *rq;
struct ofpbuf *out = ofpbuf_new(sizeof *rq);
rq = ofpbuf_put_uninit(out, sizeof *rq);
rq->version = OFP_VERSION;
rq->type = OFPT_ECHO_REQUEST;
rq->length = htons(sizeof *rq);
rq->xid = 0;
return out;
}
/* Creates and returns an OFPT_ECHO_REPLY message matching the
* OFPT_ECHO_REQUEST message in 'rq'. */
struct ofpbuf *
make_echo_reply(const struct ofp_header *rq)
{
size_t size = ntohs(rq->length);
struct ofpbuf *out = ofpbuf_new(size);
struct ofp_header *reply = ofpbuf_put(out, rq, size);
reply->type = OFPT_ECHO_REPLY;
return out;
}
static int
check_message_type(uint8_t got_type, uint8_t want_type)
{
if (got_type != want_type) {
char *want_type_name = ofp_message_type_to_string(want_type);
char *got_type_name = ofp_message_type_to_string(got_type);
VLOG_WARN_RL(&bad_ofmsg_rl,
"received bad message type %s (expected %s)",
got_type_name, want_type_name);
free(want_type_name);
free(got_type_name);
return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_TYPE);
}
return 0;
}
/* Checks that 'msg' has type 'type' and that it is exactly 'size' bytes long.
* Returns 0 if the checks pass, otherwise an OpenFlow error code (produced
* with ofp_mkerr()). */
int
check_ofp_message(const struct ofp_header *msg, uint8_t type, size_t size)
{
size_t got_size;
int error;
error = check_message_type(msg->type, type);
if (error) {
return error;
}
got_size = ntohs(msg->length);
if (got_size != size) {
char *type_name = ofp_message_type_to_string(type);
VLOG_WARN_RL(&bad_ofmsg_rl,
"received %s message of length %zu (expected %zu)",
type_name, got_size, size);
free(type_name);
return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
}
return 0;
}
/* Checks that 'msg' has type 'type' and that 'msg' is 'size' plus a
* nonnegative integer multiple of 'array_elt_size' bytes long. Returns 0 if
* the checks pass, otherwise an OpenFlow error code (produced with
* ofp_mkerr()).
*
* If 'n_array_elts' is nonnull, then '*n_array_elts' is set to the number of
* 'array_elt_size' blocks in 'msg' past the first 'min_size' bytes, when
* successful. */
int
check_ofp_message_array(const struct ofp_header *msg, uint8_t type,
size_t min_size, size_t array_elt_size,
size_t *n_array_elts)
{
size_t got_size;
int error;
assert(array_elt_size);
error = check_message_type(msg->type, type);
if (error) {
return error;
}
got_size = ntohs(msg->length);
if (got_size < min_size) {
char *type_name = ofp_message_type_to_string(type);
VLOG_WARN_RL(&bad_ofmsg_rl, "received %s message of length %zu "
"(expected at least %zu)",
type_name, got_size, min_size);
free(type_name);
return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
}
if ((got_size - min_size) % array_elt_size) {
char *type_name = ofp_message_type_to_string(type);
VLOG_WARN_RL(&bad_ofmsg_rl,
"received %s message of bad length %zu: the "
"excess over %zu (%zu) is not evenly divisible by %zu "
"(remainder is %zu)",
type_name, got_size, min_size, got_size - min_size,
array_elt_size, (got_size - min_size) % array_elt_size);
free(type_name);
return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
}
if (n_array_elts) {
*n_array_elts = (got_size - min_size) / array_elt_size;
}
return 0;
}
int
check_ofp_packet_out(const struct ofp_header *oh, struct ofpbuf *data,
int *n_actionsp, int max_ports)
{
const struct ofp_packet_out *opo;
unsigned int actions_len, n_actions;
size_t extra;
int error;
*n_actionsp = 0;
error = check_ofp_message_array(oh, OFPT_PACKET_OUT,
sizeof *opo, 1, &extra);
if (error) {
return error;
}
opo = (const struct ofp_packet_out *) oh;
actions_len = ntohs(opo->actions_len);
if (actions_len > extra) {
VLOG_WARN_RL(&bad_ofmsg_rl, "packet-out claims %u bytes of actions "
"but message has room for only %zu bytes",
actions_len, extra);
return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
}
if (actions_len % sizeof(union ofp_action)) {
VLOG_WARN_RL(&bad_ofmsg_rl, "packet-out claims %u bytes of actions, "
"which is not a multiple of %zu",
actions_len, sizeof(union ofp_action));
return ofp_mkerr(OFPET_BAD_REQUEST, OFPBRC_BAD_LENGTH);
}
n_actions = actions_len / sizeof(union ofp_action);
error = validate_actions((const union ofp_action *) opo->actions,
n_actions, max_ports);
if (error) {
return error;
}
data->data = (void *) &opo->actions[n_actions];
data->size = extra - actions_len;
*n_actionsp = n_actions;
return 0;
}
const struct ofp_flow_stats *
flow_stats_first(struct flow_stats_iterator *iter,
const struct ofp_stats_reply *osr)
{
iter->pos = osr->body;
iter->end = osr->body + (ntohs(osr->header.length)
- offsetof(struct ofp_stats_reply, body));
return flow_stats_next(iter);
}
const struct ofp_flow_stats *
flow_stats_next(struct flow_stats_iterator *iter)
{
ptrdiff_t bytes_left = iter->end - iter->pos;
const struct ofp_flow_stats *fs;
size_t length;
if (bytes_left < sizeof *fs) {
if (bytes_left != 0) {
VLOG_WARN_RL(&bad_ofmsg_rl,
"%td leftover bytes in flow stats reply", bytes_left);
}
return NULL;
}
fs = (const void *) iter->pos;
length = ntohs(fs->length);
if (length < sizeof *fs) {
VLOG_WARN_RL(&bad_ofmsg_rl, "flow stats length %zu is shorter than "
"min %zu", length, sizeof *fs);
return NULL;
} else if (length > bytes_left) {
VLOG_WARN_RL(&bad_ofmsg_rl, "flow stats length %zu but only %td "
"bytes left", length, bytes_left);
return NULL;
} else if ((length - sizeof *fs) % sizeof fs->actions[0]) {
VLOG_WARN_RL(&bad_ofmsg_rl, "flow stats length %zu has %zu bytes "
"left over in final action", length,
(length - sizeof *fs) % sizeof fs->actions[0]);
return NULL;
}
iter->pos += length;
return fs;
}
/* Alignment of ofp_actions. */
#define ACTION_ALIGNMENT 8
static int
check_action_exact_len(const union ofp_action *a, unsigned int len,
unsigned int required_len)
{
if (len != required_len) {
VLOG_DBG_RL(&bad_ofmsg_rl,
"action %u has invalid length %"PRIu16" (must be %u)\n",
a->type, ntohs(a->header.len), required_len);
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_LEN);
}
return 0;
}
static int
check_action_port(int port, int max_ports)
{
switch (port) {
case OFPP_IN_PORT:
case OFPP_TABLE:
case OFPP_NORMAL:
case OFPP_FLOOD:
case OFPP_ALL:
case OFPP_CONTROLLER:
case OFPP_LOCAL:
return 0;
default:
if (port >= 0 && port < max_ports) {
return 0;
}
VLOG_WARN_RL(&bad_ofmsg_rl, "unknown output port %x", port);
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_OUT_PORT);
}
}
static int
check_nicira_action(const union ofp_action *a, unsigned int len)
{
const struct nx_action_header *nah;
if (len < 16) {
VLOG_DBG_RL(&bad_ofmsg_rl,
"Nicira vendor action only %u bytes", len);
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_LEN);
}
nah = (const struct nx_action_header *) a;
switch (ntohs(nah->subtype)) {
case NXAST_RESUBMIT:
return check_action_exact_len(a, len, 16);
default:
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_VENDOR_TYPE);
}
}
static int
check_action(const union ofp_action *a, unsigned int len, int max_ports)
{
int error;
switch (ntohs(a->type)) {
case OFPAT_OUTPUT:
error = check_action_port(ntohs(a->output.port), max_ports);
if (error) {
return error;
}
return check_action_exact_len(a, len, 8);
case OFPAT_SET_VLAN_VID:
case OFPAT_SET_VLAN_PCP:
case OFPAT_STRIP_VLAN:
case OFPAT_SET_NW_SRC:
case OFPAT_SET_NW_DST:
case OFPAT_SET_TP_SRC:
case OFPAT_SET_TP_DST:
return check_action_exact_len(a, len, 8);
case OFPAT_SET_DL_SRC:
case OFPAT_SET_DL_DST:
return check_action_exact_len(a, len, 16);
case OFPAT_VENDOR:
if (a->vendor.vendor == htonl(NX_VENDOR_ID)) {
return check_nicira_action(a, len);
} else {
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_VENDOR);
}
break;
default:
VLOG_WARN_RL(&bad_ofmsg_rl, "unknown action type %"PRIu16,
ntohs(a->type));
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_TYPE);
}
if (!len) {
VLOG_DBG_RL(&bad_ofmsg_rl, "action has invalid length 0");
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_LEN);
}
if (len % ACTION_ALIGNMENT) {
VLOG_DBG_RL(&bad_ofmsg_rl, "action length %u is not a multiple of %d",
len, ACTION_ALIGNMENT);
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_LEN);
}
return 0;
}
int
validate_actions(const union ofp_action *actions, size_t n_actions,
int max_ports)
{
const union ofp_action *a;
for (a = actions; a < &actions[n_actions]; ) {
unsigned int len = ntohs(a->header.len);
unsigned int n_slots = len / ACTION_ALIGNMENT;
unsigned int slots_left = &actions[n_actions] - a;
int error;
if (n_slots > slots_left) {
VLOG_DBG_RL(&bad_ofmsg_rl,
"action requires %u slots but only %u remain",
n_slots, slots_left);
return ofp_mkerr(OFPET_BAD_ACTION, OFPBAC_BAD_LEN);
}
error = check_action(a, len, max_ports);
if (error) {
return error;
}
a += n_slots;
}
return 0;
}
/* The set of actions must either come from a trusted source or have been
* previously validated with validate_actions(). */
const union ofp_action *
actions_first(struct actions_iterator *iter,
const union ofp_action *oa, size_t n_actions)
{
iter->pos = oa;
iter->end = oa + n_actions;
return actions_next(iter);
}
const union ofp_action *
actions_next(struct actions_iterator *iter)
{
if (iter->pos < iter->end) {
const union ofp_action *a = iter->pos;
unsigned int len = ntohs(a->header.len);
iter->pos += len / ACTION_ALIGNMENT;
return a;
} else {
return NULL;
}
}
void
normalize_match(struct ofp_match *m)
{
enum { OFPFW_NW = OFPFW_NW_SRC_MASK | OFPFW_NW_DST_MASK | OFPFW_NW_PROTO };
enum { OFPFW_TP = OFPFW_TP_SRC | OFPFW_TP_DST };
uint32_t wc;
wc = ntohl(m->wildcards) & OFPFW_ALL;
if (wc & OFPFW_DL_TYPE) {
m->dl_type = 0;
/* Can't sensibly match on network or transport headers if the
* data link type is unknown. */
wc |= OFPFW_NW | OFPFW_TP;
m->nw_src = m->nw_dst = m->nw_proto = 0;
m->tp_src = m->tp_dst = 0;
} else if (m->dl_type == htons(ETH_TYPE_IP)) {
if (wc & OFPFW_NW_PROTO) {
m->nw_proto = 0;
/* Can't sensibly match on transport headers if the network
* protocol is unknown. */
wc |= OFPFW_TP;
m->tp_src = m->tp_dst = 0;
} else if (m->nw_proto == IPPROTO_TCP ||
m->nw_proto == IPPROTO_UDP ||
m->nw_proto == IPPROTO_ICMP) {
if (wc & OFPFW_TP_SRC) {
m->tp_src = 0;
}
if (wc & OFPFW_TP_DST) {
m->tp_dst = 0;
}
} else {
/* Transport layer fields will always be extracted as zeros, so we
* can do an exact-match on those values. */
wc &= ~OFPFW_TP;
m->tp_src = m->tp_dst = 0;
}
if (wc & OFPFW_NW_SRC_MASK) {
m->nw_src &= flow_nw_bits_to_mask(wc, OFPFW_NW_SRC_SHIFT);
}
if (wc & OFPFW_NW_DST_MASK) {
m->nw_dst &= flow_nw_bits_to_mask(wc, OFPFW_NW_DST_SHIFT);
}
} else {
/* Network and transport layer fields will always be extracted as
* zeros, so we can do an exact-match on those values. */
wc &= ~(OFPFW_NW | OFPFW_TP);
m->nw_proto = m->nw_src = m->nw_dst = 0;
m->tp_src = m->tp_dst = 0;
}
if (wc & OFPFW_DL_SRC) {
memset(m->dl_src, 0, sizeof m->dl_src);
}
if (wc & OFPFW_DL_DST) {
memset(m->dl_dst, 0, sizeof m->dl_dst);
}
m->wildcards = htonl(wc);
}
/* Initializes 'vconn' as a new vconn named 'name', implemented via 'class'.
* The initial connection status, supplied as 'connect_status', is interpreted
* as follows:
*
* - 0: 'vconn' is connected. Its 'send' and 'recv' functions may be
* called in the normal fashion.
*
* - EAGAIN: 'vconn' is trying to complete a connection. Its 'connect'
* function should be called to complete the connection.
*
* - Other positive errno values indicate that the connection failed with
* the specified error.
*
* After calling this function, vconn_close() must be used to destroy 'vconn',
* otherwise resources will be leaked.
*
* The caller retains ownership of 'name'. */
void
vconn_init(struct vconn *vconn, struct vconn_class *class, int connect_status,
const char *name)
{
vconn->class = class;
vconn->state = (connect_status == EAGAIN ? VCS_CONNECTING
: !connect_status ? VCS_SEND_HELLO
: VCS_DISCONNECTED);
vconn->error = connect_status;
vconn->version = -1;
vconn->min_version = -1;
vconn->remote_ip = 0;
vconn->remote_port = 0;
vconn->local_ip = 0;
vconn->local_port = 0;
vconn->name = xstrdup(name);
}
void
vconn_set_remote_ip(struct vconn *vconn, uint32_t ip)
{
vconn->remote_ip = ip;
}
void
vconn_set_remote_port(struct vconn *vconn, uint16_t port)
{
vconn->remote_port = port;
}
void
vconn_set_local_ip(struct vconn *vconn, uint32_t ip)
{
vconn->local_ip = ip;
}
void
vconn_set_local_port(struct vconn *vconn, uint16_t port)
{
vconn->local_port = port;
}
void
pvconn_init(struct pvconn *pvconn, struct pvconn_class *class,
const char *name)
{
pvconn->class = class;
pvconn->name = xstrdup(name);
}