2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 18:07:40 +00:00
ovs/lib/dpif-netdev-extract-avx512.c

631 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (c) 2021 Intel.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* AVX512 Miniflow Extract.
*
* This file contains optimized implementations of miniflow_extract()
* for specific common traffic patterns. The optimizations allow for
* quick probing of a specific packet type, and if a match with a specific
* type is found, a shuffle like procedure builds up the required miniflow.
*
* Process
* ---------
*
* The procedure is to classify the packet based on the traffic type
* using predifined bit-masks and arrage the packet header data using shuffle
* instructions to a pre-defined place as required by the miniflow.
* This elimates the if-else ladder to identify the packet data and add data
* as per protocol which is present.
*/
#ifdef __x86_64__
/* Sparse cannot handle the AVX512 instructions. */
#if !defined(__CHECKER__)
#include <config.h>
#include <errno.h>
#include <immintrin.h>
#include <stdint.h>
#include <string.h>
#include "flow.h"
#include "dpdk.h"
#include "dpif-netdev-private-dpcls.h"
#include "dpif-netdev-private-extract.h"
#include "dpif-netdev-private-flow.h"
/* AVX512-BW level permutex2var_epi8 emulation. */
static inline __m512i
__attribute__((target("avx512bw")))
_mm512_maskz_permutex2var_epi8_skx(__mmask64 k_mask,
__m512i v_data_0,
__m512i v_shuf_idxs,
__m512i v_data_1)
{
/* Manipulate shuffle indexes for u16 size. */
__mmask64 k_mask_odd_lanes = 0xAAAAAAAAAAAAAAAA;
/* Clear away ODD lane bytes. Cannot be done above due to no u8 shift. */
__m512i v_shuf_idx_evn = _mm512_mask_blend_epi8(k_mask_odd_lanes,
v_shuf_idxs,
_mm512_setzero_si512());
v_shuf_idx_evn = _mm512_srli_epi16(v_shuf_idx_evn, 1);
__m512i v_shuf_idx_odd = _mm512_srli_epi16(v_shuf_idxs, 9);
/* Shuffle each half at 16-bit width. */
__m512i v_shuf1 = _mm512_permutex2var_epi16(v_data_0, v_shuf_idx_evn,
v_data_1);
__m512i v_shuf2 = _mm512_permutex2var_epi16(v_data_0, v_shuf_idx_odd,
v_data_1);
/* Find if the shuffle index was odd, via mask and compare. */
uint16_t index_odd_mask = 0x1;
const __m512i v_index_mask_u16 = _mm512_set1_epi16(index_odd_mask);
/* EVEN lanes, find if u8 index was odd, result as u16 bitmask. */
__m512i v_idx_even_masked = _mm512_and_si512(v_shuf_idxs,
v_index_mask_u16);
__mmask32 evn_rotate_mask = _mm512_cmpeq_epi16_mask(v_idx_even_masked,
v_index_mask_u16);
/* ODD lanes, find if u8 index was odd, result as u16 bitmask. */
__m512i v_shuf_idx_srli8 = _mm512_srli_epi16(v_shuf_idxs, 8);
__m512i v_idx_odd_masked = _mm512_and_si512(v_shuf_idx_srli8,
v_index_mask_u16);
__mmask32 odd_rotate_mask = _mm512_cmpeq_epi16_mask(v_idx_odd_masked,
v_index_mask_u16);
odd_rotate_mask = ~odd_rotate_mask;
/* Rotate and blend results from each index. */
__m512i v_shuf_res_evn = _mm512_mask_srli_epi16(v_shuf1, evn_rotate_mask,
v_shuf1, 8);
__m512i v_shuf_res_odd = _mm512_mask_slli_epi16(v_shuf2, odd_rotate_mask,
v_shuf2, 8);
/* If shuffle index was odd, blend shifted version. */
__m512i v_shuf_result = _mm512_mask_blend_epi8(k_mask_odd_lanes,
v_shuf_res_evn, v_shuf_res_odd);
__m512i v_zeros = _mm512_setzero_si512();
__m512i v_result_kmskd = _mm512_mask_blend_epi8(k_mask, v_zeros,
v_shuf_result);
return v_result_kmskd;
}
/* Wrapper function required to enable ISA. */
static inline __m512i
__attribute__((__target__("avx512vbmi")))
_mm512_maskz_permutexvar_epi8_wrap(__mmask64 kmask, __m512i idx, __m512i a)
{
return _mm512_maskz_permutexvar_epi8(kmask, idx, a);
}
/* This file contains optimized implementations of miniflow_extract()
* for specific common traffic patterns. The optimizations allow for
* quick probing of a specific packet type, and if a match with a specific
* type is found, a shuffle like procedure builds up the required miniflow.
*
* The functionality here can be easily auto-validated and tested against the
* scalar miniflow_extract() function. As such, manual review of the code by
* the community (although welcome) is not required. Confidence in the
* correctness of the code can be confirmed from the autovalidator results.
*/
/* Generator for EtherType masks and values. */
#define PATTERN_ETHERTYPE_GEN(type_b0, type_b1) \
0, 0, 0, 0, 0, 0, /* Ether MAC DST */ \
0, 0, 0, 0, 0, 0, /* Ether MAC SRC */ \
type_b0, type_b1, /* EtherType */
#define PATTERN_ETHERTYPE_MASK PATTERN_ETHERTYPE_GEN(0xFF, 0xFF)
#define PATTERN_ETHERTYPE_IPV4 PATTERN_ETHERTYPE_GEN(0x08, 0x00)
#define PATTERN_ETHERTYPE_DT1Q PATTERN_ETHERTYPE_GEN(0x81, 0x00)
/* VLAN (Dot1Q) patterns and masks. */
#define PATTERN_DT1Q_MASK \
0x00, 0x00, 0xFF, 0xFF,
#define PATTERN_DT1Q_IPV4 \
0x00, 0x00, 0x08, 0x00,
/* Generator for checking IPv4 ver, ihl, and proto */
#define PATTERN_IPV4_GEN(VER_IHL, FLAG_OFF_B0, FLAG_OFF_B1, PROTO) \
VER_IHL, /* Version and IHL */ \
0, 0, 0, /* DSCP, ECN, Total Length */ \
0, 0, /* Identification */ \
/* Flags/Fragment offset: don't match MoreFrag (MF) or FragOffset */ \
FLAG_OFF_B0, FLAG_OFF_B1, \
0, /* TTL */ \
PROTO, /* Protocol */ \
0, 0, /* Header checksum */ \
0, 0, 0, 0, /* Src IP */ \
0, 0, 0, 0, /* Dst IP */
#define PATTERN_IPV4_MASK PATTERN_IPV4_GEN(0xFF, 0xFE, 0xFF, 0xFF)
#define PATTERN_IPV4_UDP PATTERN_IPV4_GEN(0x45, 0, 0, 0x11)
#define PATTERN_IPV4_TCP PATTERN_IPV4_GEN(0x45, 0, 0, 0x06)
#define NU 0
#define PATTERN_IPV4_UDP_SHUFFLE \
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, NU, NU, /* Ether */ \
26, 27, 28, 29, 30, 31, 32, 33, NU, NU, NU, NU, 20, 15, 22, 23, /* IPv4 */ \
34, 35, 36, 37, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, /* UDP */ \
NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, /* Unused. */
/* TCP shuffle: tcp_ctl bits require mask/processing, not included here. */
#define PATTERN_IPV4_TCP_SHUFFLE \
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, NU, NU, /* Ether */ \
26, 27, 28, 29, 30, 31, 32, 33, NU, NU, NU, NU, 20, 15, 22, 23, /* IPv4 */ \
NU, NU, NU, NU, NU, NU, NU, NU, 34, 35, 36, 37, NU, NU, NU, NU, /* TCP */ \
NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, NU, /* Unused. */
#define PATTERN_DT1Q_IPV4_UDP_SHUFFLE \
/* Ether (2 blocks): Note that *VLAN* type is written here. */ \
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 0, 0, \
/* VLAN (1 block): Note that the *EtherHdr->Type* is written here. */ \
12, 13, 14, 15, 0, 0, 0, 0, \
30, 31, 32, 33, 34, 35, 36, 37, 0, 0, 0, 0, 24, 19, 26, 27, /* IPv4 */ \
38, 39, 40, 41, NU, NU, NU, NU, /* UDP */
#define PATTERN_DT1Q_IPV4_TCP_SHUFFLE \
/* Ether (2 blocks): Note that *VLAN* type is written here. */ \
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 0, 0, \
/* VLAN (1 block): Note that the *EtherHdr->Type* is written here. */ \
12, 13, 14, 15, 0, 0, 0, 0, \
30, 31, 32, 33, 34, 35, 36, 37, 0, 0, 0, 0, 24, 19, 26, 27, /* IPv4 */ \
NU, NU, NU, NU, NU, NU, NU, NU, 38, 39, 40, 41, NU, NU, NU, NU, /* TCP */ \
NU, NU, NU, NU, NU, NU, NU, NU, /* Unused. */
/* Generation of K-mask bitmask values, to zero out data in result. Note that
* these correspond 1:1 to the above "*_SHUFFLE" values, and bit used must be
* set in this K-mask, and "NU" values must be zero in the k-mask. Each mask
* defined here represents 2 blocks, so 16 bytes, so 4 characters (eg. 0xFFFF).
*
* Note the ULL suffix allows shifting by 32 or more without integer overflow.
*/
#define KMASK_ETHER 0x1FFFULL
#define KMASK_DT1Q 0x0FULL
#define KMASK_IPV4 0xF0FFULL
#define KMASK_UDP 0x000FULL
#define KMASK_TCP 0x0F00ULL
#define PATTERN_IPV4_UDP_KMASK \
(KMASK_ETHER | (KMASK_IPV4 << 16) | (KMASK_UDP << 32))
#define PATTERN_IPV4_TCP_KMASK \
(KMASK_ETHER | (KMASK_IPV4 << 16) | (KMASK_TCP << 32))
#define PATTERN_DT1Q_IPV4_UDP_KMASK \
(KMASK_ETHER | (KMASK_DT1Q << 16) | (KMASK_IPV4 << 24) | (KMASK_UDP << 40))
#define PATTERN_DT1Q_IPV4_TCP_KMASK \
(KMASK_ETHER | (KMASK_DT1Q << 16) | (KMASK_IPV4 << 24) | (KMASK_TCP << 40))
/* This union allows initializing static data as u8, but easily loading it
* into AVX512 registers too. The union ensures proper alignment for the zmm.
*/
union mfex_data {
uint8_t u8_data[64];
__m512i zmm;
};
/* This structure represents a single traffic pattern. The AVX512 code to
* enable the specifics for each pattern is largely the same, so it is
* specialized to use the common profile data from here.
*
* Due to the nature of e.g. TCP flag handling, or VLAN CFI bit setting,
* some profiles require additional processing. This is handled by having
* all implementations call a post-process function, and specializing away
* the big switch() that handles all traffic types.
*
* This approach reduces AVX512 code-duplication for each traffic type.
*/
struct mfex_profile {
/* Required for probing a packet with the mfex pattern. */
union mfex_data probe_mask;
union mfex_data probe_data;
/* Required for reshaping packet into miniflow. */
union mfex_data store_shuf;
__mmask64 store_kmsk;
/* Constant data to set in mf.bits and dp_packet data on hit. */
uint64_t mf_bits[FLOWMAP_UNITS];
uint16_t dp_pkt_offs[4];
uint16_t dp_pkt_min_size;
};
/* Ensure dp_pkt_offs[4] is the correct size as in struct dp_packet. */
BUILD_ASSERT_DECL((OFFSETOFEND(struct dp_packet, l4_ofs)
- offsetof(struct dp_packet, l2_pad_size)) ==
MEMBER_SIZEOF(struct mfex_profile, dp_pkt_offs));
/* Ensure FLOWMAP_UNITS is 2 units, as the implementation assumes this. */
BUILD_ASSERT_DECL(FLOWMAP_UNITS == 2);
/* Ensure the miniflow-struct ABI is the expected version. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
/* If the above build assert happens, this means that you might need to make
* some modifications to the AVX512 miniflow extractor code. In general, the
* AVX512 flow extractor code uses hardcoded miniflow->map->bits which are
* defined into the mfex_profile structure as mf_bits. In addition to the
* hardcoded bits, it also has hardcoded offsets/masks that tell the AVX512
* code how to translate packet data in the required miniflow values. These
* are stored in the mfex_profile structure as store_shuf and store_kmsk.
* See the respective documentation on their usage.
*
* If you have made changes to the flow structure, but only additions, no
* re-arranging of the actual members, you might be good to go. To be 100%
* sure, if possible, run the AVX512 MFEX autovalidator tests on an AVX512
* enabled machine.
*
* If you did make changes to the order, you have to run the autovalidator
* tests on an AVX512 machine, and and in the case errors, the debug output
* will show what miniflow or dp_packet properties are not being correctly
* built from the input packet.
*
* In case your change increased the maximum size of the map, i.e.,
* FLOWMAP_UNITS, you need to study the code as it will need some rewriting.
*
* If you are not using the AVX512 MFEX implementation at all, i.e. keeping it
* to the default scalar implementation, see "ovs-appctl
* dpif-netdev/miniflow-parser-get", you could ignore this assert, and just
* just increase the FLOW_WC_SEQ number in the assert.
*/
enum MFEX_PROFILES {
PROFILE_ETH_IPV4_UDP,
PROFILE_ETH_IPV4_TCP,
PROFILE_ETH_VLAN_IPV4_UDP,
PROFILE_ETH_VLAN_IPV4_TCP,
PROFILE_COUNT,
};
/* Static const instances of profiles. These are compile-time constants,
* and are specialized into individual miniflow-extract functions.
* NOTE: Order of the fields is significant, any change in the order must be
* reflected in miniflow_extract()!
*/
static const struct mfex_profile mfex_profiles[PROFILE_COUNT] =
{
[PROFILE_ETH_IPV4_UDP] = {
.probe_mask.u8_data = { PATTERN_ETHERTYPE_MASK PATTERN_IPV4_MASK },
.probe_data.u8_data = { PATTERN_ETHERTYPE_IPV4 PATTERN_IPV4_UDP},
.store_shuf.u8_data = { PATTERN_IPV4_UDP_SHUFFLE },
.store_kmsk = PATTERN_IPV4_UDP_KMASK,
.mf_bits = { 0x18a0000000000000, 0x0000000000040401},
.dp_pkt_offs = {
0, UINT16_MAX, 14, 34,
},
.dp_pkt_min_size = 42,
},
[PROFILE_ETH_IPV4_TCP] = {
.probe_mask.u8_data = { PATTERN_ETHERTYPE_MASK PATTERN_IPV4_MASK },
.probe_data.u8_data = { PATTERN_ETHERTYPE_IPV4 PATTERN_IPV4_TCP},
.store_shuf.u8_data = { PATTERN_IPV4_TCP_SHUFFLE },
.store_kmsk = PATTERN_IPV4_TCP_KMASK,
.mf_bits = { 0x18a0000000000000, 0x0000000000044401},
.dp_pkt_offs = {
0, UINT16_MAX, 14, 34,
},
.dp_pkt_min_size = 54,
},
[PROFILE_ETH_VLAN_IPV4_UDP] = {
.probe_mask.u8_data = {
PATTERN_ETHERTYPE_MASK PATTERN_DT1Q_MASK PATTERN_IPV4_MASK
},
.probe_data.u8_data = {
PATTERN_ETHERTYPE_DT1Q PATTERN_DT1Q_IPV4 PATTERN_IPV4_UDP
},
.store_shuf.u8_data = { PATTERN_DT1Q_IPV4_UDP_SHUFFLE },
.store_kmsk = PATTERN_DT1Q_IPV4_UDP_KMASK,
.mf_bits = { 0x38a0000000000000, 0x0000000000040401},
.dp_pkt_offs = {
14, UINT16_MAX, 18, 38,
},
.dp_pkt_min_size = 46,
},
[PROFILE_ETH_VLAN_IPV4_TCP] = {
.probe_mask.u8_data = {
PATTERN_ETHERTYPE_MASK PATTERN_DT1Q_MASK PATTERN_IPV4_MASK
},
.probe_data.u8_data = {
PATTERN_ETHERTYPE_DT1Q PATTERN_DT1Q_IPV4 PATTERN_IPV4_TCP
},
.store_shuf.u8_data = { PATTERN_DT1Q_IPV4_TCP_SHUFFLE },
.store_kmsk = PATTERN_DT1Q_IPV4_TCP_KMASK,
.mf_bits = { 0x38a0000000000000, 0x0000000000044401},
.dp_pkt_offs = {
14, UINT16_MAX, 18, 38,
},
.dp_pkt_min_size = 46,
},
};
/* Protocol specific helper functions, for calculating offsets/lenghts. */
static int32_t
mfex_ipv4_set_l2_pad_size(struct dp_packet *pkt, struct ip_header *nh,
uint32_t len_from_ipv4)
{
/* Handle dynamic l2_pad_size. */
uint16_t tot_len = ntohs(nh->ip_tot_len);
if (OVS_UNLIKELY(tot_len > len_from_ipv4 ||
(len_from_ipv4 - tot_len) > UINT16_MAX)) {
return -1;
}
dp_packet_set_l2_pad_size(pkt, len_from_ipv4 - tot_len);
return 0;
}
/* Fixup the VLAN CFI and PCP, reading the PCP from the input to this function,
* and storing the output CFI bit bitwise-OR-ed with the PCP to miniflow.
*/
static void
mfex_vlan_pcp(const uint8_t vlan_pcp, uint64_t *block)
{
/* Bitwise-OR in the CFI flag, keeping other data the same. */
uint8_t *cfi_byte = (uint8_t *) block;
cfi_byte[2] = 0x10 | vlan_pcp;
}
static void
mfex_handle_tcp_flags(const struct tcp_header *tcp, uint64_t *block)
{
uint16_t ctl = (OVS_FORCE uint16_t) TCP_FLAGS_BE16(tcp->tcp_ctl);
uint64_t ctl_u64 = ctl;
*block = ctl_u64 << 32;
}
/* Generic loop to process any mfex profile. This code is specialized into
* multiple actual MFEX implementation functions. Its marked ALWAYS_INLINE
* to ensure the compiler specializes each instance. The code is marked "hot"
* to inform the compiler this is a hotspot in the program, encouraging
* inlining of callee functions such as the permute calls.
*/
static inline uint32_t ALWAYS_INLINE
__attribute__ ((hot))
mfex_avx512_process(struct dp_packet_batch *packets,
struct netdev_flow_key *keys,
uint32_t keys_size OVS_UNUSED,
odp_port_t in_port,
void *pmd_handle OVS_UNUSED,
const enum MFEX_PROFILES profile_id,
const uint32_t use_vbmi)
{
uint32_t hitmask = 0;
struct dp_packet *packet;
/* Here the profile to use is chosen by the variable used to specialize
* the function. This causes different MFEX traffic to be handled.
*/
const struct mfex_profile *profile = &mfex_profiles[profile_id];
/* Load profile constant data. */
__m512i v_vals = _mm512_loadu_si512(&profile->probe_data);
__m512i v_mask = _mm512_loadu_si512(&profile->probe_mask);
__m512i v_shuf = _mm512_loadu_si512(&profile->store_shuf);
__mmask64 k_shuf = profile->store_kmsk;
__m128i v_bits = _mm_loadu_si128((void *) &profile->mf_bits);
uint16_t dp_pkt_min_size = profile->dp_pkt_min_size;
__m128i v_zeros = _mm_setzero_si128();
__m128i v_blocks01 = _mm_insert_epi32(v_zeros, odp_to_u32(in_port), 1);
DP_PACKET_BATCH_FOR_EACH (i, packet, packets) {
/* If the packet is smaller than the probe size, skip it. */
const uint32_t size = dp_packet_size(packet);
if (size < dp_pkt_min_size) {
continue;
}
/* Load packet data and probe with AVX512 mask & compare. */
const uint8_t *pkt = dp_packet_data(packet);
__m512i v_pkt0 = _mm512_loadu_si512(pkt);
__m512i v_pkt0_masked = _mm512_and_si512(v_pkt0, v_mask);
__mmask64 k_cmp = _mm512_cmpeq_epi8_mask(v_pkt0_masked, v_vals);
if (k_cmp != UINT64_MAX) {
continue;
}
/* Copy known dp packet offsets to the dp_packet instance. */
memcpy(&packet->l2_pad_size, &profile->dp_pkt_offs,
sizeof(uint16_t) * 4);
/* Store known miniflow bits and first two blocks. */
struct miniflow *mf = &keys[i].mf;
uint64_t *bits = (void *) &mf->map.bits[0];
uint64_t *blocks = miniflow_values(mf);
_mm_storeu_si128((void *) bits, v_bits);
_mm_storeu_si128((void *) blocks, v_blocks01);
/* Permute the packet layout into miniflow blocks shape.
* As different AVX512 ISA levels have different implementations,
* this specializes on the "use_vbmi" attribute passed in.
*/
__m512i v512_zeros = _mm512_setzero_si512();
__m512i v_blk0;
if (__builtin_constant_p(use_vbmi) && use_vbmi) {
v_blk0 = _mm512_maskz_permutexvar_epi8_wrap(k_shuf, v_shuf,
v_pkt0);
} else {
v_blk0 = _mm512_maskz_permutex2var_epi8_skx(k_shuf, v_pkt0,
v_shuf, v512_zeros);
}
_mm512_storeu_si512(&blocks[2], v_blk0);
/* Perform "post-processing" per profile, handling details not easily
* handled in the above generic AVX512 code. Examples include TCP flag
* parsing, adding the VLAN CFI bit, and handling IPv4 fragments.
*/
switch (profile_id) {
case PROFILE_COUNT:
ovs_assert(0); /* avoid compiler warning on missing ENUM */
break;
case PROFILE_ETH_VLAN_IPV4_TCP: {
mfex_vlan_pcp(pkt[14], &keys[i].buf[4]);
uint32_t size_from_ipv4 = size - VLAN_ETH_HEADER_LEN;
struct ip_header *nh = (void *)&pkt[VLAN_ETH_HEADER_LEN];
if (mfex_ipv4_set_l2_pad_size(packet, nh, size_from_ipv4)) {
continue;
}
/* Process TCP flags, and store to blocks. */
const struct tcp_header *tcp = (void *)&pkt[38];
mfex_handle_tcp_flags(tcp, &blocks[7]);
} break;
case PROFILE_ETH_VLAN_IPV4_UDP: {
mfex_vlan_pcp(pkt[14], &keys[i].buf[4]);
uint32_t size_from_ipv4 = size - VLAN_ETH_HEADER_LEN;
struct ip_header *nh = (void *)&pkt[VLAN_ETH_HEADER_LEN];
if (mfex_ipv4_set_l2_pad_size(packet, nh, size_from_ipv4)) {
continue;
}
} break;
case PROFILE_ETH_IPV4_TCP: {
/* Process TCP flags, and store to blocks. */
const struct tcp_header *tcp = (void *)&pkt[34];
mfex_handle_tcp_flags(tcp, &blocks[6]);
/* Handle dynamic l2_pad_size. */
uint32_t size_from_ipv4 = size - sizeof(struct eth_header);
struct ip_header *nh = (void *)&pkt[sizeof(struct eth_header)];
if (mfex_ipv4_set_l2_pad_size(packet, nh, size_from_ipv4)) {
continue;
}
} break;
case PROFILE_ETH_IPV4_UDP: {
/* Handle dynamic l2_pad_size. */
uint32_t size_from_ipv4 = size - sizeof(struct eth_header);
struct ip_header *nh = (void *)&pkt[sizeof(struct eth_header)];
if (mfex_ipv4_set_l2_pad_size(packet, nh, size_from_ipv4)) {
continue;
}
} break;
default:
break;
};
/* This packet has its miniflow created, add to hitmask. */
hitmask |= 1 << i;
}
return hitmask;
}
#define DECLARE_MFEX_FUNC(name, profile) \
uint32_t \
__attribute__((__target__("avx512f"))) \
__attribute__((__target__("avx512vl"))) \
__attribute__((__target__("avx512vbmi"))) \
mfex_avx512_vbmi_##name(struct dp_packet_batch *packets, \
struct netdev_flow_key *keys, uint32_t keys_size,\
odp_port_t in_port, struct dp_netdev_pmd_thread \
*pmd_handle) \
{ \
return mfex_avx512_process(packets, keys, keys_size, in_port, \
pmd_handle, profile, 1); \
} \
\
uint32_t \
__attribute__((__target__("avx512f"))) \
__attribute__((__target__("avx512vl"))) \
mfex_avx512_##name(struct dp_packet_batch *packets, \
struct netdev_flow_key *keys, uint32_t keys_size, \
odp_port_t in_port, struct dp_netdev_pmd_thread \
*pmd_handle) \
{ \
return mfex_avx512_process(packets, keys, keys_size, in_port, \
pmd_handle, profile, 0); \
}
/* Each profile gets a single declare here, which specializes the function
* as required.
*/
DECLARE_MFEX_FUNC(ip_udp, PROFILE_ETH_IPV4_UDP)
DECLARE_MFEX_FUNC(ip_tcp, PROFILE_ETH_IPV4_TCP)
DECLARE_MFEX_FUNC(dot1q_ip_udp, PROFILE_ETH_VLAN_IPV4_UDP)
DECLARE_MFEX_FUNC(dot1q_ip_tcp, PROFILE_ETH_VLAN_IPV4_TCP)
static int32_t
avx512_isa_probe(uint32_t needs_vbmi)
{
static const char *isa_required[] = {
"avx512f",
"avx512bw",
"bmi2",
};
int32_t ret = 0;
for (uint32_t i = 0; i < ARRAY_SIZE(isa_required); i++) {
if (!dpdk_get_cpu_has_isa("x86_64", isa_required[i])) {
ret = -ENOTSUP;
}
}
if (needs_vbmi) {
if (!dpdk_get_cpu_has_isa("x86_64", "avx512vbmi")) {
ret = -ENOTSUP;
}
}
return ret;
}
/* Probe functions to check ISA requirements. */
int32_t
mfex_avx512_probe(void)
{
const uint32_t needs_vbmi = 0;
return avx512_isa_probe(needs_vbmi);
}
int32_t
mfex_avx512_vbmi_probe(void)
{
const uint32_t needs_vbmi = 1;
return avx512_isa_probe(needs_vbmi);
}
#endif /* __CHECKER__ */
#endif /* __x86_64__ */