2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-31 14:25:26 +00:00
Files
ovs/ofproto/connmgr.c

1350 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010, 2011 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "connmgr.h"
#include <errno.h>
#include <stdlib.h>
#include "coverage.h"
#include "dpif.h"
#include "fail-open.h"
#include "in-band.h"
#include "odp-util.h"
#include "ofp-util.h"
#include "ofpbuf.h"
#include "pinsched.h"
#include "poll-loop.h"
#include "pktbuf.h"
#include "private.h"
#include "rconn.h"
#include "shash.h"
#include "timeval.h"
#include "vconn.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(connmgr);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
COVERAGE_DEFINE(ofconn_stuck);
/* An OpenFlow connection. */
struct ofconn {
struct connmgr *connmgr; /* Connection's manager. */
struct list node; /* In struct connmgr's "all_conns" list. */
struct rconn *rconn; /* OpenFlow connection. */
enum ofconn_type type; /* Type. */
enum nx_flow_format flow_format; /* Currently selected flow format. */
/* OFPT_PACKET_IN related data. */
struct rconn_packet_counter *packet_in_counter; /* # queued on 'rconn'. */
#define N_SCHEDULERS 2
struct pinsched *schedulers[N_SCHEDULERS];
struct pktbuf *pktbuf; /* OpenFlow packet buffers. */
int miss_send_len; /* Bytes to send of buffered packets. */
/* Number of OpenFlow messages queued on 'rconn' as replies to OpenFlow
* requests, and the maximum number before we stop reading OpenFlow
* requests. */
#define OFCONN_REPLY_MAX 100
struct rconn_packet_counter *reply_counter;
/* type == OFCONN_PRIMARY only. */
enum nx_role role; /* Role. */
struct hmap_node hmap_node; /* In struct connmgr's "controllers" map. */
enum ofproto_band band; /* In-band or out-of-band? */
};
static struct ofconn *ofconn_create(struct connmgr *, struct rconn *,
enum ofconn_type);
static void ofconn_destroy(struct ofconn *);
static void ofconn_reconfigure(struct ofconn *,
const struct ofproto_controller *);
static void ofconn_run(struct ofconn *,
void (*handle_openflow)(struct ofconn *,
struct ofpbuf *ofp_msg));
static void ofconn_wait(struct ofconn *);
static const char *ofconn_get_target(const struct ofconn *);
static char *ofconn_make_name(const struct connmgr *, const char *target);
static void ofconn_set_rate_limit(struct ofconn *, int rate, int burst);
static bool ofconn_receives_async_msgs(const struct ofconn *);
static void ofconn_send(const struct ofconn *, struct ofpbuf *,
struct rconn_packet_counter *);
static void do_send_packet_in(struct ofpbuf *, void *ofconn_);
/* A listener for incoming OpenFlow "service" connections. */
struct ofservice {
struct hmap_node node; /* In struct connmgr's "services" hmap. */
struct pvconn *pvconn; /* OpenFlow connection listener. */
/* These are not used by ofservice directly. They are settings for
* accepted "struct ofconn"s from the pvconn. */
int probe_interval; /* Max idle time before probing, in seconds. */
int rate_limit; /* Max packet-in rate in packets per second. */
int burst_limit; /* Limit on accumulating packet credits. */
};
static void ofservice_reconfigure(struct ofservice *,
const struct ofproto_controller *);
static int ofservice_create(struct connmgr *, const char *target);
static void ofservice_destroy(struct connmgr *, struct ofservice *);
static struct ofservice *ofservice_lookup(struct connmgr *,
const char *target);
/* Connection manager for an OpenFlow switch. */
struct connmgr {
struct ofproto *ofproto;
char *name;
char *local_port_name;
/* OpenFlow connections. */
struct hmap controllers; /* Controller "struct ofconn"s. */
struct list all_conns; /* Contains "struct ofconn"s. */
/* OpenFlow listeners. */
struct hmap services; /* Contains "struct ofservice"s. */
struct pvconn **snoops;
size_t n_snoops;
/* Fail open. */
struct fail_open *fail_open;
enum ofproto_fail_mode fail_mode;
/* In-band control. */
struct in_band *in_band;
long long int next_in_band_update;
struct sockaddr_in *extra_in_band_remotes;
size_t n_extra_remotes;
int in_band_queue;
};
static void update_in_band_remotes(struct connmgr *);
static void add_snooper(struct connmgr *, struct vconn *);
/* Creates and returns a new connection manager owned by 'ofproto'. 'name' is
* a name for the ofproto suitable for using in log messages.
* 'local_port_name' is the name of the local port (OFPP_LOCAL) within
* 'ofproto'. */
struct connmgr *
connmgr_create(struct ofproto *ofproto,
const char *name, const char *local_port_name)
{
struct connmgr *mgr;
mgr = xmalloc(sizeof *mgr);
mgr->ofproto = ofproto;
mgr->name = xstrdup(name);
mgr->local_port_name = xstrdup(local_port_name);
hmap_init(&mgr->controllers);
list_init(&mgr->all_conns);
hmap_init(&mgr->services);
mgr->snoops = NULL;
mgr->n_snoops = 0;
mgr->fail_open = NULL;
mgr->fail_mode = OFPROTO_FAIL_SECURE;
mgr->in_band = NULL;
mgr->next_in_band_update = LLONG_MAX;
mgr->extra_in_band_remotes = NULL;
mgr->n_extra_remotes = 0;
mgr->in_band_queue = -1;
return mgr;
}
/* Frees 'mgr' and all of its resources. */
void
connmgr_destroy(struct connmgr *mgr)
{
struct ofservice *ofservice, *next_ofservice;
struct ofconn *ofconn, *next_ofconn;
size_t i;
if (!mgr) {
return;
}
LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &mgr->all_conns) {
ofconn_destroy(ofconn);
}
hmap_destroy(&mgr->controllers);
HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &mgr->services) {
ofservice_destroy(mgr, ofservice);
}
hmap_destroy(&mgr->services);
for (i = 0; i < mgr->n_snoops; i++) {
pvconn_close(mgr->snoops[i]);
}
free(mgr->snoops);
fail_open_destroy(mgr->fail_open);
mgr->fail_open = NULL;
in_band_destroy(mgr->in_band);
mgr->in_band = NULL;
free(mgr->extra_in_band_remotes);
free(mgr->name);
free(mgr->local_port_name);
free(mgr);
}
/* Does all of the periodic maintenance required by 'mgr'. Calls
* 'handle_openflow' for each message received on an OpenFlow connection,
* passing along the OpenFlow connection itself and the message that was sent.
* The 'handle_openflow' callback must not free the message. */
void
connmgr_run(struct connmgr *mgr,
void (*handle_openflow)(struct ofconn *, struct ofpbuf *ofp_msg))
{
struct ofconn *ofconn, *next_ofconn;
struct ofservice *ofservice;
size_t i;
if (mgr->in_band) {
if (time_msec() >= mgr->next_in_band_update) {
update_in_band_remotes(mgr);
}
in_band_run(mgr->in_band);
}
LIST_FOR_EACH_SAFE (ofconn, next_ofconn, node, &mgr->all_conns) {
ofconn_run(ofconn, handle_openflow);
}
/* Fail-open maintenance. Do this after processing the ofconns since
* fail-open checks the status of the controller rconn. */
if (mgr->fail_open) {
fail_open_run(mgr->fail_open);
}
HMAP_FOR_EACH (ofservice, node, &mgr->services) {
struct vconn *vconn;
int retval;
retval = pvconn_accept(ofservice->pvconn, OFP_VERSION, &vconn);
if (!retval) {
struct rconn *rconn;
char *name;
rconn = rconn_create(ofservice->probe_interval, 0);
name = ofconn_make_name(mgr, vconn_get_name(vconn));
rconn_connect_unreliably(rconn, vconn, name);
free(name);
ofconn = ofconn_create(mgr, rconn, OFCONN_SERVICE);
ofconn_set_rate_limit(ofconn, ofservice->rate_limit,
ofservice->burst_limit);
} else if (retval != EAGAIN) {
VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
}
}
for (i = 0; i < mgr->n_snoops; i++) {
struct vconn *vconn;
int retval;
retval = pvconn_accept(mgr->snoops[i], OFP_VERSION, &vconn);
if (!retval) {
add_snooper(mgr, vconn);
} else if (retval != EAGAIN) {
VLOG_WARN_RL(&rl, "accept failed (%s)", strerror(retval));
}
}
}
/* Causes the poll loop to wake up when connmgr_run() needs to run. */
void
connmgr_wait(struct connmgr *mgr)
{
struct ofservice *ofservice;
struct ofconn *ofconn;
size_t i;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
ofconn_wait(ofconn);
}
if (mgr->in_band) {
poll_timer_wait_until(mgr->next_in_band_update);
in_band_wait(mgr->in_band);
}
if (mgr->fail_open) {
fail_open_wait(mgr->fail_open);
}
HMAP_FOR_EACH (ofservice, node, &mgr->services) {
pvconn_wait(ofservice->pvconn);
}
for (i = 0; i < mgr->n_snoops; i++) {
pvconn_wait(mgr->snoops[i]);
}
}
/* Returns the ofproto that owns 'ofconn''s connmgr. */
struct ofproto *
ofconn_get_ofproto(const struct ofconn *ofconn)
{
return ofconn->connmgr->ofproto;
}
/* OpenFlow configuration. */
static void add_controller(struct connmgr *, const char *target);
static struct ofconn *find_controller_by_target(struct connmgr *,
const char *target);
static void update_fail_open(struct connmgr *);
static int set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
const struct sset *);
/* Returns true if 'mgr' has any configured primary controllers.
*
* Service controllers do not count, but configured primary controllers do
* count whether or not they are currently connected. */
bool
connmgr_has_controllers(const struct connmgr *mgr)
{
return !hmap_is_empty(&mgr->controllers);
}
/* Initializes 'info' and populates it with information about each configured
* primary controller. The keys in 'info' are the controllers' targets; the
* data values are corresponding "struct ofproto_controller_info".
*
* The caller owns 'info' and everything in it and should free it when it is no
* longer needed. */
void
connmgr_get_controller_info(struct connmgr *mgr, struct shash *info)
{
const struct ofconn *ofconn;
shash_init(info);
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
const struct rconn *rconn = ofconn->rconn;
time_t now = time_now();
time_t last_connection = rconn_get_last_connection(rconn);
time_t last_disconnect = rconn_get_last_disconnect(rconn);
int last_error = rconn_get_last_error(rconn);
struct ofproto_controller_info *cinfo = xmalloc(sizeof *cinfo);
shash_add(info, rconn_get_target(rconn), cinfo);
cinfo->is_connected = rconn_is_connected(rconn);
cinfo->role = ofconn->role;
cinfo->pairs.n = 0;
if (last_error) {
cinfo->pairs.keys[cinfo->pairs.n] = "last_error";
cinfo->pairs.values[cinfo->pairs.n++] =
xstrdup(ovs_retval_to_string(last_error));
}
cinfo->pairs.keys[cinfo->pairs.n] = "state";
cinfo->pairs.values[cinfo->pairs.n++] =
xstrdup(rconn_get_state(rconn));
if (last_connection != TIME_MIN) {
cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_connect";
cinfo->pairs.values[cinfo->pairs.n++]
= xasprintf("%ld", (long int) (now - last_connection));
}
if (last_disconnect != TIME_MIN) {
cinfo->pairs.keys[cinfo->pairs.n] = "sec_since_disconnect";
cinfo->pairs.values[cinfo->pairs.n++]
= xasprintf("%ld", (long int) (now - last_disconnect));
}
}
}
/* Changes 'mgr''s set of controllers to the 'n_controllers' controllers in
* 'controllers'. */
void
connmgr_set_controllers(struct connmgr *mgr,
const struct ofproto_controller *controllers,
size_t n_controllers)
{
bool had_controllers = connmgr_has_controllers(mgr);
struct shash new_controllers;
struct ofconn *ofconn, *next_ofconn;
struct ofservice *ofservice, *next_ofservice;
bool ss_exists;
size_t i;
/* Create newly configured controllers and services.
* Create a name to ofproto_controller mapping in 'new_controllers'. */
shash_init(&new_controllers);
for (i = 0; i < n_controllers; i++) {
const struct ofproto_controller *c = &controllers[i];
if (!vconn_verify_name(c->target)) {
if (!find_controller_by_target(mgr, c->target)) {
add_controller(mgr, c->target);
}
} else if (!pvconn_verify_name(c->target)) {
if (!ofservice_lookup(mgr, c->target)) {
ofservice_create(mgr, c->target);
}
} else {
VLOG_WARN_RL(&rl, "%s: unsupported controller \"%s\"",
mgr->name, c->target);
continue;
}
shash_add_once(&new_controllers, c->target, &controllers[i]);
}
/* Delete controllers that are no longer configured.
* Update configuration of all now-existing controllers. */
ss_exists = false;
HMAP_FOR_EACH_SAFE (ofconn, next_ofconn, hmap_node, &mgr->controllers) {
struct ofproto_controller *c;
c = shash_find_data(&new_controllers, ofconn_get_target(ofconn));
if (!c) {
ofconn_destroy(ofconn);
} else {
ofconn_reconfigure(ofconn, c);
}
}
/* Delete services that are no longer configured.
* Update configuration of all now-existing services. */
HMAP_FOR_EACH_SAFE (ofservice, next_ofservice, node, &mgr->services) {
struct ofproto_controller *c;
c = shash_find_data(&new_controllers,
pvconn_get_name(ofservice->pvconn));
if (!c) {
ofservice_destroy(mgr, ofservice);
} else {
ofservice_reconfigure(ofservice, c);
}
}
shash_destroy(&new_controllers);
update_in_band_remotes(mgr);
update_fail_open(mgr);
if (had_controllers != connmgr_has_controllers(mgr)) {
ofproto_flush_flows(mgr->ofproto);
}
}
/* Drops the connections between 'mgr' and all of its primary and secondary
* controllers, forcing them to reconnect. */
void
connmgr_reconnect(const struct connmgr *mgr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
rconn_reconnect(ofconn->rconn);
}
}
/* Sets the "snoops" for 'mgr' to the pvconn targets listed in 'snoops'.
*
* A "snoop" is a pvconn to which every OpenFlow message to or from the most
* important controller on 'mgr' is mirrored. */
int
connmgr_set_snoops(struct connmgr *mgr, const struct sset *snoops)
{
return set_pvconns(&mgr->snoops, &mgr->n_snoops, snoops);
}
/* Adds each of the snoops currently configured on 'mgr' to 'snoops'. */
void
connmgr_get_snoops(const struct connmgr *mgr, struct sset *snoops)
{
size_t i;
for (i = 0; i < mgr->n_snoops; i++) {
sset_add(snoops, pvconn_get_name(mgr->snoops[i]));
}
}
/* Returns true if 'mgr' has at least one snoop, false if it has none. */
bool
connmgr_has_snoops(const struct connmgr *mgr)
{
return mgr->n_snoops > 0;
}
/* Creates a new controller for 'target' in 'mgr'. update_controller() needs
* to be called later to finish the new ofconn's configuration. */
static void
add_controller(struct connmgr *mgr, const char *target)
{
char *name = ofconn_make_name(mgr, target);
struct ofconn *ofconn;
ofconn = ofconn_create(mgr, rconn_create(5, 8), OFCONN_PRIMARY);
ofconn->pktbuf = pktbuf_create();
ofconn->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN;
rconn_connect(ofconn->rconn, target, name);
hmap_insert(&mgr->controllers, &ofconn->hmap_node, hash_string(target, 0));
free(name);
}
static struct ofconn *
find_controller_by_target(struct connmgr *mgr, const char *target)
{
struct ofconn *ofconn;
HMAP_FOR_EACH_WITH_HASH (ofconn, hmap_node,
hash_string(target, 0), &mgr->controllers) {
if (!strcmp(ofconn_get_target(ofconn), target)) {
return ofconn;
}
}
return NULL;
}
static void
update_in_band_remotes(struct connmgr *mgr)
{
struct sockaddr_in *addrs;
size_t max_addrs, n_addrs;
struct ofconn *ofconn;
size_t i;
/* Allocate enough memory for as many remotes as we could possibly have. */
max_addrs = mgr->n_extra_remotes + hmap_count(&mgr->controllers);
addrs = xmalloc(max_addrs * sizeof *addrs);
n_addrs = 0;
/* Add all the remotes. */
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
struct sockaddr_in *sin = &addrs[n_addrs];
if (ofconn->band == OFPROTO_OUT_OF_BAND) {
continue;
}
sin->sin_addr.s_addr = rconn_get_remote_ip(ofconn->rconn);
if (sin->sin_addr.s_addr) {
sin->sin_port = rconn_get_remote_port(ofconn->rconn);
n_addrs++;
}
}
for (i = 0; i < mgr->n_extra_remotes; i++) {
addrs[n_addrs++] = mgr->extra_in_band_remotes[i];
}
/* Create or update or destroy in-band. */
if (n_addrs) {
if (!mgr->in_band) {
in_band_create(mgr->ofproto, mgr->local_port_name, &mgr->in_band);
}
if (mgr->in_band) {
in_band_set_remotes(mgr->in_band, addrs, n_addrs);
}
in_band_set_queue(mgr->in_band, mgr->in_band_queue);
mgr->next_in_band_update = time_msec() + 1000;
} else {
in_band_destroy(mgr->in_band);
mgr->in_band = NULL;
}
/* Clean up. */
free(addrs);
}
static void
update_fail_open(struct connmgr *mgr)
{
if (connmgr_has_controllers(mgr)
&& mgr->fail_mode == OFPROTO_FAIL_STANDALONE) {
if (!mgr->fail_open) {
mgr->fail_open = fail_open_create(mgr->ofproto, mgr);
}
} else {
fail_open_destroy(mgr->fail_open);
mgr->fail_open = NULL;
}
}
static int
set_pvconns(struct pvconn ***pvconnsp, size_t *n_pvconnsp,
const struct sset *sset)
{
struct pvconn **pvconns = *pvconnsp;
size_t n_pvconns = *n_pvconnsp;
const char *name;
int retval = 0;
size_t i;
for (i = 0; i < n_pvconns; i++) {
pvconn_close(pvconns[i]);
}
free(pvconns);
pvconns = xmalloc(sset_count(sset) * sizeof *pvconns);
n_pvconns = 0;
SSET_FOR_EACH (name, sset) {
struct pvconn *pvconn;
int error;
error = pvconn_open(name, &pvconn);
if (!error) {
pvconns[n_pvconns++] = pvconn;
} else {
VLOG_ERR("failed to listen on %s: %s", name, strerror(error));
if (!retval) {
retval = error;
}
}
}
*pvconnsp = pvconns;
*n_pvconnsp = n_pvconns;
return retval;
}
/* Returns a "preference level" for snooping 'ofconn'. A higher return value
* means that 'ofconn' is more interesting for monitoring than a lower return
* value. */
static int
snoop_preference(const struct ofconn *ofconn)
{
switch (ofconn->role) {
case NX_ROLE_MASTER:
return 3;
case NX_ROLE_OTHER:
return 2;
case NX_ROLE_SLAVE:
return 1;
default:
/* Shouldn't happen. */
return 0;
}
}
/* One of 'mgr''s "snoop" pvconns has accepted a new connection on 'vconn'.
* Connects this vconn to a controller. */
static void
add_snooper(struct connmgr *mgr, struct vconn *vconn)
{
struct ofconn *ofconn, *best;
/* Pick a controller for monitoring. */
best = NULL;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn->type == OFCONN_PRIMARY
&& (!best || snoop_preference(ofconn) > snoop_preference(best))) {
best = ofconn;
}
}
if (best) {
rconn_add_monitor(best->rconn, vconn);
} else {
VLOG_INFO_RL(&rl, "no controller connection to snoop");
vconn_close(vconn);
}
}
/* Public ofconn functions. */
/* Returns the connection type, either OFCONN_PRIMARY or OFCONN_SERVICE. */
enum ofconn_type
ofconn_get_type(const struct ofconn *ofconn)
{
return ofconn->type;
}
/* Returns the role configured for 'ofconn'.
*
* The default role, if no other role has been set, is NX_ROLE_OTHER. */
enum nx_role
ofconn_get_role(const struct ofconn *ofconn)
{
return ofconn->role;
}
/* Changes 'ofconn''s role to 'role'. If 'role' is NX_ROLE_MASTER then any
* existing master is demoted to a slave. */
void
ofconn_set_role(struct ofconn *ofconn, enum nx_role role)
{
if (role == NX_ROLE_MASTER) {
struct ofconn *other;
HMAP_FOR_EACH (other, hmap_node, &ofconn->connmgr->controllers) {
if (other->role == NX_ROLE_MASTER) {
other->role = NX_ROLE_SLAVE;
}
}
}
ofconn->role = role;
}
/* Returns the currently configured flow format for 'ofconn', one of NXFF_*.
*
* The default, if no other format has been set, is NXFF_OPENFLOW10. */
enum nx_flow_format
ofconn_get_flow_format(struct ofconn *ofconn)
{
return ofconn->flow_format;
}
/* Sets the flow format for 'ofconn' to 'flow_format' (one of NXFF_*). */
void
ofconn_set_flow_format(struct ofconn *ofconn, enum nx_flow_format flow_format)
{
ofconn->flow_format = flow_format;
}
/* Returns the default miss send length for 'ofconn'. */
int
ofconn_get_miss_send_len(const struct ofconn *ofconn)
{
return ofconn->miss_send_len;
}
/* Sets the default miss send length for 'ofconn' to 'miss_send_len'. */
void
ofconn_set_miss_send_len(struct ofconn *ofconn, int miss_send_len)
{
ofconn->miss_send_len = miss_send_len;
}
/* Sends 'msg' on 'ofconn', accounting it as a reply. (If there is a
* sufficient number of OpenFlow replies in-flight on a single ofconn, then the
* connmgr will stop accepting new OpenFlow requests on that ofconn until the
* controller has accepted some of the replies.) */
void
ofconn_send_reply(const struct ofconn *ofconn, struct ofpbuf *msg)
{
ofconn_send(ofconn, msg, ofconn->reply_counter);
}
/* Same as pktbuf_retrieve(), using the pktbuf owned by 'ofconn'. */
int
ofconn_pktbuf_retrieve(struct ofconn *ofconn, uint32_t id,
struct ofpbuf **bufferp, uint16_t *in_port)
{
return pktbuf_retrieve(ofconn->pktbuf, id, bufferp, in_port);
}
/* Private ofconn functions. */
static const char *
ofconn_get_target(const struct ofconn *ofconn)
{
return rconn_get_target(ofconn->rconn);
}
static struct ofconn *
ofconn_create(struct connmgr *mgr, struct rconn *rconn, enum ofconn_type type)
{
struct ofconn *ofconn = xzalloc(sizeof *ofconn);
ofconn->connmgr = mgr;
list_push_back(&mgr->all_conns, &ofconn->node);
ofconn->rconn = rconn;
ofconn->type = type;
ofconn->flow_format = NXFF_OPENFLOW10;
ofconn->role = NX_ROLE_OTHER;
ofconn->packet_in_counter = rconn_packet_counter_create ();
ofconn->pktbuf = NULL;
ofconn->miss_send_len = 0;
ofconn->reply_counter = rconn_packet_counter_create ();
return ofconn;
}
static void
ofconn_destroy(struct ofconn *ofconn)
{
if (ofconn->type == OFCONN_PRIMARY) {
hmap_remove(&ofconn->connmgr->controllers, &ofconn->hmap_node);
}
list_remove(&ofconn->node);
rconn_destroy(ofconn->rconn);
rconn_packet_counter_destroy(ofconn->packet_in_counter);
rconn_packet_counter_destroy(ofconn->reply_counter);
pktbuf_destroy(ofconn->pktbuf);
free(ofconn);
}
/* Reconfigures 'ofconn' to match 'c'. 'ofconn' and 'c' must have the same
* target. */
static void
ofconn_reconfigure(struct ofconn *ofconn, const struct ofproto_controller *c)
{
int probe_interval;
ofconn->band = c->band;
rconn_set_max_backoff(ofconn->rconn, c->max_backoff);
probe_interval = c->probe_interval ? MAX(c->probe_interval, 5) : 0;
rconn_set_probe_interval(ofconn->rconn, probe_interval);
ofconn_set_rate_limit(ofconn, c->rate_limit, c->burst_limit);
}
static void
ofconn_run(struct ofconn *ofconn,
void (*handle_openflow)(struct ofconn *, struct ofpbuf *ofp_msg))
{
struct connmgr *mgr = ofconn->connmgr;
int iteration;
size_t i;
for (i = 0; i < N_SCHEDULERS; i++) {
pinsched_run(ofconn->schedulers[i], do_send_packet_in, ofconn);
}
rconn_run(ofconn->rconn);
if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
/* Limit the number of iterations to prevent other tasks from
* starving. */
for (iteration = 0; iteration < 50; iteration++) {
struct ofpbuf *of_msg = rconn_recv(ofconn->rconn);
if (!of_msg) {
break;
}
if (mgr->fail_open) {
fail_open_maybe_recover(mgr->fail_open);
}
handle_openflow(ofconn, of_msg);
ofpbuf_delete(of_msg);
}
}
if (!rconn_is_alive(ofconn->rconn)) {
ofconn_destroy(ofconn);
}
}
static void
ofconn_wait(struct ofconn *ofconn)
{
int i;
for (i = 0; i < N_SCHEDULERS; i++) {
pinsched_wait(ofconn->schedulers[i]);
}
rconn_run_wait(ofconn->rconn);
if (rconn_packet_counter_read (ofconn->reply_counter) < OFCONN_REPLY_MAX) {
rconn_recv_wait(ofconn->rconn);
} else {
COVERAGE_INC(ofconn_stuck);
}
}
/* Returns true if 'ofconn' should receive asynchronous messages. */
static bool
ofconn_receives_async_msgs(const struct ofconn *ofconn)
{
if (!rconn_is_connected(ofconn->rconn)) {
return false;
} else if (ofconn->type == OFCONN_PRIMARY) {
/* Primary controllers always get asynchronous messages unless they
* have configured themselves as "slaves". */
return ofconn->role != NX_ROLE_SLAVE;
} else {
/* Service connections don't get asynchronous messages unless they have
* explicitly asked for them by setting a nonzero miss send length. */
return ofconn->miss_send_len > 0;
}
}
/* Returns a human-readable name for an OpenFlow connection between 'mgr' and
* 'target', suitable for use in log messages for identifying the connection.
*
* The name is dynamically allocated. The caller should free it (with free())
* when it is no longer needed. */
static char *
ofconn_make_name(const struct connmgr *mgr, const char *target)
{
return xasprintf("%s<->%s", mgr->name, target);
}
static void
ofconn_set_rate_limit(struct ofconn *ofconn, int rate, int burst)
{
int i;
for (i = 0; i < N_SCHEDULERS; i++) {
struct pinsched **s = &ofconn->schedulers[i];
if (rate > 0) {
if (!*s) {
*s = pinsched_create(rate, burst);
} else {
pinsched_set_limits(*s, rate, burst);
}
} else {
pinsched_destroy(*s);
*s = NULL;
}
}
}
static void
ofconn_send(const struct ofconn *ofconn, struct ofpbuf *msg,
struct rconn_packet_counter *counter)
{
update_openflow_length(msg);
if (rconn_send(ofconn->rconn, msg, counter)) {
ofpbuf_delete(msg);
}
}
/* Sending asynchronous messages. */
static void schedule_packet_in(struct ofconn *, const struct dpif_upcall *,
const struct flow *, struct ofpbuf *rw_packet);
/* Sends an OFPT_PORT_STATUS message with 'opp' and 'reason' to appropriate
* controllers managed by 'mgr'. */
void
connmgr_send_port_status(struct connmgr *mgr, const struct ofp_phy_port *opp,
uint8_t reason)
{
/* XXX Should limit the number of queued port status change messages. */
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
struct ofp_port_status *ops;
struct ofpbuf *b;
/* Primary controllers, even slaves, should always get port status
updates. Otherwise obey ofconn_receives_async_msgs(). */
if (ofconn->type != OFCONN_PRIMARY
&& !ofconn_receives_async_msgs(ofconn)) {
continue;
}
ops = make_openflow_xid(sizeof *ops, OFPT_PORT_STATUS, 0, &b);
ops->reason = reason;
ops->desc = *opp;
ofconn_send(ofconn, b, NULL);
}
}
/* Sends an OFPT_FLOW_REMOVED or NXT_FLOW_REMOVED message based on 'fr' to
* appropriate controllers managed by 'mgr'. */
void
connmgr_send_flow_removed(struct connmgr *mgr,
const struct ofputil_flow_removed *fr)
{
struct ofconn *ofconn;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
struct ofpbuf *msg;
if (!ofconn_receives_async_msgs(ofconn)) {
continue;
}
/* Account flow expirations as replies to OpenFlow requests. That
* works because preventing OpenFlow requests from being processed also
* prevents new flows from being added (and expiring). (It also
* prevents processing OpenFlow requests that would not add new flows,
* so it is imperfect.) */
msg = ofputil_encode_flow_removed(fr, ofconn->flow_format);
ofconn_send_reply(ofconn, msg);
}
}
/* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
* OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
* their individual configurations.
*
* 'rw_packet' may be NULL. Otherwise, 'rw_packet' must contain the same data
* as upcall->packet. (rw_packet == upcall->packet is also valid.) Ownership
* of 'rw_packet' is transferred to this function. */
void
connmgr_send_packet_in(struct connmgr *mgr, const struct dpif_upcall *upcall,
const struct flow *flow, struct ofpbuf *rw_packet)
{
struct ofconn *ofconn, *prev;
prev = NULL;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (ofconn_receives_async_msgs(ofconn)) {
if (prev) {
schedule_packet_in(prev, upcall, flow, NULL);
}
prev = ofconn;
}
}
if (prev) {
schedule_packet_in(prev, upcall, flow, rw_packet);
} else {
ofpbuf_delete(rw_packet);
}
}
/* pinsched callback for sending 'ofp_packet_in' on 'ofconn'. */
static void
do_send_packet_in(struct ofpbuf *ofp_packet_in, void *ofconn_)
{
struct ofconn *ofconn = ofconn_;
rconn_send_with_limit(ofconn->rconn, ofp_packet_in,
ofconn->packet_in_counter, 100);
}
/* Takes 'upcall', whose packet has the flow specified by 'flow', composes an
* OpenFlow packet-in message from it, and passes it to 'ofconn''s packet
* scheduler for sending.
*
* 'rw_packet' may be NULL. Otherwise, 'rw_packet' must contain the same data
* as upcall->packet. (rw_packet == upcall->packet is also valid.) Ownership
* of 'rw_packet' is transferred to this function. */
static void
schedule_packet_in(struct ofconn *ofconn, const struct dpif_upcall *upcall,
const struct flow *flow, struct ofpbuf *rw_packet)
{
struct connmgr *mgr = ofconn->connmgr;
struct ofputil_packet_in pin;
/* Figure out the easy parts. */
pin.packet = upcall->packet;
pin.in_port = flow->in_port;
pin.reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
/* Get OpenFlow buffer_id. */
if (upcall->type == DPIF_UC_ACTION) {
pin.buffer_id = UINT32_MAX;
} else if (mgr->fail_open && fail_open_is_active(mgr->fail_open)) {
pin.buffer_id = pktbuf_get_null();
} else if (!ofconn->pktbuf) {
pin.buffer_id = UINT32_MAX;
} else {
pin.buffer_id = pktbuf_save(ofconn->pktbuf, upcall->packet,
flow->in_port);
}
/* Figure out how much of the packet to send. */
pin.send_len = upcall->packet->size;
if (pin.buffer_id != UINT32_MAX) {
pin.send_len = MIN(pin.send_len, ofconn->miss_send_len);
}
if (upcall->type == DPIF_UC_ACTION) {
pin.send_len = MIN(pin.send_len, upcall->userdata);
}
/* Make OFPT_PACKET_IN and hand over to packet scheduler. It might
* immediately call into do_send_packet_in() or it might buffer it for a
* while (until a later call to pinsched_run()). */
pinsched_send(ofconn->schedulers[upcall->type == DPIF_UC_MISS ? 0 : 1],
flow->in_port, ofputil_encode_packet_in(&pin, rw_packet),
do_send_packet_in, ofconn);
}
/* Fail-open settings. */
/* Returns the failure handling mode (OFPROTO_FAIL_SECURE or
* OFPROTO_FAIL_STANDALONE) for 'mgr'. */
enum ofproto_fail_mode
connmgr_get_fail_mode(const struct connmgr *mgr)
{
return mgr->fail_mode;
}
/* Sets the failure handling mode for 'mgr' to 'fail_mode' (either
* OFPROTO_FAIL_SECURE or OFPROTO_FAIL_STANDALONE). */
void
connmgr_set_fail_mode(struct connmgr *mgr, enum ofproto_fail_mode fail_mode)
{
if (mgr->fail_mode != fail_mode) {
mgr->fail_mode = fail_mode;
update_fail_open(mgr);
if (!connmgr_has_controllers(mgr)) {
ofproto_flush_flows(mgr->ofproto);
}
}
}
/* Fail-open implementation. */
/* Returns the longest probe interval among the primary controllers configured
* on 'mgr'. Returns 0 if there are no primary controllers. */
int
connmgr_get_max_probe_interval(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
int max_probe_interval;
max_probe_interval = 0;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
int probe_interval = rconn_get_probe_interval(ofconn->rconn);
max_probe_interval = MAX(max_probe_interval, probe_interval);
}
return max_probe_interval;
}
/* Returns the number of seconds for which all of 'mgr's primary controllers
* have been disconnected. Returns 0 if 'mgr' has no primary controllers. */
int
connmgr_failure_duration(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
int min_failure_duration;
if (!connmgr_has_controllers(mgr)) {
return 0;
}
min_failure_duration = INT_MAX;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
int failure_duration = rconn_failure_duration(ofconn->rconn);
min_failure_duration = MIN(min_failure_duration, failure_duration);
}
return min_failure_duration;
}
/* Returns true if at least one primary controller is connected (regardless of
* whether those controllers are believed to have authenticated and accepted
* this switch), false if none of them are connected. */
bool
connmgr_is_any_controller_connected(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
if (rconn_is_connected(ofconn->rconn)) {
return true;
}
}
return false;
}
/* Returns true if at least one primary controller is believed to have
* authenticated and accepted this switch, false otherwise. */
bool
connmgr_is_any_controller_admitted(const struct connmgr *mgr)
{
const struct ofconn *ofconn;
HMAP_FOR_EACH (ofconn, hmap_node, &mgr->controllers) {
if (rconn_is_admitted(ofconn->rconn)) {
return true;
}
}
return false;
}
/* Sends 'packet' to each controller connected to 'mgr'. Takes ownership of
* 'packet'. */
void
connmgr_broadcast(struct connmgr *mgr, struct ofpbuf *packet)
{
struct ofconn *ofconn, *prev;
prev = NULL;
LIST_FOR_EACH (ofconn, node, &mgr->all_conns) {
if (prev) {
ofconn_send_reply(ofconn, ofpbuf_clone(packet));
}
if (rconn_is_connected(ofconn->rconn)) {
prev = ofconn;
}
}
if (prev) {
ofconn_send_reply(prev, packet);
} else {
ofpbuf_delete(packet);
}
}
/* In-band configuration. */
static bool any_extras_changed(const struct connmgr *,
const struct sockaddr_in *extras, size_t n);
/* Sets the 'n' TCP port addresses in 'extras' as ones to which 'mgr''s
* in-band control should guarantee access, in the same way that in-band
* control guarantees access to OpenFlow controllers. */
void
connmgr_set_extra_in_band_remotes(struct connmgr *mgr,
const struct sockaddr_in *extras, size_t n)
{
if (!any_extras_changed(mgr, extras, n)) {
return;
}
free(mgr->extra_in_band_remotes);
mgr->n_extra_remotes = n;
mgr->extra_in_band_remotes = xmemdup(extras, n * sizeof *extras);
update_in_band_remotes(mgr);
}
/* Sets the OpenFlow queue used by flows set up by in-band control on
* 'mgr' to 'queue_id'. If 'queue_id' is negative, then in-band control
* flows will use the default queue. */
void
connmgr_set_in_band_queue(struct connmgr *mgr, int queue_id)
{
if (queue_id != mgr->in_band_queue) {
mgr->in_band_queue = queue_id;
update_in_band_remotes(mgr);
}
}
static bool
any_extras_changed(const struct connmgr *mgr,
const struct sockaddr_in *extras, size_t n)
{
size_t i;
if (n != mgr->n_extra_remotes) {
return true;
}
for (i = 0; i < n; i++) {
const struct sockaddr_in *old = &mgr->extra_in_band_remotes[i];
const struct sockaddr_in *new = &extras[i];
if (old->sin_addr.s_addr != new->sin_addr.s_addr ||
old->sin_port != new->sin_port) {
return true;
}
}
return false;
}
/* In-band implementation. */
bool
connmgr_msg_in_hook(struct connmgr *mgr, const struct flow *flow,
const struct ofpbuf *packet)
{
return mgr->in_band && in_band_msg_in_hook(mgr->in_band, flow, packet);
}
bool
connmgr_may_set_up_flow(struct connmgr *mgr, const struct flow *flow,
const struct nlattr *odp_actions,
size_t actions_len)
{
return !mgr->in_band || in_band_rule_check(flow, odp_actions, actions_len);
}
/* Fail-open and in-band implementation. */
/* Called by 'ofproto' after all flows have been flushed, to allow fail-open
* and in-band control to re-create their flows. */
void
connmgr_flushed(struct connmgr *mgr)
{
if (mgr->in_band) {
in_band_flushed(mgr->in_band);
}
if (mgr->fail_open) {
fail_open_flushed(mgr->fail_open);
}
/* If there are no controllers and we're in standalone mode, set up a flow
* that matches every packet and directs them to OFPP_NORMAL (which goes to
* us). Otherwise, the switch is in secure mode and we won't pass any
* traffic until a controller has been defined and it tells us to do so. */
if (!connmgr_has_controllers(mgr)
&& mgr->fail_mode == OFPROTO_FAIL_STANDALONE) {
union ofp_action action;
struct cls_rule rule;
memset(&action, 0, sizeof action);
action.type = htons(OFPAT_OUTPUT);
action.output.len = htons(sizeof action);
action.output.port = htons(OFPP_NORMAL);
cls_rule_init_catchall(&rule, 0);
ofproto_add_flow(mgr->ofproto, &rule, &action, 1);
}
}
/* Creates a new ofservice for 'target' in 'mgr'. Returns 0 if successful,
* otherwise a positive errno value.
*
* ofservice_reconfigure() must be called to fully configure the new
* ofservice. */
static int
ofservice_create(struct connmgr *mgr, const char *target)
{
struct ofservice *ofservice;
struct pvconn *pvconn;
int error;
error = pvconn_open(target, &pvconn);
if (error) {
return error;
}
ofservice = xzalloc(sizeof *ofservice);
hmap_insert(&mgr->services, &ofservice->node, hash_string(target, 0));
ofservice->pvconn = pvconn;
return 0;
}
static void
ofservice_destroy(struct connmgr *mgr, struct ofservice *ofservice)
{
hmap_remove(&mgr->services, &ofservice->node);
pvconn_close(ofservice->pvconn);
free(ofservice);
}
static void
ofservice_reconfigure(struct ofservice *ofservice,
const struct ofproto_controller *c)
{
ofservice->probe_interval = c->probe_interval;
ofservice->rate_limit = c->rate_limit;
ofservice->burst_limit = c->burst_limit;
}
/* Finds and returns the ofservice within 'mgr' that has the given
* 'target', or a null pointer if none exists. */
static struct ofservice *
ofservice_lookup(struct connmgr *mgr, const char *target)
{
struct ofservice *ofservice;
HMAP_FOR_EACH_WITH_HASH (ofservice, node, hash_string(target, 0),
&mgr->services) {
if (!strcmp(pvconn_get_name(ofservice->pvconn), target)) {
return ofservice;
}
}
return NULL;
}