2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 18:07:40 +00:00
ovs/lib/dp-packet.h

1605 lines
49 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DPBUF_H
#define DPBUF_H 1
#include <stddef.h>
#include <stdint.h>
#ifdef DPDK_NETDEV
#include <rte_config.h>
#include <rte_mbuf.h>
#endif
#include "csum.h"
#include "netdev-afxdp.h"
#include "netdev-dpdk.h"
#include "openvswitch/list.h"
#include "packets.h"
#include "util.h"
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
#include "flow.h"
#ifdef __cplusplus
extern "C" {
#endif
enum OVS_PACKED_ENUM dp_packet_source {
DPBUF_MALLOC, /* Obtained via malloc(). */
DPBUF_STACK, /* Un-movable stack space or static buffer. */
DPBUF_STUB, /* Starts on stack, may expand into heap. */
DPBUF_DPDK, /* buffer data is from DPDK allocated memory.
* ref to dp_packet_init_dpdk() in dp-packet.c.
*/
DPBUF_AFXDP, /* Buffer data from XDP frame. */
};
#define DP_PACKET_CONTEXT_SIZE 64
#ifdef DPDK_NETDEV
#define DEF_OL_FLAG(NAME, DPDK_DEF, GENERIC_DEF) NAME = DPDK_DEF
#else
#define DEF_OL_FLAG(NAME, DPDK_DEF, GENERIC_DEF) NAME = GENERIC_DEF
#endif
/* Bit masks for the 'ol_flags' member of the 'dp_packet' structure. */
enum dp_packet_offload_mask {
/* Value 0 is not used. */
/* Is the 'rss_hash' valid? */
DEF_OL_FLAG(DP_PACKET_OL_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, 0x1),
/* Is the 'flow_mark' valid? */
DEF_OL_FLAG(DP_PACKET_OL_FLOW_MARK, RTE_MBUF_F_RX_FDIR_ID, 0x2),
/* Bad L4 checksum in the packet. */
DEF_OL_FLAG(DP_PACKET_OL_RX_L4_CKSUM_BAD, RTE_MBUF_F_RX_L4_CKSUM_BAD, 0x4),
/* Bad IP checksum in the packet. */
DEF_OL_FLAG(DP_PACKET_OL_RX_IP_CKSUM_BAD, RTE_MBUF_F_RX_IP_CKSUM_BAD, 0x8),
/* Valid L4 checksum in the packet. */
DEF_OL_FLAG(DP_PACKET_OL_RX_L4_CKSUM_GOOD, RTE_MBUF_F_RX_L4_CKSUM_GOOD,
0x10),
/* Valid IP checksum in the packet. */
DEF_OL_FLAG(DP_PACKET_OL_RX_IP_CKSUM_GOOD, RTE_MBUF_F_RX_IP_CKSUM_GOOD,
0x20),
/* TCP Segmentation Offload. */
DEF_OL_FLAG(DP_PACKET_OL_TX_TCP_SEG, RTE_MBUF_F_TX_TCP_SEG, 0x40),
/* Offloaded packet is IPv4. */
DEF_OL_FLAG(DP_PACKET_OL_TX_IPV4, RTE_MBUF_F_TX_IPV4, 0x80),
/* Offloaded packet is IPv6. */
DEF_OL_FLAG(DP_PACKET_OL_TX_IPV6, RTE_MBUF_F_TX_IPV6, 0x100),
/* Offload TCP checksum. */
DEF_OL_FLAG(DP_PACKET_OL_TX_TCP_CKSUM, RTE_MBUF_F_TX_TCP_CKSUM, 0x200),
/* Offload UDP checksum. */
DEF_OL_FLAG(DP_PACKET_OL_TX_UDP_CKSUM, RTE_MBUF_F_TX_UDP_CKSUM, 0x400),
/* Offload SCTP checksum. */
DEF_OL_FLAG(DP_PACKET_OL_TX_SCTP_CKSUM, RTE_MBUF_F_TX_SCTP_CKSUM, 0x800),
/* Offload IP checksum. */
DEF_OL_FLAG(DP_PACKET_OL_TX_IP_CKSUM, RTE_MBUF_F_TX_IP_CKSUM, 0x1000),
/* Offload packet is tunnel GENEVE. */
DEF_OL_FLAG(DP_PACKET_OL_TX_TUNNEL_GENEVE,
RTE_MBUF_F_TX_TUNNEL_GENEVE, 0x2000),
/* Offload packet is tunnel VXLAN. */
DEF_OL_FLAG(DP_PACKET_OL_TX_TUNNEL_VXLAN,
RTE_MBUF_F_TX_TUNNEL_VXLAN, 0x4000),
/* Offload tunnel packet, outer header is IPv4. */
DEF_OL_FLAG(DP_PACKET_OL_TX_OUTER_IPV4,
RTE_MBUF_F_TX_OUTER_IPV4, 0x8000),
/* Offload tunnel outer IPv4 checksum. */
DEF_OL_FLAG(DP_PACKET_OL_TX_OUTER_IP_CKSUM,
RTE_MBUF_F_TX_OUTER_IP_CKSUM, 0x10000),
/* Offload tunnel outer UDP checksum. */
DEF_OL_FLAG(DP_PACKET_OL_TX_OUTER_UDP_CKSUM,
RTE_MBUF_F_TX_OUTER_UDP_CKSUM, 0x20000),
/* Offload tunnel packet, outer header is IPv6. */
DEF_OL_FLAG(DP_PACKET_OL_TX_OUTER_IPV6,
RTE_MBUF_F_TX_OUTER_IPV6, 0x40000),
/* Adding new field requires adding to DP_PACKET_OL_SUPPORTED_MASK. */
};
#define DP_PACKET_OL_SUPPORTED_MASK (DP_PACKET_OL_RSS_HASH | \
DP_PACKET_OL_FLOW_MARK | \
DP_PACKET_OL_RX_L4_CKSUM_BAD | \
DP_PACKET_OL_RX_IP_CKSUM_BAD | \
DP_PACKET_OL_RX_L4_CKSUM_GOOD | \
DP_PACKET_OL_RX_IP_CKSUM_GOOD | \
DP_PACKET_OL_TX_TCP_SEG | \
DP_PACKET_OL_TX_IPV4 | \
DP_PACKET_OL_TX_IPV6 | \
DP_PACKET_OL_TX_TCP_CKSUM | \
DP_PACKET_OL_TX_UDP_CKSUM | \
DP_PACKET_OL_TX_SCTP_CKSUM | \
DP_PACKET_OL_TX_IP_CKSUM | \
DP_PACKET_OL_TX_TUNNEL_GENEVE | \
DP_PACKET_OL_TX_TUNNEL_VXLAN | \
DP_PACKET_OL_TX_OUTER_IPV4 | \
DP_PACKET_OL_TX_OUTER_IP_CKSUM | \
DP_PACKET_OL_TX_OUTER_UDP_CKSUM | \
DP_PACKET_OL_TX_OUTER_IPV6)
#define DP_PACKET_OL_TX_L4_MASK (DP_PACKET_OL_TX_TCP_CKSUM | \
DP_PACKET_OL_TX_UDP_CKSUM | \
DP_PACKET_OL_TX_SCTP_CKSUM)
#define DP_PACKET_OL_TX_ANY_CKSUM (DP_PACKET_OL_TX_L4_MASK | \
DP_PACKET_OL_TX_IP_CKSUM | \
DP_PACKET_OL_TX_OUTER_IP_CKSUM | \
DP_PACKET_OL_TX_OUTER_UDP_CKSUM)
#define DP_PACKET_OL_RX_IP_CKSUM_MASK (DP_PACKET_OL_RX_IP_CKSUM_GOOD | \
DP_PACKET_OL_RX_IP_CKSUM_BAD)
#define DP_PACKET_OL_RX_L4_CKSUM_MASK (DP_PACKET_OL_RX_L4_CKSUM_GOOD | \
DP_PACKET_OL_RX_L4_CKSUM_BAD)
/* Buffer for holding packet data. A dp_packet is automatically reallocated
* as necessary if it grows too large for the available memory.
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
* By default the packet type is set to Ethernet (PT_ETH).
*/
struct dp_packet {
#ifdef DPDK_NETDEV
struct rte_mbuf mbuf; /* DPDK mbuf */
#else
void *base_; /* First byte of allocated space. */
uint16_t allocated_; /* Number of bytes allocated. */
uint16_t data_ofs; /* First byte actually in use. */
uint32_t size_; /* Number of bytes in use. */
uint32_t ol_flags; /* Offloading flags. */
uint32_t rss_hash; /* Packet hash. */
uint32_t flow_mark; /* Packet flow mark. */
uint16_t tso_segsz; /* TCP segment size. */
#endif
enum dp_packet_source source; /* Source of memory allocated as 'base'. */
/* All the following elements of this struct are copied in a single call
* of memcpy in dp_packet_clone_with_headroom. */
uint16_t l2_pad_size; /* Detected l2 padding size.
* Padding is non-pullable. */
uint16_t l2_5_ofs; /* MPLS label stack offset, or UINT16_MAX */
uint16_t l3_ofs; /* Network-level header offset,
* or UINT16_MAX. */
uint16_t l4_ofs; /* Transport-level header offset,
or UINT16_MAX. */
uint16_t inner_l3_ofs; /* Inner Network-level header offset,
* or UINT16_MAX. */
uint16_t inner_l4_ofs; /* Inner Transport-level header offset,
or UINT16_MAX. */
uint32_t cutlen; /* length in bytes to cut from the end. */
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
ovs_be32 packet_type; /* Packet type as defined in OpenFlow */
uint16_t csum_start; /* Position to start checksumming from. */
uint16_t csum_offset; /* Offset to place checksum. */
union {
struct pkt_metadata md;
uint64_t data[DP_PACKET_CONTEXT_SIZE / 8];
};
};
#if HAVE_AF_XDP
struct dp_packet_afxdp {
struct umem_pool *mpool;
struct dp_packet packet;
};
#endif
static inline void *dp_packet_data(const struct dp_packet *);
static inline void dp_packet_set_data(struct dp_packet *, void *);
static inline void *dp_packet_base(const struct dp_packet *);
static inline void dp_packet_set_base(struct dp_packet *, void *);
static inline uint32_t dp_packet_size(const struct dp_packet *);
static inline void dp_packet_set_size(struct dp_packet *, uint32_t);
static inline uint16_t dp_packet_get_allocated(const struct dp_packet *);
static inline void dp_packet_set_allocated(struct dp_packet *, uint16_t);
static inline uint16_t dp_packet_get_tso_segsz(const struct dp_packet *);
static inline void dp_packet_set_tso_segsz(struct dp_packet *, uint16_t);
void *dp_packet_resize_l2(struct dp_packet *, int increment);
void *dp_packet_resize_l2_5(struct dp_packet *, int increment);
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
static inline void *dp_packet_eth(const struct dp_packet *);
static inline void dp_packet_reset_offsets(struct dp_packet *);
static inline void dp_packet_reset_offload(struct dp_packet *);
static inline uint16_t dp_packet_l2_pad_size(const struct dp_packet *);
static inline void dp_packet_set_l2_pad_size(struct dp_packet *, uint16_t);
static inline void *dp_packet_l2_5(const struct dp_packet *);
static inline void dp_packet_set_l2_5(struct dp_packet *, void *);
static inline void *dp_packet_l3(const struct dp_packet *);
static inline void dp_packet_set_l3(struct dp_packet *, void *);
static inline void *dp_packet_l4(const struct dp_packet *);
static inline void dp_packet_set_l4(struct dp_packet *, void *);
static inline size_t dp_packet_l4_size(const struct dp_packet *);
static inline const void *dp_packet_get_tcp_payload(const struct dp_packet *);
static inline const void *dp_packet_get_udp_payload(const struct dp_packet *);
static inline const void *dp_packet_get_sctp_payload(const struct dp_packet *);
static inline const void *dp_packet_get_icmp_payload(const struct dp_packet *);
static inline const void *dp_packet_get_nd_payload(const struct dp_packet *);
void dp_packet_use(struct dp_packet *, void *, size_t);
void dp_packet_use_stub(struct dp_packet *, void *, size_t);
void dp_packet_use_const(struct dp_packet *, const void *, size_t);
#if HAVE_AF_XDP
void dp_packet_use_afxdp(struct dp_packet *, void *, size_t, size_t);
#endif
void dp_packet_init_dpdk(struct dp_packet *);
void dp_packet_init(struct dp_packet *, size_t);
void dp_packet_uninit(struct dp_packet *);
struct dp_packet *dp_packet_new(size_t);
struct dp_packet *dp_packet_new_with_headroom(size_t, size_t headroom);
struct dp_packet *dp_packet_clone(const struct dp_packet *);
struct dp_packet *dp_packet_clone_with_headroom(const struct dp_packet *,
size_t headroom);
struct dp_packet *dp_packet_clone_data(const void *, size_t);
struct dp_packet *dp_packet_clone_data_with_headroom(const void *, size_t,
size_t headroom);
void dp_packet_resize(struct dp_packet *b, size_t new_headroom,
size_t new_tailroom);
static inline void dp_packet_delete(struct dp_packet *);
static inline void dp_packet_swap(struct dp_packet *, struct dp_packet *);
static inline void *dp_packet_at(const struct dp_packet *, size_t offset,
size_t size);
static inline void *dp_packet_at_assert(const struct dp_packet *,
size_t offset, size_t size);
static inline void *dp_packet_tail(const struct dp_packet *);
static inline void *dp_packet_end(const struct dp_packet *);
void *dp_packet_put_uninit(struct dp_packet *, size_t);
void *dp_packet_put_zeros(struct dp_packet *, size_t);
void *dp_packet_put(struct dp_packet *, const void *, size_t);
char *dp_packet_put_hex(struct dp_packet *, const char *s, size_t *n);
void dp_packet_reserve(struct dp_packet *, size_t);
void dp_packet_reserve_with_tailroom(struct dp_packet *, size_t headroom,
size_t tailroom);
void *dp_packet_push_uninit(struct dp_packet *, size_t);
void *dp_packet_push_zeros(struct dp_packet *, size_t);
void *dp_packet_push(struct dp_packet *, const void *, size_t);
static inline size_t dp_packet_headroom(const struct dp_packet *);
static inline size_t dp_packet_tailroom(const struct dp_packet *);
void dp_packet_prealloc_headroom(struct dp_packet *, size_t);
void dp_packet_prealloc_tailroom(struct dp_packet *, size_t);
void dp_packet_shift(struct dp_packet *, int);
static inline void dp_packet_clear(struct dp_packet *);
static inline void *dp_packet_pull(struct dp_packet *, size_t);
static inline void *dp_packet_try_pull(struct dp_packet *, size_t);
void *dp_packet_steal_data(struct dp_packet *);
static inline bool dp_packet_equal(const struct dp_packet *,
const struct dp_packet *);
bool dp_packet_compare_offsets(struct dp_packet *good,
struct dp_packet *test,
struct ds *err_str);
void dp_packet_ol_send_prepare(struct dp_packet *, uint64_t);
void dp_packet_tnl_outer_ol_send_prepare(struct dp_packet *, uint64_t);
/* Frees memory that 'b' points to, as well as 'b' itself. */
static inline void
dp_packet_delete(struct dp_packet *b)
{
if (b) {
if (b->source == DPBUF_DPDK) {
free_dpdk_buf(b);
return;
}
if (b->source == DPBUF_AFXDP) {
free_afxdp_buf(b);
return;
}
dp_packet_uninit(b);
#ifdef DPDK_NETDEV
free_cacheline(b);
#else
free(b);
#endif
}
}
/* Swaps content of two packets. */
static inline void
dp_packet_swap(struct dp_packet *a, struct dp_packet *b)
{
ovs_assert(a->source == DPBUF_MALLOC || a->source == DPBUF_STUB);
ovs_assert(b->source == DPBUF_MALLOC || b->source == DPBUF_STUB);
struct dp_packet c = *a;
*a = *b;
*b = c;
}
/* If 'b' contains at least 'offset + size' bytes of data, returns a pointer to
* byte 'offset'. Otherwise, returns a null pointer. */
static inline void *
dp_packet_at(const struct dp_packet *b, size_t offset, size_t size)
{
return offset + size <= dp_packet_size(b)
? (char *) dp_packet_data(b) + offset
: NULL;
}
/* Returns a pointer to byte 'offset' in 'b', which must contain at least
* 'offset + size' bytes of data. */
static inline void *
dp_packet_at_assert(const struct dp_packet *b, size_t offset, size_t size)
{
ovs_assert(offset + size <= dp_packet_size(b));
return ((char *) dp_packet_data(b)) + offset;
}
/* Returns a pointer to byte following the last byte of data in use in 'b'. */
static inline void *
dp_packet_tail(const struct dp_packet *b)
{
return (char *) dp_packet_data(b) + dp_packet_size(b);
}
/* Returns a pointer to byte following the last byte allocated for use (but
* not necessarily in use) in 'b'. */
static inline void *
dp_packet_end(const struct dp_packet *b)
{
return (char *) dp_packet_base(b) + dp_packet_get_allocated(b);
}
/* Returns the number of bytes of headroom in 'b', that is, the number of bytes
* of unused space in dp_packet 'b' before the data that is in use. (Most
* commonly, the data in a dp_packet is at its beginning, and thus the
* dp_packet's headroom is 0.) */
static inline size_t
dp_packet_headroom(const struct dp_packet *b)
{
return (char *) dp_packet_data(b) - (char *) dp_packet_base(b);
}
/* Returns the number of bytes that may be appended to the tail end of
* dp_packet 'b' before the dp_packet must be reallocated. */
static inline size_t
dp_packet_tailroom(const struct dp_packet *b)
{
return (char *) dp_packet_end(b) - (char *) dp_packet_tail(b);
}
/* Clears any data from 'b'. */
static inline void
dp_packet_clear(struct dp_packet *b)
{
dp_packet_set_data(b, dp_packet_base(b));
dp_packet_set_size(b, 0);
dp_packet_reset_offsets(b);
dp_packet_reset_offload(b);
}
/* Removes 'size' bytes from the head end of 'b', which must contain at least
* 'size' bytes of data. Returns the first byte of data removed. */
static inline void *
dp_packet_pull(struct dp_packet *b, size_t size)
{
void *data = dp_packet_data(b);
ovs_assert(dp_packet_size(b) - dp_packet_l2_pad_size(b) >= size);
dp_packet_set_data(b, (char *) dp_packet_data(b) + size);
dp_packet_set_size(b, dp_packet_size(b) - size);
return data;
}
/* If 'b' has at least 'size' bytes of data, removes that many bytes from the
* head end of 'b' and returns the first byte removed. Otherwise, returns a
* null pointer without modifying 'b'. */
static inline void *
dp_packet_try_pull(struct dp_packet *b, size_t size)
{
return dp_packet_size(b) - dp_packet_l2_pad_size(b) >= size
? dp_packet_pull(b, size) : NULL;
}
static inline bool
dp_packet_equal(const struct dp_packet *a, const struct dp_packet *b)
{
return dp_packet_size(a) == dp_packet_size(b) &&
!memcmp(dp_packet_data(a), dp_packet_data(b), dp_packet_size(a));
}
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
static inline bool
dp_packet_is_eth(const struct dp_packet *b)
{
return b->packet_type == htonl(PT_ETH);
}
/* Get the start of the Ethernet frame. 'l3_ofs' marks the end of the l2
* headers, so return NULL if it is not set. */
static inline void *
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
dp_packet_eth(const struct dp_packet *b)
{
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
return (dp_packet_is_eth(b) && b->l3_ofs != UINT16_MAX)
? dp_packet_data(b) : NULL;
}
/* Resets all layer offsets. 'l3' offset must be set before 'l2' can be
* retrieved. */
static inline void
dp_packet_reset_offsets(struct dp_packet *b)
{
b->l2_pad_size = 0;
b->l2_5_ofs = UINT16_MAX;
b->l3_ofs = UINT16_MAX;
b->l4_ofs = UINT16_MAX;
b->inner_l3_ofs = UINT16_MAX;
b->inner_l4_ofs = UINT16_MAX;
}
static inline uint16_t
dp_packet_l2_pad_size(const struct dp_packet *b)
{
return b->l2_pad_size;
}
static inline void
dp_packet_set_l2_pad_size(struct dp_packet *b, uint16_t pad_size)
{
ovs_assert(pad_size <= dp_packet_size(b));
b->l2_pad_size = pad_size;
}
static inline void *
dp_packet_l2_5(const struct dp_packet *b)
{
return b->l2_5_ofs != UINT16_MAX
? (char *) dp_packet_data(b) + b->l2_5_ofs
: NULL;
}
static inline void
dp_packet_set_l2_5(struct dp_packet *b, void *l2_5)
{
b->l2_5_ofs = l2_5
? (char *) l2_5 - (char *) dp_packet_data(b)
: UINT16_MAX;
}
static inline void *
dp_packet_l3(const struct dp_packet *b)
{
return b->l3_ofs != UINT16_MAX
? (char *) dp_packet_data(b) + b->l3_ofs
: NULL;
}
static inline void
dp_packet_set_l3(struct dp_packet *b, void *l3)
{
b->l3_ofs = l3 ? (char *) l3 - (char *) dp_packet_data(b) : UINT16_MAX;
}
static inline void *
dp_packet_l4(const struct dp_packet *b)
{
return b->l4_ofs != UINT16_MAX
? (char *) dp_packet_data(b) + b->l4_ofs
: NULL;
}
static inline void
dp_packet_set_l4(struct dp_packet *b, void *l4)
{
b->l4_ofs = l4 ? (char *) l4 - (char *) dp_packet_data(b) : UINT16_MAX;
}
/* Returns the size of the packet from the beginning of the L3 header to the
* end of the L3 payload. Hence L2 padding is not included. */
static inline size_t
dp_packet_l3_size(const struct dp_packet *b)
{
return OVS_LIKELY(b->l3_ofs != UINT16_MAX)
? (const char *)dp_packet_tail(b) - (const char *)dp_packet_l3(b)
- dp_packet_l2_pad_size(b)
: 0;
}
/* Returns the size of the packet from the beginning of the L4 header to the
* end of the L4 payload. Hence L2 padding is not included. */
static inline size_t
dp_packet_l4_size(const struct dp_packet *b)
{
return OVS_LIKELY(b->l4_ofs != UINT16_MAX)
? (const char *)dp_packet_tail(b) - (const char *)dp_packet_l4(b)
- dp_packet_l2_pad_size(b)
: 0;
}
static inline void *
dp_packet_inner_l3(const struct dp_packet *b)
{
return b->inner_l3_ofs != UINT16_MAX
? (char *) dp_packet_data(b) + b->inner_l3_ofs
: NULL;
}
static inline void *
dp_packet_inner_l4(const struct dp_packet *b)
{
return b->inner_l4_ofs != UINT16_MAX
? (char *) dp_packet_data(b) + b->inner_l4_ofs
: NULL;
}
static inline size_t
dp_packet_inner_l4_size(const struct dp_packet *b)
{
return OVS_LIKELY(b->inner_l4_ofs != UINT16_MAX)
? (const char *) dp_packet_tail(b)
- (const char *) dp_packet_inner_l4(b)
- dp_packet_l2_pad_size(b)
: 0;
}
static inline const void *
dp_packet_get_tcp_payload(const struct dp_packet *b)
{
size_t l4_size = dp_packet_l4_size(b);
if (OVS_LIKELY(l4_size >= TCP_HEADER_LEN)) {
struct tcp_header *tcp = dp_packet_l4(b);
int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (OVS_LIKELY(tcp_len >= TCP_HEADER_LEN && tcp_len <= l4_size)) {
return (const char *)tcp + tcp_len;
}
}
return NULL;
}
static inline uint32_t
dp_packet_get_tcp_payload_length(const struct dp_packet *pkt)
{
const char *tcp_payload = dp_packet_get_tcp_payload(pkt);
if (tcp_payload) {
return ((char *) dp_packet_tail(pkt) - dp_packet_l2_pad_size(pkt)
- tcp_payload);
} else {
return 0;
}
}
static inline const void *
dp_packet_get_udp_payload(const struct dp_packet *b)
{
return OVS_LIKELY(dp_packet_l4_size(b) >= UDP_HEADER_LEN)
? (const char *)dp_packet_l4(b) + UDP_HEADER_LEN : NULL;
}
static inline const void *
dp_packet_get_sctp_payload(const struct dp_packet *b)
{
return OVS_LIKELY(dp_packet_l4_size(b) >= SCTP_HEADER_LEN)
? (const char *)dp_packet_l4(b) + SCTP_HEADER_LEN : NULL;
}
static inline const void *
dp_packet_get_icmp_payload(const struct dp_packet *b)
{
return OVS_LIKELY(dp_packet_l4_size(b) >= ICMP_HEADER_LEN)
? (const char *)dp_packet_l4(b) + ICMP_HEADER_LEN : NULL;
}
static inline const void *
dp_packet_get_nd_payload(const struct dp_packet *b)
{
return OVS_LIKELY(dp_packet_l4_size(b) >= ND_MSG_LEN)
? (const char *)dp_packet_l4(b) + ND_MSG_LEN : NULL;
}
#ifdef DPDK_NETDEV
static inline void
dp_packet_set_l2_len(struct dp_packet *b, size_t l2_len)
{
b->mbuf.l2_len = l2_len;
}
static inline void
dp_packet_set_l3_len(struct dp_packet *b, size_t l3_len)
{
b->mbuf.l3_len = l3_len;
}
static inline void
dp_packet_set_l4_len(struct dp_packet *b, size_t l4_len)
{
b->mbuf.l4_len = l4_len;
}
static inline uint64_t *
dp_packet_ol_flags_ptr(const struct dp_packet *b)
{
return CONST_CAST(uint64_t *, &b->mbuf.ol_flags);
}
static inline uint32_t *
dp_packet_rss_ptr(const struct dp_packet *b)
{
return CONST_CAST(uint32_t *, &b->mbuf.hash.rss);
}
static inline uint32_t *
dp_packet_flow_mark_ptr(const struct dp_packet *b)
{
return CONST_CAST(uint32_t *, &b->mbuf.hash.fdir.hi);
}
#else
static inline void
dp_packet_set_l2_len(struct dp_packet *b OVS_UNUSED, size_t l2_len OVS_UNUSED)
{
/* There is no implementation. */
}
static inline void
dp_packet_set_l3_len(struct dp_packet *b OVS_UNUSED, size_t l3_len OVS_UNUSED)
{
/* There is no implementation. */
}
static inline void
dp_packet_set_l4_len(struct dp_packet *b OVS_UNUSED, size_t l4_len OVS_UNUSED)
{
/* There is no implementation. */
}
static inline uint32_t *
dp_packet_ol_flags_ptr(const struct dp_packet *b)
{
return CONST_CAST(uint32_t *, &b->ol_flags);
}
static inline uint32_t *
dp_packet_rss_ptr(const struct dp_packet *b)
{
return CONST_CAST(uint32_t *, &b->rss_hash);
}
static inline uint32_t *
dp_packet_flow_mark_ptr(const struct dp_packet *b)
{
return CONST_CAST(uint32_t *, &b->flow_mark);
}
#endif
#ifdef DPDK_NETDEV
BUILD_ASSERT_DECL(offsetof(struct dp_packet, mbuf) == 0);
static inline void
dp_packet_init_specific(struct dp_packet *p)
{
/* This initialization is needed for packets that do not come from DPDK
* interfaces, when vswitchd is built with --with-dpdk. */
p->mbuf.ol_flags = p->mbuf.tx_offload = p->mbuf.packet_type = 0;
p->mbuf.nb_segs = 1;
p->mbuf.next = NULL;
}
static inline void *
dp_packet_base(const struct dp_packet *b)
{
return b->mbuf.buf_addr;
}
static inline void
dp_packet_set_base(struct dp_packet *b, void *d)
{
b->mbuf.buf_addr = d;
}
static inline uint32_t
dp_packet_size(const struct dp_packet *b)
{
return b->mbuf.pkt_len;
}
static inline void
dp_packet_set_size(struct dp_packet *b, uint32_t v)
{
/* netdev-dpdk does not currently support segmentation; consequently, for
* all intents and purposes, 'data_len' (16 bit) and 'pkt_len' (32 bit) may
* be used interchangably.
*
* On the datapath, it is expected that the size of packets
* (and thus 'v') will always be <= UINT16_MAX; this means that there is no
* loss of accuracy in assigning 'v' to 'data_len'.
*/
ovs_assert(v <= UINT16_MAX);
b->mbuf.data_len = (uint16_t)v; /* Current seg length. */
b->mbuf.pkt_len = v; /* Total length of all segments linked to
* this segment. */
}
static inline uint16_t
__packet_data(const struct dp_packet *b)
{
return b->mbuf.data_off;
}
static inline void
__packet_set_data(struct dp_packet *b, uint16_t v)
{
b->mbuf.data_off = v;
}
static inline uint16_t
dp_packet_get_allocated(const struct dp_packet *b)
{
return b->mbuf.buf_len;
}
static inline void
dp_packet_set_allocated(struct dp_packet *b, uint16_t s)
{
b->mbuf.buf_len = s;
}
static inline uint16_t
dp_packet_get_tso_segsz(const struct dp_packet *p)
{
return p->mbuf.tso_segsz;
}
static inline void
dp_packet_set_tso_segsz(struct dp_packet *p, uint16_t s)
{
p->mbuf.tso_segsz = s;
}
#else /* DPDK_NETDEV */
static inline void
dp_packet_init_specific(struct dp_packet *p OVS_UNUSED)
{
/* There are no implementation-specific fields for initialization. */
}
static inline void *
dp_packet_base(const struct dp_packet *b)
{
return b->base_;
}
static inline void
dp_packet_set_base(struct dp_packet *b, void *d)
{
b->base_ = d;
}
static inline uint32_t
dp_packet_size(const struct dp_packet *b)
{
return b->size_;
}
static inline void
dp_packet_set_size(struct dp_packet *b, uint32_t v)
{
b->size_ = v;
}
static inline uint16_t
__packet_data(const struct dp_packet *b)
{
return b->data_ofs;
}
static inline void
__packet_set_data(struct dp_packet *b, uint16_t v)
{
b->data_ofs = v;
}
static inline uint16_t
dp_packet_get_allocated(const struct dp_packet *b)
{
return b->allocated_;
}
static inline void
dp_packet_set_allocated(struct dp_packet *b, uint16_t s)
{
b->allocated_ = s;
}
static inline uint16_t
dp_packet_get_tso_segsz(const struct dp_packet *p)
{
return p->tso_segsz;
}
static inline void
dp_packet_set_tso_segsz(struct dp_packet *p, uint16_t s)
{
p->tso_segsz = s;
}
#endif /* DPDK_NETDEV */
static inline void
dp_packet_reset_cutlen(struct dp_packet *b)
{
b->cutlen = 0;
}
static inline uint32_t
dp_packet_set_cutlen(struct dp_packet *b, uint32_t max_len)
{
if (max_len < ETH_HEADER_LEN) {
max_len = ETH_HEADER_LEN;
}
if (max_len >= dp_packet_size(b)) {
b->cutlen = 0;
} else {
b->cutlen = dp_packet_size(b) - max_len;
}
return b->cutlen;
}
static inline uint32_t
dp_packet_get_cutlen(const struct dp_packet *b)
{
/* Always in valid range if user uses dp_packet_set_cutlen. */
return b->cutlen;
}
static inline uint32_t
dp_packet_get_send_len(const struct dp_packet *b)
{
return dp_packet_size(b) - dp_packet_get_cutlen(b);
}
static inline void *
dp_packet_data(const struct dp_packet *b)
{
return __packet_data(b) != UINT16_MAX
? (char *) dp_packet_base(b) + __packet_data(b) : NULL;
}
static inline void
dp_packet_set_data(struct dp_packet *b, void *data)
{
if (data) {
__packet_set_data(b, (char *) data - (char *) dp_packet_base(b));
} else {
__packet_set_data(b, UINT16_MAX);
}
}
enum { NETDEV_MAX_BURST = 32 }; /* Maximum number packets in a batch. */
struct dp_packet_batch {
size_t count;
bool trunc; /* true if the batch needs truncate. */
struct dp_packet *packets[NETDEV_MAX_BURST];
};
static inline void
dp_packet_batch_init(struct dp_packet_batch *batch)
{
batch->count = 0;
batch->trunc = false;
}
static inline void
dp_packet_batch_add__(struct dp_packet_batch *batch,
struct dp_packet *packet, size_t limit)
{
if (batch->count < limit) {
batch->packets[batch->count++] = packet;
} else {
dp_packet_delete(packet);
}
}
/* When the batch is full, 'packet' will be dropped and freed. */
static inline void
dp_packet_batch_add(struct dp_packet_batch *batch, struct dp_packet *packet)
{
dp_packet_batch_add__(batch, packet, NETDEV_MAX_BURST);
}
static inline size_t
dp_packet_batch_size(const struct dp_packet_batch *batch)
{
return batch->count;
}
/* Clear 'batch' for refill. Use dp_packet_batch_refill() to add
* packets back into the 'batch'. */
static inline void
dp_packet_batch_refill_init(struct dp_packet_batch *batch)
{
batch->count = 0;
};
static inline void
dp_packet_batch_refill(struct dp_packet_batch *batch,
struct dp_packet *packet, size_t idx)
{
dp_packet_batch_add__(batch, packet, MIN(NETDEV_MAX_BURST, idx + 1));
}
static inline void
dp_packet_batch_init_packet(struct dp_packet_batch *batch, struct dp_packet *p)
{
dp_packet_batch_init(batch);
batch->count = 1;
batch->packets[0] = p;
}
static inline bool
dp_packet_batch_is_empty(const struct dp_packet_batch *batch)
{
return !dp_packet_batch_size(batch);
}
static inline bool
dp_packet_batch_is_full(const struct dp_packet_batch *batch)
{
return dp_packet_batch_size(batch) == NETDEV_MAX_BURST;
}
#define DP_PACKET_BATCH_FOR_EACH(IDX, PACKET, BATCH) \
for (size_t IDX = 0; IDX < dp_packet_batch_size(BATCH); IDX++) \
if (PACKET = (BATCH)->packets[IDX], true)
/* Use this macro for cases where some packets in the 'BATCH' may be
* dropped after going through each packet in the 'BATCH'.
*
* For packets to stay in the 'BATCH', they need to be refilled back
* into the 'BATCH' by calling dp_packet_batch_refill(). Caller owns
* the packets that are not refilled.
*
* Caller needs to supply 'SIZE', that stores the current number of
* packets in 'BATCH'. It is best to declare this variable with
* the 'const' modifier since it should not be modified by
* the iterator. */
#define DP_PACKET_BATCH_REFILL_FOR_EACH(IDX, SIZE, PACKET, BATCH) \
for (dp_packet_batch_refill_init(BATCH), IDX=0; IDX < SIZE; IDX++) \
if (PACKET = (BATCH)->packets[IDX], true)
static inline void
dp_packet_batch_clone(struct dp_packet_batch *dst,
struct dp_packet_batch *src)
{
struct dp_packet *packet;
dp_packet_batch_init(dst);
DP_PACKET_BATCH_FOR_EACH (i, packet, src) {
if (i + 1 < dp_packet_batch_size(src)) {
OVS_PREFETCH(src->packets[i + 1]);
}
uint32_t headroom = dp_packet_headroom(packet);
struct dp_packet *pkt_clone;
pkt_clone = dp_packet_clone_with_headroom(packet, headroom);
dp_packet_batch_add(dst, pkt_clone);
}
dst->trunc = src->trunc;
}
static inline void
dp_packet_delete_batch(struct dp_packet_batch *batch, bool should_steal)
{
if (should_steal) {
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (i, packet, batch) {
dp_packet_delete(packet);
}
dp_packet_batch_init(batch);
}
}
static inline void
dp_packet_batch_init_packet_fields(struct dp_packet_batch *batch)
{
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (i, packet, batch) {
dp_packet_reset_cutlen(packet);
packet->packet_type = htonl(PT_ETH);
}
}
static inline void
dp_packet_batch_apply_cutlen(struct dp_packet_batch *batch)
{
if (batch->trunc) {
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (i, packet, batch) {
dp_packet_set_size(packet, dp_packet_get_send_len(packet));
dp_packet_reset_cutlen(packet);
}
batch->trunc = false;
}
}
static inline void
dp_packet_batch_reset_cutlen(struct dp_packet_batch *batch)
{
if (batch->trunc) {
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (i, packet, batch) {
dp_packet_reset_cutlen(packet);
}
batch->trunc = false;
}
}
/* Returns the RSS hash of the packet 'p'. Note that the returned value is
* correct only if 'dp_packet_rss_valid(p)' returns 'true'. */
static inline uint32_t
dp_packet_get_rss_hash(const struct dp_packet *p)
{
return *dp_packet_rss_ptr(p);
}
static inline void
dp_packet_set_rss_hash(struct dp_packet *p, uint32_t hash)
{
*dp_packet_rss_ptr(p) = hash;
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_RSS_HASH;
}
static inline bool
dp_packet_rss_valid(const struct dp_packet *p)
{
return *dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_RSS_HASH;
}
static inline void
dp_packet_reset_offload(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_SUPPORTED_MASK;
}
static inline bool
dp_packet_has_flow_mark(const struct dp_packet *p, uint32_t *mark)
{
if (*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_FLOW_MARK) {
*mark = *dp_packet_flow_mark_ptr(p);
return true;
}
return false;
}
static inline void
dp_packet_set_flow_mark(struct dp_packet *p, uint32_t mark)
{
*dp_packet_flow_mark_ptr(p) = mark;
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_FLOW_MARK;
}
/* Returns the L4 cksum offload bitmask. */
static inline uint64_t
dp_packet_hwol_l4_mask(const struct dp_packet *b)
{
return *dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_L4_MASK;
}
/* Return true if the packet 'b' requested L4 checksum offload. */
static inline bool
dp_packet_hwol_tx_l4_checksum(const struct dp_packet *b)
{
return !!dp_packet_hwol_l4_mask(b);
}
/* Returns 'true' if packet 'b' is marked for TCP segmentation offloading. */
static inline bool
dp_packet_hwol_is_tso(const struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_TCP_SEG);
}
/* Returns 'true' if packet 'b' is marked for IPv4 checksum offloading. */
static inline bool
dp_packet_hwol_is_ipv4(const struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_IPV4);
}
/* Returns 'true' if packet 'p' is marked as IPv6. */
static inline bool
dp_packet_hwol_tx_ipv6(const struct dp_packet *p)
{
return !!(*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_TX_IPV6);
}
/* Returns 'true' if packet 'b' is marked for TCP checksum offloading. */
static inline bool
dp_packet_hwol_l4_is_tcp(const struct dp_packet *b)
{
return (*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_L4_MASK) ==
DP_PACKET_OL_TX_TCP_CKSUM;
}
/* Returns 'true' if packet 'b' is marked for UDP checksum offloading. */
static inline bool
dp_packet_hwol_l4_is_udp(struct dp_packet *b)
{
return (*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_L4_MASK) ==
DP_PACKET_OL_TX_UDP_CKSUM;
}
/* Returns 'true' if packet 'b' is marked for SCTP checksum offloading. */
static inline bool
dp_packet_hwol_l4_is_sctp(struct dp_packet *b)
{
return (*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_L4_MASK) ==
DP_PACKET_OL_TX_SCTP_CKSUM;
}
/* Returns 'true' if packet 'b' is marked as having an outer IPv6 header. */
static inline bool
dp_packet_hwol_is_outer_ipv6(const struct dp_packet *b)
{
return *dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_OUTER_IPV6;
}
/* Returns 'true' if packet 'b' is marked as having an outer IPv4 header. */
static inline bool
dp_packet_hwol_is_outer_ipv4(const struct dp_packet *b)
{
return *dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_OUTER_IPV4;
}
/* Returns 'true' if packet 'b' is marked for tunnel GENEVE
* checksum offloading. */
static inline bool
dp_packet_hwol_is_tunnel_geneve(struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_TUNNEL_GENEVE);
}
/* Returns 'true' if packet 'b' is marked for tunnel VXLAN
* checksum offloading. */
static inline bool
dp_packet_hwol_is_tunnel_vxlan(struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_TUNNEL_VXLAN);
}
/* Returns 'true' if packet 'b' is marked for outer IPv4 checksum offload. */
static inline bool
dp_packet_hwol_is_outer_ipv4_cksum(const struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_OUTER_IP_CKSUM);
}
/* Returns 'true' if packet 'b' is marked for outer UDP checksum offload. */
static inline bool
dp_packet_hwol_is_outer_udp_cksum(struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_OUTER_UDP_CKSUM);
}
/* Returns 'true' if packet 'b' is marked for any checksum offload. */
static inline bool
dp_packet_hwol_tx_is_any_csum(struct dp_packet *b)
{
return !!(*dp_packet_ol_flags_ptr(b) & DP_PACKET_OL_TX_ANY_CKSUM);
}
static inline void
dp_packet_hwol_reset_tx_l4_csum(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_TX_L4_MASK;
}
/* Mark packet 'p' as IPv4. */
static inline void
dp_packet_hwol_set_tx_ipv4(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_TX_IPV6;
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_TX_IPV4;
}
/* Mark packet 'a' as IPv6. */
static inline void
dp_packet_hwol_set_tx_ipv6(struct dp_packet *a)
{
*dp_packet_ol_flags_ptr(a) &= ~DP_PACKET_OL_TX_IPV4;
*dp_packet_ol_flags_ptr(a) |= DP_PACKET_OL_TX_IPV6;
}
/* Mark packet 'a' as a tunnel packet with outer IPv6 header. */
static inline void
dp_packet_hwol_set_tx_outer_ipv6(struct dp_packet *a)
{
*dp_packet_ol_flags_ptr(a) &= ~DP_PACKET_OL_TX_OUTER_IPV4;
*dp_packet_ol_flags_ptr(a) |= DP_PACKET_OL_TX_OUTER_IPV6;
}
/* Returns 'true' if packet 'p' is marked for IPv4 checksum offloading. */
static inline bool
dp_packet_hwol_tx_ip_csum(const struct dp_packet *p)
{
return !!(*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_TX_IP_CKSUM);
}
/* Marks packet 'p' for IPv4 checksum offloading. */
static inline void
dp_packet_hwol_set_tx_ip_csum(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_TX_IP_CKSUM;
}
static inline void
dp_packet_hwol_reset_tx_ip_csum(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_TX_IP_CKSUM;
}
/* Mark packet 'b' for TCP checksum offloading. It implies that either
* the packet 'b' is marked for IPv4 or IPv6 checksum offloading. */
static inline void
dp_packet_hwol_set_csum_tcp(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_TCP_CKSUM;
}
/* Mark packet 'b' for UDP checksum offloading. It implies that either
* the packet 'b' is marked for IPv4 or IPv6 checksum offloading. */
static inline void
dp_packet_hwol_set_csum_udp(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_UDP_CKSUM;
}
/* Mark packet 'b' for SCTP checksum offloading. It implies that either
* the packet 'b' is marked for IPv4 or IPv6 checksum offloading. */
static inline void
dp_packet_hwol_set_csum_sctp(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_SCTP_CKSUM;
}
/* Mark packet 'b' for TCP segmentation offloading. It implies that
* either the packet 'b' is marked for IPv4 or IPv6 checksum offloading
* and also for TCP checksum offloading. */
static inline void
dp_packet_hwol_set_tcp_seg(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_TCP_SEG;
}
/* Mark packet 'b' for tunnel GENEVE offloading. */
static inline void
dp_packet_hwol_set_tunnel_geneve(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_TUNNEL_GENEVE;
}
/* Mark packet 'b' for tunnel VXLAN offloading. */
static inline void
dp_packet_hwol_set_tunnel_vxlan(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_TUNNEL_VXLAN;
}
/* Mark packet 'b' as a tunnel packet with outer IPv4 header. */
static inline void
dp_packet_hwol_set_tx_outer_ipv4(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_OUTER_IPV4;
}
/* Mark packet 'b' for csum offloading in outer IPv4 header. */
static inline void
dp_packet_hwol_set_tx_outer_ipv4_csum(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_OUTER_IP_CKSUM;
}
static inline void
dp_packet_hwol_reset_outer_ipv4_csum(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_TX_OUTER_IP_CKSUM;
}
static inline void
dp_packet_hwol_reset_outer_udp_csum(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_TX_OUTER_UDP_CKSUM;
}
/* Mark packet 'b' for csum offloading in outer UDP header. */
static inline void
dp_packet_hwol_set_outer_udp_csum(struct dp_packet *b)
{
*dp_packet_ol_flags_ptr(b) |= DP_PACKET_OL_TX_OUTER_UDP_CKSUM;
}
/* Resets TCP Segmentation in packet 'p' and adjust flags to indicate
* L3 and L4 checksumming is now required. */
static inline void
dp_packet_hwol_reset_tcp_seg(struct dp_packet *p)
{
uint64_t ol_flags = *dp_packet_ol_flags_ptr(p)
| DP_PACKET_OL_TX_TCP_CKSUM;
ol_flags = ol_flags & ~(DP_PACKET_OL_TX_TCP_SEG
| DP_PACKET_OL_RX_L4_CKSUM_GOOD
| DP_PACKET_OL_RX_IP_CKSUM_GOOD);
if (ol_flags & DP_PACKET_OL_TX_IPV4) {
ol_flags |= DP_PACKET_OL_TX_IP_CKSUM;
}
*dp_packet_ol_flags_ptr(p) = ol_flags;
}
/* Returns 'true' if the IP header has good integrity and the
* checksum in it is complete. */
static inline bool
dp_packet_ip_checksum_good(const struct dp_packet *p)
{
return (*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_RX_IP_CKSUM_MASK) ==
DP_PACKET_OL_RX_IP_CKSUM_GOOD;
}
/* Marks packet 'p' with good IPv4 checksum. */
static inline void
dp_packet_ol_set_ip_csum_good(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_RX_IP_CKSUM_BAD;
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_RX_IP_CKSUM_GOOD;
}
/* Resets IP good checksum flag in packet 'p'. */
static inline void
dp_packet_ol_reset_ip_csum_good(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_RX_IP_CKSUM_GOOD;
}
/* Marks packet 'p' with bad IPv4 checksum. */
static inline bool
dp_packet_ip_checksum_bad(const struct dp_packet *p)
{
return (*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_RX_IP_CKSUM_MASK) ==
DP_PACKET_OL_RX_IP_CKSUM_BAD;
}
/* Return 'true' is packet 'b' is not encapsulated and is marked for IPv4
* checksum offload, or if 'b' is encapsulated and the outer layer is marked
* for IPv4 checksum offload. IPv6 packets and non offloaded packets return
* 'false'. */
static inline bool
dp_packet_hwol_l3_csum_ipv4_ol(const struct dp_packet *b)
{
if (dp_packet_hwol_is_outer_ipv4(b)) {
return dp_packet_hwol_is_outer_ipv4_cksum(b);
} else if (!dp_packet_hwol_is_outer_ipv6(b)) {
return dp_packet_hwol_tx_ip_csum(b) &&
!dp_packet_ip_checksum_good(b);
}
return false;
}
/* Calculate and set the IPv4 header checksum in packet 'p'. */
static inline void
dp_packet_ip_set_header_csum(struct dp_packet *p, bool inner)
{
struct ip_header *ip = (inner) ? dp_packet_inner_l3(p) : dp_packet_l3(p);
ovs_assert(ip);
ip->ip_csum = 0;
ip->ip_csum = csum(ip, sizeof *ip);
}
/* Returns 'true' if the packet 'p' has good integrity and the
* checksum in it is correct. */
static inline bool
dp_packet_l4_checksum_good(const struct dp_packet *p)
{
return (*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_RX_L4_CKSUM_MASK) ==
DP_PACKET_OL_RX_L4_CKSUM_GOOD;
}
static inline bool
dp_packet_l4_checksum_bad(const struct dp_packet *p)
{
return (*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_RX_L4_CKSUM_MASK) ==
DP_PACKET_OL_RX_L4_CKSUM_BAD;
}
/* Returns 'true' if the packet has good integrity though the
* checksum in the packet 'p' is not complete. */
static inline bool
dp_packet_ol_l4_csum_partial(const struct dp_packet *p)
{
return (*dp_packet_ol_flags_ptr(p) & DP_PACKET_OL_RX_L4_CKSUM_MASK) ==
DP_PACKET_OL_RX_L4_CKSUM_MASK;
}
/* Marks packet 'p' with good integrity though the checksum in the
* packet is not complete. */
static inline void
dp_packet_ol_set_l4_csum_partial(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_RX_L4_CKSUM_MASK;
}
/* Marks packet 'p' with good L4 checksum. */
static inline void
dp_packet_ol_set_l4_csum_good(struct dp_packet *p)
{
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_RX_L4_CKSUM_BAD;
*dp_packet_ol_flags_ptr(p) |= DP_PACKET_OL_RX_L4_CKSUM_GOOD;
}
/* Marks packet 'p' with good L4 checksum as modified. */
static inline void
dp_packet_ol_reset_l4_csum_good(struct dp_packet *p)
{
if (!dp_packet_ol_l4_csum_partial(p)) {
*dp_packet_ol_flags_ptr(p) &= ~DP_PACKET_OL_RX_L4_CKSUM_GOOD;
}
}
/* Marks packet 'p' with good integrity if checksum offload locations
* were provided. In the case of encapsulated packets, these values may
* be deeper into the packet than OVS might expect. But the packet
* should still be considered to have good integrity.
* The 'csum_start' is the offset from the begin of the packet headers.
* The 'csum_offset' is the offset from start to place the checksum.
* The csum_start and csum_offset fields are set from the virtio_net_hdr
* struct that may be provided by a netdev on packet ingress. */
static inline void
dp_packet_ol_l4_csum_check_partial(struct dp_packet *p)
{
if (p->csum_start && p->csum_offset) {
dp_packet_ol_set_l4_csum_partial(p);
}
}
static inline void
dp_packet_reset_packet(struct dp_packet *b, int off)
{
dp_packet_set_size(b, dp_packet_size(b) - off);
dp_packet_set_data(b, ((unsigned char *) dp_packet_data(b) + off));
dp_packet_reset_offsets(b);
if (b->csum_start >= off && b->csum_offset) {
/* Adjust values for decapsulation. */
b->csum_start -= off;
dp_packet_ol_set_l4_csum_partial(b);
}
}
static inline uint32_t ALWAYS_INLINE
dp_packet_calc_hash_ipv4(const uint8_t *pkt, const uint16_t l3_ofs,
uint32_t hash)
{
const void *ipv4_src = &pkt[l3_ofs + offsetof(struct ip_header, ip_src)];
const void *ipv4_dst = &pkt[l3_ofs + offsetof(struct ip_header, ip_dst)];
uint32_t ip_src, ip_dst;
memcpy(&ip_src, ipv4_src, sizeof ip_src);
memcpy(&ip_dst, ipv4_dst, sizeof ip_dst);
/* IPv4 Src and Dst. */
hash = hash_add(hash, ip_src);
hash = hash_add(hash, ip_dst);
/* IPv4 proto. */
hash = hash_add(hash, pkt[l3_ofs + offsetof(struct ip_header, ip_proto)]);
return hash;
}
static inline void ALWAYS_INLINE
dp_packet_update_rss_hash_ipv4(struct dp_packet *packet)
{
if (dp_packet_rss_valid(packet)) {
return;
}
const uint8_t *pkt = dp_packet_data(packet);
const uint16_t l3_ofs = packet->l3_ofs;
uint32_t hash = 0;
/* IPv4 Src, Dst and proto. */
hash = dp_packet_calc_hash_ipv4(pkt, l3_ofs, hash);
hash = hash_finish(hash, 42);
dp_packet_set_rss_hash(packet, hash);
}
static inline void ALWAYS_INLINE
dp_packet_update_rss_hash_ipv4_tcp_udp(struct dp_packet *packet)
{
if (dp_packet_rss_valid(packet)) {
return;
}
const uint8_t *pkt = dp_packet_data(packet);
const void *l4_ports = &pkt[packet->l4_ofs];
const uint16_t l3_ofs = packet->l3_ofs;
uint32_t hash = 0;
uint32_t ports;
/* IPv4 Src, Dst and proto. */
hash = dp_packet_calc_hash_ipv4(pkt, l3_ofs, hash);
/* L4 ports. */
memcpy(&ports, l4_ports, sizeof ports);
hash = hash_add(hash, ports);
hash = hash_finish(hash, 42);
dp_packet_set_rss_hash(packet, hash);
}
static inline void ALWAYS_INLINE
dp_packet_update_rss_hash_ipv6_tcp_udp(struct dp_packet *packet)
{
if (dp_packet_rss_valid(packet)) {
return;
}
const uint8_t *pkt = dp_packet_data(packet);
const uint16_t l3_ofs = packet->l3_ofs;
uint32_t ipv6_src_off = offsetof(struct ovs_16aligned_ip6_hdr, ip6_src);
uint32_t ipv6_dst_off = offsetof(struct ovs_16aligned_ip6_hdr, ip6_dst);
uint32_t ipv6_proto_off = offsetof(struct ovs_16aligned_ip6_hdr,
ip6_ctlun.ip6_un1.ip6_un1_nxt);
const void *ipv6_src_l = &pkt[l3_ofs + ipv6_src_off];
const void *ipv6_src_h = &pkt[l3_ofs + ipv6_src_off + 8];
const void *ipv6_dst_l = &pkt[l3_ofs + ipv6_dst_off];
const void *ipv6_dst_h = &pkt[l3_ofs + ipv6_dst_off + 8];
const void *l4_ports = &pkt[packet->l4_ofs];
uint64_t ipv6_src_lo, ipv6_src_hi;
uint64_t ipv6_dst_lo, ipv6_dst_hi;
uint32_t ports;
uint32_t hash = 0;
memcpy(&ipv6_src_lo, ipv6_src_l, sizeof ipv6_src_lo);
memcpy(&ipv6_src_hi, ipv6_src_h, sizeof ipv6_src_hi);
memcpy(&ipv6_dst_lo, ipv6_dst_l, sizeof ipv6_dst_lo);
memcpy(&ipv6_dst_hi, ipv6_dst_h, sizeof ipv6_dst_hi);
memcpy(&ports, l4_ports, sizeof ports);
/* IPv6 Src and Dst. */
hash = hash_add64(hash, ipv6_src_lo);
hash = hash_add64(hash, ipv6_src_hi);
hash = hash_add64(hash, ipv6_dst_lo);
hash = hash_add64(hash, ipv6_dst_hi);
/* IPv6 proto. */
hash = hash_add(hash, pkt[l3_ofs + ipv6_proto_off]);
/* L4 ports. */
hash = hash_add(hash, ports);
hash = hash_finish(hash, 42);
dp_packet_set_rss_hash(packet, hash);
}
#ifdef __cplusplus
}
#endif
#endif /* dp-packet.h */