2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-24 02:47:14 +00:00
ovs/lib/conntrack.c

3334 lines
109 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015-2019 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <string.h>
#include "bitmap.h"
#include "conntrack.h"
#include "conntrack-private.h"
#include "conntrack-tp.h"
#include "coverage.h"
#include "csum.h"
#include "ct-dpif.h"
#include "dp-packet.h"
#include "flow.h"
#include "netdev.h"
#include "odp-netlink.h"
#include "openvswitch/hmap.h"
#include "openvswitch/vlog.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "openvswitch/poll-loop.h"
#include "random.h"
#include "timeval.h"
VLOG_DEFINE_THIS_MODULE(conntrack);
COVERAGE_DEFINE(conntrack_full);
COVERAGE_DEFINE(conntrack_long_cleanup);
COVERAGE_DEFINE(conntrack_l3csum_err);
COVERAGE_DEFINE(conntrack_l4csum_err);
struct conn_lookup_ctx {
struct conn_key key;
struct conn *conn;
uint32_t hash;
bool reply;
bool icmp_related;
};
enum ftp_ctl_pkt {
/* Control packets with address and/or port specifiers. */
CT_FTP_CTL_INTEREST,
/* Control packets without address and/or port specifiers. */
CT_FTP_CTL_OTHER,
CT_FTP_CTL_INVALID,
};
enum ct_alg_mode {
CT_FTP_MODE_ACTIVE,
CT_FTP_MODE_PASSIVE,
CT_TFTP_MODE,
};
enum ct_alg_ctl_type {
CT_ALG_CTL_NONE,
CT_ALG_CTL_FTP,
CT_ALG_CTL_TFTP,
/* SIP is not enabled through Openflow and presently only used as
* an example of an alg that allows a wildcard src ip. */
CT_ALG_CTL_SIP,
};
struct zone_limit {
struct hmap_node node;
struct conntrack_zone_limit czl;
};
static bool conn_key_extract(struct conntrack *, struct dp_packet *,
ovs_be16 dl_type, struct conn_lookup_ctx *,
uint16_t zone);
static uint32_t conn_key_hash(const struct conn_key *, uint32_t basis);
static void conn_key_reverse(struct conn_key *);
static bool valid_new(struct dp_packet *pkt, struct conn_key *);
static struct conn *new_conn(struct conntrack *ct, struct dp_packet *pkt,
struct conn_key *, long long now,
uint32_t tp_id);
static void delete_conn_cmn(struct conn *);
static void delete_conn(struct conn *);
static void delete_conn_one(struct conn *conn);
static enum ct_update_res conn_update(struct conntrack *ct, struct conn *conn,
struct dp_packet *pkt,
struct conn_lookup_ctx *ctx,
long long now);
static bool conn_expired(struct conn *, long long now);
static void set_mark(struct dp_packet *, struct conn *,
uint32_t val, uint32_t mask);
static void set_label(struct dp_packet *, struct conn *,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask);
static void *clean_thread_main(void *f_);
static bool
nat_select_range_tuple(struct conntrack *ct, const struct conn *conn,
struct conn *nat_conn);
static uint8_t
reverse_icmp_type(uint8_t type);
static uint8_t
reverse_icmp6_type(uint8_t type);
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum);
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data);
static struct alg_exp_node *
expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key,
uint32_t basis, bool src_ip_wc);
static int
repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep,
char *ftp_data_v4_start,
size_t addr_offset_from_ftp_data_start, size_t addr_size);
static enum ftp_ctl_pkt
process_ftp_ctl_v4(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
ovs_be32 *v4_addr_rep,
char **ftp_data_v4_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size);
static enum ftp_ctl_pkt
detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt);
static void
expectation_clean(struct conntrack *ct, const struct conn_key *parent_key);
static struct ct_l4_proto *l4_protos[UINT8_MAX + 1];
static void
handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, struct conn *ec, long long now,
enum ftp_ctl_pkt ftp_ctl, bool nat);
static void
handle_tftp_ctl(struct conntrack *ct,
const struct conn_lookup_ctx *ctx OVS_UNUSED,
struct dp_packet *pkt, struct conn *conn_for_expectation,
long long now OVS_UNUSED, enum ftp_ctl_pkt ftp_ctl OVS_UNUSED,
bool nat OVS_UNUSED);
typedef void (*alg_helper)(struct conntrack *ct,
const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt,
struct conn *conn_for_expectation,
long long now, enum ftp_ctl_pkt ftp_ctl,
bool nat);
static alg_helper alg_helpers[] = {
[CT_ALG_CTL_NONE] = NULL,
[CT_ALG_CTL_FTP] = handle_ftp_ctl,
[CT_ALG_CTL_TFTP] = handle_tftp_ctl,
};
/* The maximum TCP or UDP port number. */
#define CT_MAX_L4_PORT 65535
/* String buffer used for parsing FTP string messages.
* This is sized about twice what is needed to leave some
* margin of error. */
#define LARGEST_FTP_MSG_OF_INTEREST 128
/* FTP port string used in active mode. */
#define FTP_PORT_CMD "PORT"
/* FTP pasv string used in passive mode. */
#define FTP_PASV_REPLY_CODE "227"
/* Maximum decimal digits for port in FTP command.
* The port is represented as two 3 digit numbers with the
* high part a multiple of 256. */
#define MAX_FTP_PORT_DGTS 3
/* FTP extension EPRT string used for active mode. */
#define FTP_EPRT_CMD "EPRT"
/* FTP extension EPSV string used for passive mode. */
#define FTP_EPSV_REPLY "EXTENDED PASSIVE"
/* Maximum decimal digits for port in FTP extended command. */
#define MAX_EXT_FTP_PORT_DGTS 5
/* FTP extended command code for IPv6. */
#define FTP_AF_V6 '2'
/* Used to indicate a wildcard L4 source port number for ALGs.
* This is used for port numbers that we cannot predict in
* expectations. */
#define ALG_WC_SRC_PORT 0
/* If the total number of connections goes above this value, no new connections
* are accepted; this is for CT_CONN_TYPE_DEFAULT connections. */
#define DEFAULT_N_CONN_LIMIT 3000000
/* Does a member by member comparison of two conn_keys; this
* function must be kept in sync with struct conn_key; returns 0
* if the keys are equal or 1 if the keys are not equal. */
static int
conn_key_cmp(const struct conn_key *key1, const struct conn_key *key2)
{
if (!memcmp(&key1->src.addr, &key2->src.addr, sizeof key1->src.addr) &&
!memcmp(&key1->dst.addr, &key2->dst.addr, sizeof key1->dst.addr) &&
(key1->src.icmp_id == key2->src.icmp_id) &&
(key1->src.icmp_type == key2->src.icmp_type) &&
(key1->src.icmp_code == key2->src.icmp_code) &&
(key1->dst.icmp_id == key2->dst.icmp_id) &&
(key1->dst.icmp_type == key2->dst.icmp_type) &&
(key1->dst.icmp_code == key2->dst.icmp_code) &&
(key1->dl_type == key2->dl_type) &&
(key1->zone == key2->zone) &&
(key1->nw_proto == key2->nw_proto)) {
return 0;
}
return 1;
}
static void
ct_print_conn_info(const struct conn *c, const char *log_msg,
enum vlog_level vll, bool force, bool rl_on)
{
#define CT_VLOG(RL_ON, LEVEL, ...) \
do { \
if (RL_ON) { \
static struct vlog_rate_limit rl_ = VLOG_RATE_LIMIT_INIT(5, 5); \
vlog_rate_limit(&this_module, LEVEL, &rl_, __VA_ARGS__); \
} else { \
vlog(&this_module, LEVEL, __VA_ARGS__); \
} \
} while (0)
if (OVS_UNLIKELY(force || vlog_is_enabled(&this_module, vll))) {
if (c->key.dl_type == htons(ETH_TYPE_IP)) {
CT_VLOG(rl_on, vll, "%s: src ip "IP_FMT" dst ip "IP_FMT" rev src "
"ip "IP_FMT" rev dst ip "IP_FMT" src/dst ports "
"%"PRIu16"/%"PRIu16" rev src/dst ports "
"%"PRIu16"/%"PRIu16" zone/rev zone "
"%"PRIu16"/%"PRIu16" nw_proto/rev nw_proto "
"%"PRIu8"/%"PRIu8, log_msg,
IP_ARGS(c->key.src.addr.ipv4),
IP_ARGS(c->key.dst.addr.ipv4),
IP_ARGS(c->rev_key.src.addr.ipv4),
IP_ARGS(c->rev_key.dst.addr.ipv4),
ntohs(c->key.src.port), ntohs(c->key.dst.port),
ntohs(c->rev_key.src.port), ntohs(c->rev_key.dst.port),
c->key.zone, c->rev_key.zone, c->key.nw_proto,
c->rev_key.nw_proto);
} else {
char ip6_s[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->key.src.addr.ipv6, ip6_s, sizeof ip6_s);
char ip6_d[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->key.dst.addr.ipv6, ip6_d, sizeof ip6_d);
char ip6_rs[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->rev_key.src.addr.ipv6, ip6_rs,
sizeof ip6_rs);
char ip6_rd[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->rev_key.dst.addr.ipv6, ip6_rd,
sizeof ip6_rd);
CT_VLOG(rl_on, vll, "%s: src ip %s dst ip %s rev src ip %s"
" rev dst ip %s src/dst ports %"PRIu16"/%"PRIu16
" rev src/dst ports %"PRIu16"/%"PRIu16" zone/rev zone "
"%"PRIu16"/%"PRIu16" nw_proto/rev nw_proto "
"%"PRIu8"/%"PRIu8, log_msg, ip6_s, ip6_d, ip6_rs,
ip6_rd, ntohs(c->key.src.port), ntohs(c->key.dst.port),
ntohs(c->rev_key.src.port), ntohs(c->rev_key.dst.port),
c->key.zone, c->rev_key.zone, c->key.nw_proto,
c->rev_key.nw_proto);
}
}
}
/* Initializes the connection tracker 'ct'. The caller is responsible for
* calling 'conntrack_destroy()', when the instance is not needed anymore */
struct conntrack *
conntrack_init(void)
{
static struct ovsthread_once setup_l4_once = OVSTHREAD_ONCE_INITIALIZER;
struct conntrack *ct = xzalloc(sizeof *ct);
ovs_rwlock_init(&ct->resources_lock);
ovs_rwlock_wrlock(&ct->resources_lock);
hmap_init(&ct->alg_expectations);
hindex_init(&ct->alg_expectation_refs);
ovs_rwlock_unlock(&ct->resources_lock);
ovs_mutex_init_adaptive(&ct->ct_lock);
ovs_mutex_lock(&ct->ct_lock);
cmap_init(&ct->conns);
for (unsigned i = 0; i < ARRAY_SIZE(ct->exp_lists); i++) {
ovs_list_init(&ct->exp_lists[i]);
}
hmap_init(&ct->zone_limits);
ct->zone_limit_seq = 0;
timeout_policy_init(ct);
ovs_mutex_unlock(&ct->ct_lock);
ct->hash_basis = random_uint32();
atomic_count_init(&ct->n_conn, 0);
atomic_init(&ct->n_conn_limit, DEFAULT_N_CONN_LIMIT);
atomic_init(&ct->tcp_seq_chk, true);
latch_init(&ct->clean_thread_exit);
ct->clean_thread = ovs_thread_create("ct_clean", clean_thread_main, ct);
ct->ipf = ipf_init();
/* Initialize the l4 protocols. */
if (ovsthread_once_start(&setup_l4_once)) {
for (int i = 0; i < ARRAY_SIZE(l4_protos); i++) {
l4_protos[i] = &ct_proto_other;
}
/* IPPROTO_UDP uses ct_proto_other, so no need to initialize it. */
l4_protos[IPPROTO_TCP] = &ct_proto_tcp;
l4_protos[IPPROTO_ICMP] = &ct_proto_icmp4;
l4_protos[IPPROTO_ICMPV6] = &ct_proto_icmp6;
ovsthread_once_done(&setup_l4_once);
}
return ct;
}
static uint32_t
zone_key_hash(int32_t zone, uint32_t basis)
{
size_t hash = hash_int((OVS_FORCE uint32_t) zone, basis);
return hash;
}
static struct zone_limit *
zone_limit_lookup(struct conntrack *ct, int32_t zone)
OVS_REQUIRES(ct->ct_lock)
{
uint32_t hash = zone_key_hash(zone, ct->hash_basis);
struct zone_limit *zl;
HMAP_FOR_EACH_IN_BUCKET (zl, node, hash, &ct->zone_limits) {
if (zl->czl.zone == zone) {
return zl;
}
}
return NULL;
}
static struct zone_limit *
zone_limit_lookup_or_default(struct conntrack *ct, int32_t zone)
OVS_REQUIRES(ct->ct_lock)
{
struct zone_limit *zl = zone_limit_lookup(ct, zone);
return zl ? zl : zone_limit_lookup(ct, DEFAULT_ZONE);
}
struct conntrack_zone_limit
zone_limit_get(struct conntrack *ct, int32_t zone)
{
ovs_mutex_lock(&ct->ct_lock);
struct conntrack_zone_limit czl = {DEFAULT_ZONE, 0, 0, 0};
struct zone_limit *zl = zone_limit_lookup_or_default(ct, zone);
if (zl) {
czl = zl->czl;
}
ovs_mutex_unlock(&ct->ct_lock);
return czl;
}
static int
zone_limit_create(struct conntrack *ct, int32_t zone, uint32_t limit)
OVS_REQUIRES(ct->ct_lock)
{
if (zone >= DEFAULT_ZONE && zone <= MAX_ZONE) {
struct zone_limit *zl = xzalloc(sizeof *zl);
zl->czl.limit = limit;
zl->czl.zone = zone;
zl->czl.zone_limit_seq = ct->zone_limit_seq++;
uint32_t hash = zone_key_hash(zone, ct->hash_basis);
hmap_insert(&ct->zone_limits, &zl->node, hash);
return 0;
} else {
return EINVAL;
}
}
int
zone_limit_update(struct conntrack *ct, int32_t zone, uint32_t limit)
{
int err = 0;
ovs_mutex_lock(&ct->ct_lock);
struct zone_limit *zl = zone_limit_lookup(ct, zone);
if (zl) {
zl->czl.limit = limit;
VLOG_INFO("Changed zone limit of %u for zone %d", limit, zone);
} else {
err = zone_limit_create(ct, zone, limit);
if (!err) {
VLOG_INFO("Created zone limit of %u for zone %d", limit, zone);
} else {
VLOG_WARN("Request to create zone limit for invalid zone %d",
zone);
}
}
ovs_mutex_unlock(&ct->ct_lock);
return err;
}
static void
zone_limit_clean(struct conntrack *ct, struct zone_limit *zl)
OVS_REQUIRES(ct->ct_lock)
{
hmap_remove(&ct->zone_limits, &zl->node);
free(zl);
}
int
zone_limit_delete(struct conntrack *ct, uint16_t zone)
{
ovs_mutex_lock(&ct->ct_lock);
struct zone_limit *zl = zone_limit_lookup(ct, zone);
if (zl) {
zone_limit_clean(ct, zl);
VLOG_INFO("Deleted zone limit for zone %d", zone);
} else {
VLOG_INFO("Attempted delete of non-existent zone limit: zone %d",
zone);
}
ovs_mutex_unlock(&ct->ct_lock);
return 0;
}
static void
conn_clean_cmn(struct conntrack *ct, struct conn *conn)
OVS_REQUIRES(ct->ct_lock)
{
if (conn->alg) {
expectation_clean(ct, &conn->key);
}
uint32_t hash = conn_key_hash(&conn->key, ct->hash_basis);
cmap_remove(&ct->conns, &conn->cm_node, hash);
struct zone_limit *zl = zone_limit_lookup(ct, conn->admit_zone);
if (zl && zl->czl.zone_limit_seq == conn->zone_limit_seq) {
zl->czl.count--;
}
}
/* Must be called with 'conn' of 'conn_type' CT_CONN_TYPE_DEFAULT. Also
* removes the associated nat 'conn' from the lookup datastructures. */
static void
conn_clean(struct conntrack *ct, struct conn *conn)
OVS_REQUIRES(ct->ct_lock)
{
ovs_assert(conn->conn_type == CT_CONN_TYPE_DEFAULT);
conn_clean_cmn(ct, conn);
if (conn->nat_conn) {
uint32_t hash = conn_key_hash(&conn->nat_conn->key, ct->hash_basis);
cmap_remove(&ct->conns, &conn->nat_conn->cm_node, hash);
}
ovs_list_remove(&conn->exp_node);
conn->cleaned = true;
ovsrcu_postpone(delete_conn, conn);
atomic_count_dec(&ct->n_conn);
}
static void
conn_clean_one(struct conntrack *ct, struct conn *conn)
OVS_REQUIRES(ct->ct_lock)
{
conn_clean_cmn(ct, conn);
if (conn->conn_type == CT_CONN_TYPE_DEFAULT) {
ovs_list_remove(&conn->exp_node);
conn->cleaned = true;
atomic_count_dec(&ct->n_conn);
}
ovsrcu_postpone(delete_conn_one, conn);
}
/* Destroys the connection tracker 'ct' and frees all the allocated memory.
* The caller of this function must already have shut down packet input
* and PMD threads (which would have been quiesced). */
void
conntrack_destroy(struct conntrack *ct)
{
struct conn *conn;
latch_set(&ct->clean_thread_exit);
pthread_join(ct->clean_thread, NULL);
latch_destroy(&ct->clean_thread_exit);
ovs_mutex_lock(&ct->ct_lock);
CMAP_FOR_EACH (conn, cm_node, &ct->conns) {
conn_clean_one(ct, conn);
}
cmap_destroy(&ct->conns);
struct zone_limit *zl;
HMAP_FOR_EACH_POP (zl, node, &ct->zone_limits) {
free(zl);
}
hmap_destroy(&ct->zone_limits);
struct timeout_policy *tp;
HMAP_FOR_EACH_POP (tp, node, &ct->timeout_policies) {
free(tp);
}
hmap_destroy(&ct->timeout_policies);
ovs_mutex_unlock(&ct->ct_lock);
ovs_mutex_destroy(&ct->ct_lock);
ovs_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_POP (alg_exp_node, node, &ct->alg_expectations) {
free(alg_exp_node);
}
hmap_destroy(&ct->alg_expectations);
hindex_destroy(&ct->alg_expectation_refs);
ovs_rwlock_unlock(&ct->resources_lock);
ovs_rwlock_destroy(&ct->resources_lock);
ipf_destroy(ct->ipf);
free(ct);
}
static bool
conn_key_lookup(struct conntrack *ct, const struct conn_key *key,
uint32_t hash, long long now, struct conn **conn_out,
bool *reply)
{
struct conn *conn;
bool found = false;
CMAP_FOR_EACH_WITH_HASH (conn, cm_node, hash, &ct->conns) {
if (!conn_key_cmp(&conn->key, key) && !conn_expired(conn, now)) {
found = true;
if (reply) {
*reply = false;
}
break;
}
if (!conn_key_cmp(&conn->rev_key, key) && !conn_expired(conn, now)) {
found = true;
if (reply) {
*reply = true;
}
break;
}
}
if (found && conn_out) {
*conn_out = conn;
} else if (conn_out) {
*conn_out = NULL;
}
return found;
}
static bool
conn_lookup(struct conntrack *ct, const struct conn_key *key,
long long now, struct conn **conn_out, bool *reply)
{
uint32_t hash = conn_key_hash(key, ct->hash_basis);
return conn_key_lookup(ct, key, hash, now, conn_out, reply);
}
static void
write_ct_md(struct dp_packet *pkt, uint16_t zone, const struct conn *conn,
const struct conn_key *key, const struct alg_exp_node *alg_exp)
{
pkt->md.ct_state |= CS_TRACKED;
pkt->md.ct_zone = zone;
if (conn) {
ovs_mutex_lock(&conn->lock);
pkt->md.ct_mark = conn->mark;
pkt->md.ct_label = conn->label;
ovs_mutex_unlock(&conn->lock);
} else {
pkt->md.ct_mark = 0;
pkt->md.ct_label = OVS_U128_ZERO;
}
/* Use the original direction tuple if we have it. */
if (conn) {
if (conn->alg_related) {
key = &conn->parent_key;
} else {
key = &conn->key;
}
} else if (alg_exp) {
pkt->md.ct_mark = alg_exp->parent_mark;
pkt->md.ct_label = alg_exp->parent_label;
key = &alg_exp->parent_key;
}
pkt->md.ct_orig_tuple_ipv6 = false;
if (key) {
if (key->dl_type == htons(ETH_TYPE_IP)) {
pkt->md.ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) {
key->src.addr.ipv4,
key->dst.addr.ipv4,
key->nw_proto != IPPROTO_ICMP
? key->src.port : htons(key->src.icmp_type),
key->nw_proto != IPPROTO_ICMP
? key->dst.port : htons(key->src.icmp_code),
key->nw_proto,
};
} else {
pkt->md.ct_orig_tuple_ipv6 = true;
pkt->md.ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) {
key->src.addr.ipv6,
key->dst.addr.ipv6,
key->nw_proto != IPPROTO_ICMPV6
? key->src.port : htons(key->src.icmp_type),
key->nw_proto != IPPROTO_ICMPV6
? key->dst.port : htons(key->src.icmp_code),
key->nw_proto,
};
}
} else {
memset(&pkt->md.ct_orig_tuple, 0, sizeof pkt->md.ct_orig_tuple);
}
}
static uint8_t
get_ip_proto(const struct dp_packet *pkt)
{
uint8_t ip_proto;
struct eth_header *l2 = dp_packet_eth(pkt);
if (l2->eth_type == htons(ETH_TYPE_IPV6)) {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
ip_proto = nh6->ip6_ctlun.ip6_un1.ip6_un1_nxt;
} else {
struct ip_header *l3_hdr = dp_packet_l3(pkt);
ip_proto = l3_hdr->ip_proto;
}
return ip_proto;
}
static bool
is_ftp_ctl(const enum ct_alg_ctl_type ct_alg_ctl)
{
return ct_alg_ctl == CT_ALG_CTL_FTP;
}
static enum ct_alg_ctl_type
get_alg_ctl_type(const struct dp_packet *pkt, ovs_be16 tp_src, ovs_be16 tp_dst,
const char *helper)
{
/* CT_IPPORT_FTP/TFTP is used because IPPORT_FTP/TFTP in not defined
* in OSX, at least in in.h. Since these values will never change, remove
* the external dependency. */
enum { CT_IPPORT_FTP = 21 };
enum { CT_IPPORT_TFTP = 69 };
uint8_t ip_proto = get_ip_proto(pkt);
struct udp_header *uh = dp_packet_l4(pkt);
struct tcp_header *th = dp_packet_l4(pkt);
ovs_be16 ftp_src_port = htons(CT_IPPORT_FTP);
ovs_be16 ftp_dst_port = htons(CT_IPPORT_FTP);
ovs_be16 tftp_dst_port = htons(CT_IPPORT_TFTP);
if (OVS_UNLIKELY(tp_dst)) {
if (helper && !strncmp(helper, "ftp", strlen("ftp"))) {
ftp_dst_port = tp_dst;
} else if (helper && !strncmp(helper, "tftp", strlen("tftp"))) {
tftp_dst_port = tp_dst;
}
} else if (OVS_UNLIKELY(tp_src)) {
if (helper && !strncmp(helper, "ftp", strlen("ftp"))) {
ftp_src_port = tp_src;
}
}
if (ip_proto == IPPROTO_UDP && uh->udp_dst == tftp_dst_port) {
return CT_ALG_CTL_TFTP;
} else if (ip_proto == IPPROTO_TCP &&
(th->tcp_src == ftp_src_port || th->tcp_dst == ftp_dst_port)) {
return CT_ALG_CTL_FTP;
}
return CT_ALG_CTL_NONE;
}
static bool
alg_src_ip_wc(enum ct_alg_ctl_type alg_ctl_type)
{
if (alg_ctl_type == CT_ALG_CTL_SIP) {
return true;
}
return false;
}
static void
handle_alg_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, enum ct_alg_ctl_type ct_alg_ctl,
struct conn *conn, long long now, bool nat)
{
/* ALG control packet handling with expectation creation. */
if (OVS_UNLIKELY(alg_helpers[ct_alg_ctl] && conn && conn->alg)) {
ovs_mutex_lock(&conn->lock);
alg_helpers[ct_alg_ctl](ct, ctx, pkt, conn, now, CT_FTP_CTL_INTEREST,
nat);
ovs_mutex_unlock(&conn->lock);
}
}
static void
pat_packet(struct dp_packet *pkt, const struct conn *conn)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, conn->rev_key.dst.port, th->tcp_dst);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, conn->rev_key.dst.port, uh->udp_dst);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, th->tcp_src, conn->rev_key.src.port);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, uh->udp_src, conn->rev_key.src.port);
}
}
}
static void
nat_packet(struct dp_packet *pkt, const struct conn *conn, bool related)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
pkt->md.ct_state |= CS_SRC_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_src,
conn->rev_key.dst.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_src.be32,
&conn->rev_key.dst.addr.ipv6, true);
}
if (!related) {
pat_packet(pkt, conn);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
pkt->md.ct_state |= CS_DST_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_dst,
conn->rev_key.src.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_dst.be32,
&conn->rev_key.src.addr.ipv6, true);
}
if (!related) {
pat_packet(pkt, conn);
}
}
}
static void
un_pat_packet(struct dp_packet *pkt, const struct conn *conn)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, th->tcp_src, conn->key.src.port);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, uh->udp_src, conn->key.src.port);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, conn->key.dst.port, th->tcp_dst);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, conn->key.dst.port, uh->udp_dst);
}
}
}
static void
reverse_pat_packet(struct dp_packet *pkt, const struct conn *conn)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th_in = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, conn->key.src.port,
th_in->tcp_dst);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh_in = dp_packet_l4(pkt);
packet_set_udp_port(pkt, conn->key.src.port,
uh_in->udp_dst);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th_in = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, th_in->tcp_src,
conn->key.dst.port);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh_in = dp_packet_l4(pkt);
packet_set_udp_port(pkt, uh_in->udp_src,
conn->key.dst.port);
}
}
}
static void
reverse_nat_packet(struct dp_packet *pkt, const struct conn *conn)
{
char *tail = dp_packet_tail(pkt);
uint16_t pad = dp_packet_l2_pad_size(pkt);
struct conn_key inner_key;
const char *inner_l4 = NULL;
uint16_t orig_l3_ofs = pkt->l3_ofs;
uint16_t orig_l4_ofs = pkt->l4_ofs;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
struct icmp_header *icmp = dp_packet_l4(pkt);
struct ip_header *inner_l3 = (struct ip_header *) (icmp + 1);
/* This call is already verified to succeed during the code path from
* 'conn_key_extract()' which calls 'extract_l4_icmp()'. */
extract_l3_ipv4(&inner_key, inner_l3, tail - ((char *)inner_l3) - pad,
&inner_l4, false);
pkt->l3_ofs += (char *) inner_l3 - (char *) nh;
pkt->l4_ofs += inner_l4 - (char *) icmp;
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
packet_set_ipv4_addr(pkt, &inner_l3->ip_src,
conn->key.src.addr.ipv4);
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
packet_set_ipv4_addr(pkt, &inner_l3->ip_dst,
conn->key.dst.addr.ipv4);
}
reverse_pat_packet(pkt, conn);
icmp->icmp_csum = 0;
icmp->icmp_csum = csum(icmp, tail - (char *) icmp - pad);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
struct icmp6_data_header *icmp6 = dp_packet_l4(pkt);
struct ovs_16aligned_ip6_hdr *inner_l3_6 =
(struct ovs_16aligned_ip6_hdr *) (icmp6 + 1);
/* This call is already verified to succeed during the code path from
* 'conn_key_extract()' which calls 'extract_l4_icmp6()'. */
extract_l3_ipv6(&inner_key, inner_l3_6,
tail - ((char *)inner_l3_6) - pad,
&inner_l4);
pkt->l3_ofs += (char *) inner_l3_6 - (char *) nh6;
pkt->l4_ofs += inner_l4 - (char *) icmp6;
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
inner_l3_6->ip6_src.be32,
&conn->key.src.addr.ipv6, true);
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
inner_l3_6->ip6_dst.be32,
&conn->key.dst.addr.ipv6, true);
}
reverse_pat_packet(pkt, conn);
icmp6->icmp6_base.icmp6_cksum = 0;
icmp6->icmp6_base.icmp6_cksum = packet_csum_upperlayer6(nh6, icmp6,
IPPROTO_ICMPV6, tail - (char *) icmp6 - pad);
}
pkt->l3_ofs = orig_l3_ofs;
pkt->l4_ofs = orig_l4_ofs;
}
static void
un_nat_packet(struct dp_packet *pkt, const struct conn *conn,
bool related)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
pkt->md.ct_state |= CS_DST_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_dst,
conn->key.src.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_dst.be32,
&conn->key.src.addr.ipv6, true);
}
if (OVS_UNLIKELY(related)) {
reverse_nat_packet(pkt, conn);
} else {
un_pat_packet(pkt, conn);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
pkt->md.ct_state |= CS_SRC_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_src,
conn->key.dst.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_src.be32,
&conn->key.dst.addr.ipv6, true);
}
if (OVS_UNLIKELY(related)) {
reverse_nat_packet(pkt, conn);
} else {
un_pat_packet(pkt, conn);
}
}
}
static void
conn_seq_skew_set(struct conntrack *ct, const struct conn *conn_in,
long long now, int seq_skew, bool seq_skew_dir)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct conn *conn;
ovs_mutex_unlock(&conn_in->lock);
conn_lookup(ct, &conn_in->key, now, &conn, NULL);
ovs_mutex_lock(&conn_in->lock);
if (conn && seq_skew) {
conn->seq_skew = seq_skew;
conn->seq_skew_dir = seq_skew_dir;
}
}
static bool
ct_verify_helper(const char *helper, enum ct_alg_ctl_type ct_alg_ctl)
{
if (ct_alg_ctl == CT_ALG_CTL_NONE) {
return true;
} else if (helper) {
if ((ct_alg_ctl == CT_ALG_CTL_FTP) &&
!strncmp(helper, "ftp", strlen("ftp"))) {
return true;
} else if ((ct_alg_ctl == CT_ALG_CTL_TFTP) &&
!strncmp(helper, "tftp", strlen("tftp"))) {
return true;
} else {
return false;
}
} else {
return false;
}
}
static struct conn *
conn_not_found(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, bool commit, long long now,
const struct nat_action_info_t *nat_action_info,
const char *helper, const struct alg_exp_node *alg_exp,
enum ct_alg_ctl_type ct_alg_ctl, uint32_t tp_id)
OVS_REQUIRES(ct->ct_lock)
{
struct conn *nc = NULL;
struct conn *nat_conn = NULL;
if (!valid_new(pkt, &ctx->key)) {
pkt->md.ct_state = CS_INVALID;
return nc;
}
pkt->md.ct_state = CS_NEW;
if (alg_exp) {
pkt->md.ct_state |= CS_RELATED;
}
if (commit) {
struct zone_limit *zl = zone_limit_lookup_or_default(ct,
ctx->key.zone);
if (zl && zl->czl.count >= zl->czl.limit) {
return nc;
}
unsigned int n_conn_limit;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
if (atomic_count_get(&ct->n_conn) >= n_conn_limit) {
COVERAGE_INC(conntrack_full);
return nc;
}
nc = new_conn(ct, pkt, &ctx->key, now, tp_id);
memcpy(&nc->key, &ctx->key, sizeof nc->key);
memcpy(&nc->rev_key, &nc->key, sizeof nc->rev_key);
conn_key_reverse(&nc->rev_key);
if (ct_verify_helper(helper, ct_alg_ctl)) {
nc->alg = nullable_xstrdup(helper);
}
if (alg_exp) {
nc->alg_related = true;
nc->mark = alg_exp->parent_mark;
nc->label = alg_exp->parent_label;
nc->parent_key = alg_exp->parent_key;
}
if (nat_action_info) {
nc->nat_info = xmemdup(nat_action_info, sizeof *nc->nat_info);
nat_conn = xzalloc(sizeof *nat_conn);
if (alg_exp) {
if (alg_exp->nat_rpl_dst) {
nc->rev_key.dst.addr = alg_exp->alg_nat_repl_addr;
nc->nat_info->nat_action = NAT_ACTION_SRC;
} else {
nc->rev_key.src.addr = alg_exp->alg_nat_repl_addr;
nc->nat_info->nat_action = NAT_ACTION_DST;
}
} else {
memcpy(nat_conn, nc, sizeof *nat_conn);
bool nat_res = nat_select_range_tuple(ct, nc, nat_conn);
if (!nat_res) {
goto nat_res_exhaustion;
}
/* Update nc with nat adjustments made to nat_conn by
* nat_select_range_tuple(). */
memcpy(nc, nat_conn, sizeof *nc);
}
nat_packet(pkt, nc, ctx->icmp_related);
memcpy(&nat_conn->key, &nc->rev_key, sizeof nat_conn->key);
memcpy(&nat_conn->rev_key, &nc->key, sizeof nat_conn->rev_key);
nat_conn->conn_type = CT_CONN_TYPE_UN_NAT;
nat_conn->nat_info = NULL;
nat_conn->alg = NULL;
nat_conn->nat_conn = NULL;
uint32_t nat_hash = conn_key_hash(&nat_conn->key, ct->hash_basis);
cmap_insert(&ct->conns, &nat_conn->cm_node, nat_hash);
}
nc->nat_conn = nat_conn;
ovs_mutex_init_adaptive(&nc->lock);
nc->conn_type = CT_CONN_TYPE_DEFAULT;
cmap_insert(&ct->conns, &nc->cm_node, ctx->hash);
atomic_count_inc(&ct->n_conn);
ctx->conn = nc; /* For completeness. */
if (zl) {
nc->admit_zone = zl->czl.zone;
nc->zone_limit_seq = zl->czl.zone_limit_seq;
zl->czl.count++;
} else {
nc->admit_zone = INVALID_ZONE;
}
}
return nc;
/* This would be a user error or a DOS attack. A user error is prevented
* by allocating enough combinations of NAT addresses when combined with
* ephemeral ports. A DOS attack should be protected against with
* firewall rules or a separate firewall. Also using zone partitioning
* can limit DoS impact. */
nat_res_exhaustion:
free(nat_conn);
ovs_list_remove(&nc->exp_node);
delete_conn_cmn(nc);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unable to NAT due to tuple space exhaustion - "
"if DoS attack, use firewalling and/or zone partitioning.");
return NULL;
}
static bool
conn_update_state(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, struct conn *conn,
long long now)
{
ovs_assert(conn->conn_type == CT_CONN_TYPE_DEFAULT);
bool create_new_conn = false;
if (ctx->icmp_related) {
pkt->md.ct_state |= CS_RELATED;
if (ctx->reply) {
pkt->md.ct_state |= CS_REPLY_DIR;
}
} else {
if (conn->alg_related) {
pkt->md.ct_state |= CS_RELATED;
}
enum ct_update_res res = conn_update(ct, conn, pkt, ctx, now);
switch (res) {
case CT_UPDATE_VALID:
pkt->md.ct_state |= CS_ESTABLISHED;
pkt->md.ct_state &= ~CS_NEW;
if (ctx->reply) {
pkt->md.ct_state |= CS_REPLY_DIR;
}
break;
case CT_UPDATE_INVALID:
pkt->md.ct_state = CS_INVALID;
break;
case CT_UPDATE_NEW:
ovs_mutex_lock(&ct->ct_lock);
if (conn_lookup(ct, &conn->key, now, NULL, NULL)) {
conn_clean(ct, conn);
}
ovs_mutex_unlock(&ct->ct_lock);
create_new_conn = true;
break;
case CT_UPDATE_VALID_NEW:
pkt->md.ct_state |= CS_NEW;
break;
default:
OVS_NOT_REACHED();
}
}
return create_new_conn;
}
static void
handle_nat(struct dp_packet *pkt, struct conn *conn,
uint16_t zone, bool reply, bool related)
{
if (conn->nat_info &&
(!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) ||
(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT) &&
zone != pkt->md.ct_zone))) {
if (pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) {
pkt->md.ct_state &= ~(CS_SRC_NAT | CS_DST_NAT);
}
if (reply) {
un_nat_packet(pkt, conn, related);
} else {
nat_packet(pkt, conn, related);
}
}
}
static bool
check_orig_tuple(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx_in, long long now,
struct conn **conn,
const struct nat_action_info_t *nat_action_info)
{
if (!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) ||
(ctx_in->key.dl_type == htons(ETH_TYPE_IP) &&
!pkt->md.ct_orig_tuple.ipv4.ipv4_proto) ||
(ctx_in->key.dl_type == htons(ETH_TYPE_IPV6) &&
!pkt->md.ct_orig_tuple.ipv6.ipv6_proto) ||
nat_action_info) {
return false;
}
struct conn_key key;
memset(&key, 0 , sizeof key);
if (ctx_in->key.dl_type == htons(ETH_TYPE_IP)) {
key.src.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_src;
key.dst.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_dst;
if (ctx_in->key.nw_proto == IPPROTO_ICMP) {
key.src.icmp_id = ctx_in->key.src.icmp_id;
key.dst.icmp_id = ctx_in->key.dst.icmp_id;
uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv4.src_port);
key.src.icmp_type = (uint8_t) src_port;
key.dst.icmp_type = reverse_icmp_type(key.src.icmp_type);
} else {
key.src.port = pkt->md.ct_orig_tuple.ipv4.src_port;
key.dst.port = pkt->md.ct_orig_tuple.ipv4.dst_port;
}
key.nw_proto = pkt->md.ct_orig_tuple.ipv4.ipv4_proto;
} else {
key.src.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_src;
key.dst.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_dst;
if (ctx_in->key.nw_proto == IPPROTO_ICMPV6) {
key.src.icmp_id = ctx_in->key.src.icmp_id;
key.dst.icmp_id = ctx_in->key.dst.icmp_id;
uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv6.src_port);
key.src.icmp_type = (uint8_t) src_port;
key.dst.icmp_type = reverse_icmp6_type(key.src.icmp_type);
} else {
key.src.port = pkt->md.ct_orig_tuple.ipv6.src_port;
key.dst.port = pkt->md.ct_orig_tuple.ipv6.dst_port;
}
key.nw_proto = pkt->md.ct_orig_tuple.ipv6.ipv6_proto;
}
key.dl_type = ctx_in->key.dl_type;
key.zone = pkt->md.ct_zone;
conn_lookup(ct, &key, now, conn, NULL);
return *conn ? true : false;
}
static bool
conn_update_state_alg(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, struct conn *conn,
const struct nat_action_info_t *nat_action_info,
enum ct_alg_ctl_type ct_alg_ctl, long long now,
bool *create_new_conn)
{
if (is_ftp_ctl(ct_alg_ctl)) {
/* Keep sequence tracking in sync with the source of the
* sequence skew. */
ovs_mutex_lock(&conn->lock);
if (ctx->reply != conn->seq_skew_dir) {
handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER,
!!nat_action_info);
/* conn_update_state locks for unrelated fields, so unlock. */
ovs_mutex_unlock(&conn->lock);
*create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
} else {
/* conn_update_state locks for unrelated fields, so unlock. */
ovs_mutex_unlock(&conn->lock);
*create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
ovs_mutex_lock(&conn->lock);
if (*create_new_conn == false) {
handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER,
!!nat_action_info);
}
ovs_mutex_unlock(&conn->lock);
}
return true;
}
return false;
}
static void
set_cached_conn(const struct nat_action_info_t *nat_action_info,
const struct conn_lookup_ctx *ctx, struct conn *conn,
struct dp_packet *pkt)
{
if (OVS_LIKELY(!nat_action_info)) {
pkt->md.conn = conn;
pkt->md.reply = ctx->reply;
pkt->md.icmp_related = ctx->icmp_related;
} else {
pkt->md.conn = NULL;
}
}
static void
process_one_fast(uint16_t zone, const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const struct nat_action_info_t *nat_action_info,
struct conn *conn, struct dp_packet *pkt)
{
if (nat_action_info) {
handle_nat(pkt, conn, zone, pkt->md.reply, pkt->md.icmp_related);
pkt->md.conn = NULL;
}
pkt->md.ct_zone = zone;
ovs_mutex_lock(&conn->lock);
pkt->md.ct_mark = conn->mark;
pkt->md.ct_label = conn->label;
ovs_mutex_unlock(&conn->lock);
if (setmark) {
set_mark(pkt, conn, setmark[0], setmark[1]);
}
if (setlabel) {
set_label(pkt, conn, &setlabel[0], &setlabel[1]);
}
}
static void
process_one(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, uint16_t zone,
bool force, bool commit, long long now, const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const struct nat_action_info_t *nat_action_info,
ovs_be16 tp_src, ovs_be16 tp_dst, const char *helper,
uint32_t tp_id)
{
conntrack: Reset ct_state when entering a new zone. When a new conntrack zone is entered, the ct_state field is zeroed in order to avoid using state information from different zones. One such scenario is when a packet is double NATed. Assuming two zones and 3 flows performing the following actions in order on the packet: 1. ct(zone=5,nat), recirc 2. ct(zone=1), recirc 3. ct(zone=1,nat) If at step #1 the packet matches an existing NAT entry, it will get translated and pkt->md.ct_state is set to CS_DST_NAT or CS_SRC_NAT. At step #2 the new tuple might match an existing connection and pkt->md.ct_zone is set to 1. If at step #3 the packet matches an existing NAT entry in zone 1, handle_nat() will be called to perform the translation but it will return early because the packet's zone matches the conntrack zone and the ct_state field still contains CS_DST_NAT or CS_SRC_NAT from the translations in zone 5. In order to reliably detect when a packet enters a new conntrack zone we also need to make sure that the pkt->md.ct_zone is properly initialized if pkt->md.ct_state is non-zero. This already happens for most cases. The only exception is when matched conntrack connection is of type CT_CONN_TYPE_UN_NAT and the master connection is missing. To cover this path we now call write_ct_md() in that case too. Remove setting the CS_TRACKED flag as in this case as it will be done by the new call to write_ct_md(). CC: Darrell Ball <dlu998@gmail.com> Fixes: 286de2729955 ("dpdk: Userspace Datapath: Introduce NAT Support.") Acked-by: Ilya Maximets <i.maximets@ovn.org> Acked-by: Aaron Conole <aconole@redhat.com> Signed-off-by: Dumitru Ceara <dceara@redhat.com> Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2020-03-19 20:21:16 +01:00
/* Reset ct_state whenever entering a new zone. */
if (pkt->md.ct_state && pkt->md.ct_zone != zone) {
pkt->md.ct_state = 0;
}
bool create_new_conn = false;
conn_key_lookup(ct, &ctx->key, ctx->hash, now, &ctx->conn, &ctx->reply);
struct conn *conn = ctx->conn;
/* Delete found entry if in wrong direction. 'force' implies commit. */
if (OVS_UNLIKELY(force && ctx->reply && conn)) {
ovs_mutex_lock(&ct->ct_lock);
if (conn_lookup(ct, &conn->key, now, NULL, NULL)) {
conn_clean(ct, conn);
}
ovs_mutex_unlock(&ct->ct_lock);
conn = NULL;
}
if (OVS_LIKELY(conn)) {
if (conn->conn_type == CT_CONN_TYPE_UN_NAT) {
ctx->reply = true;
struct conn *rev_conn = conn; /* Save for debugging. */
uint32_t hash = conn_key_hash(&conn->rev_key, ct->hash_basis);
conn_key_lookup(ct, &ctx->key, hash, now, &conn, &ctx->reply);
if (!conn) {
conntrack: Reset ct_state when entering a new zone. When a new conntrack zone is entered, the ct_state field is zeroed in order to avoid using state information from different zones. One such scenario is when a packet is double NATed. Assuming two zones and 3 flows performing the following actions in order on the packet: 1. ct(zone=5,nat), recirc 2. ct(zone=1), recirc 3. ct(zone=1,nat) If at step #1 the packet matches an existing NAT entry, it will get translated and pkt->md.ct_state is set to CS_DST_NAT or CS_SRC_NAT. At step #2 the new tuple might match an existing connection and pkt->md.ct_zone is set to 1. If at step #3 the packet matches an existing NAT entry in zone 1, handle_nat() will be called to perform the translation but it will return early because the packet's zone matches the conntrack zone and the ct_state field still contains CS_DST_NAT or CS_SRC_NAT from the translations in zone 5. In order to reliably detect when a packet enters a new conntrack zone we also need to make sure that the pkt->md.ct_zone is properly initialized if pkt->md.ct_state is non-zero. This already happens for most cases. The only exception is when matched conntrack connection is of type CT_CONN_TYPE_UN_NAT and the master connection is missing. To cover this path we now call write_ct_md() in that case too. Remove setting the CS_TRACKED flag as in this case as it will be done by the new call to write_ct_md(). CC: Darrell Ball <dlu998@gmail.com> Fixes: 286de2729955 ("dpdk: Userspace Datapath: Introduce NAT Support.") Acked-by: Ilya Maximets <i.maximets@ovn.org> Acked-by: Aaron Conole <aconole@redhat.com> Signed-off-by: Dumitru Ceara <dceara@redhat.com> Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2020-03-19 20:21:16 +01:00
pkt->md.ct_state |= CS_INVALID;
write_ct_md(pkt, zone, NULL, NULL, NULL);
char *log_msg = xasprintf("Missing parent conn %p", rev_conn);
ct_print_conn_info(rev_conn, log_msg, VLL_INFO, true, true);
free(log_msg);
return;
}
}
}
enum ct_alg_ctl_type ct_alg_ctl = get_alg_ctl_type(pkt, tp_src, tp_dst,
helper);
if (OVS_LIKELY(conn)) {
if (OVS_LIKELY(!conn_update_state_alg(ct, pkt, ctx, conn,
nat_action_info,
ct_alg_ctl, now,
&create_new_conn))) {
create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
}
if (nat_action_info && !create_new_conn) {
handle_nat(pkt, conn, zone, ctx->reply, ctx->icmp_related);
}
} else if (check_orig_tuple(ct, pkt, ctx, now, &conn, nat_action_info)) {
create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
} else {
if (ctx->icmp_related) {
/* An icmp related conn should always be found; no new
connection is created based on an icmp related packet. */
pkt->md.ct_state = CS_INVALID;
} else {
create_new_conn = true;
}
}
const struct alg_exp_node *alg_exp = NULL;
struct alg_exp_node alg_exp_entry;
if (OVS_UNLIKELY(create_new_conn)) {
ovs_rwlock_rdlock(&ct->resources_lock);
alg_exp = expectation_lookup(&ct->alg_expectations, &ctx->key,
ct->hash_basis,
alg_src_ip_wc(ct_alg_ctl));
if (alg_exp) {
memcpy(&alg_exp_entry, alg_exp, sizeof alg_exp_entry);
alg_exp = &alg_exp_entry;
}
ovs_rwlock_unlock(&ct->resources_lock);
ovs_mutex_lock(&ct->ct_lock);
if (!conn_lookup(ct, &ctx->key, now, NULL, NULL)) {
conn = conn_not_found(ct, pkt, ctx, commit, now, nat_action_info,
helper, alg_exp, ct_alg_ctl, tp_id);
}
ovs_mutex_unlock(&ct->ct_lock);
}
write_ct_md(pkt, zone, conn, &ctx->key, alg_exp);
if (conn && setmark) {
set_mark(pkt, conn, setmark[0], setmark[1]);
}
if (conn && setlabel) {
set_label(pkt, conn, &setlabel[0], &setlabel[1]);
}
handle_alg_ctl(ct, ctx, pkt, ct_alg_ctl, conn, now, !!nat_action_info);
set_cached_conn(nat_action_info, ctx, conn, pkt);
}
/* Sends the packets in '*pkt_batch' through the connection tracker 'ct'. All
* the packets must have the same 'dl_type' (IPv4 or IPv6) and should have
* the l3 and and l4 offset properly set. Performs fragment reassembly with
* the help of ipf_preprocess_conntrack().
*
* If 'commit' is true, the packets are allowed to create new entries in the
* connection tables. 'setmark', if not NULL, should point to a two
* elements array containing a value and a mask to set the connection mark.
* 'setlabel' behaves similarly for the connection label.*/
int
conntrack_execute(struct conntrack *ct, struct dp_packet_batch *pkt_batch,
ovs_be16 dl_type, bool force, bool commit, uint16_t zone,
const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
ovs_be16 tp_src, ovs_be16 tp_dst, const char *helper,
const struct nat_action_info_t *nat_action_info,
long long now, uint32_t tp_id)
{
ipf_preprocess_conntrack(ct->ipf, pkt_batch, now, dl_type, zone,
ct->hash_basis);
struct dp_packet *packet;
struct conn_lookup_ctx ctx;
DP_PACKET_BATCH_FOR_EACH (i, packet, pkt_batch) {
struct conn *conn = packet->md.conn;
if (OVS_UNLIKELY(packet->md.ct_state == CS_INVALID)) {
write_ct_md(packet, zone, NULL, NULL, NULL);
} else if (conn && conn->key.zone == zone && !force
&& !get_alg_ctl_type(packet, tp_src, tp_dst, helper)) {
process_one_fast(zone, setmark, setlabel, nat_action_info,
conn, packet);
} else if (OVS_UNLIKELY(!conn_key_extract(ct, packet, dl_type, &ctx,
zone))) {
packet->md.ct_state = CS_INVALID;
write_ct_md(packet, zone, NULL, NULL, NULL);
} else {
process_one(ct, packet, &ctx, zone, force, commit, now, setmark,
setlabel, nat_action_info, tp_src, tp_dst, helper,
tp_id);
}
}
ipf_postprocess_conntrack(ct->ipf, pkt_batch, now, dl_type);
return 0;
}
void
conntrack_clear(struct dp_packet *packet)
{
/* According to pkt_metadata_init(), ct_state == 0 is enough to make all of
* the conntrack fields invalid. */
packet->md.ct_state = 0;
pkt_metadata_init_conn(&packet->md);
}
static void
set_mark(struct dp_packet *pkt, struct conn *conn, uint32_t val, uint32_t mask)
{
ovs_mutex_lock(&conn->lock);
if (conn->alg_related) {
pkt->md.ct_mark = conn->mark;
} else {
pkt->md.ct_mark = val | (pkt->md.ct_mark & ~(mask));
conn->mark = pkt->md.ct_mark;
}
ovs_mutex_unlock(&conn->lock);
}
static void
set_label(struct dp_packet *pkt, struct conn *conn,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask)
{
ovs_mutex_lock(&conn->lock);
if (conn->alg_related) {
pkt->md.ct_label = conn->label;
} else {
ovs_u128 v, m;
memcpy(&v, val, sizeof v);
memcpy(&m, mask, sizeof m);
pkt->md.ct_label.u64.lo = v.u64.lo
| (pkt->md.ct_label.u64.lo & ~(m.u64.lo));
pkt->md.ct_label.u64.hi = v.u64.hi
| (pkt->md.ct_label.u64.hi & ~(m.u64.hi));
conn->label = pkt->md.ct_label;
}
ovs_mutex_unlock(&conn->lock);
}
/* Delete the expired connections from 'ctb', up to 'limit'. Returns the
* earliest expiration time among the remaining connections in 'ctb'. Returns
* LLONG_MAX if 'ctb' is empty. The return value might be smaller than 'now',
* if 'limit' is reached */
static long long
ct_sweep(struct conntrack *ct, long long now, size_t limit)
{
struct conn *conn, *next;
long long min_expiration = LLONG_MAX;
size_t count = 0;
ovs_mutex_lock(&ct->ct_lock);
for (unsigned i = 0; i < N_CT_TM; i++) {
LIST_FOR_EACH_SAFE (conn, next, exp_node, &ct->exp_lists[i]) {
ovs_mutex_lock(&conn->lock);
if (now < conn->expiration || count >= limit) {
min_expiration = MIN(min_expiration, conn->expiration);
ovs_mutex_unlock(&conn->lock);
if (count >= limit) {
/* Do not check other lists. */
COVERAGE_INC(conntrack_long_cleanup);
goto out;
}
break;
} else {
ovs_mutex_unlock(&conn->lock);
conn_clean(ct, conn);
}
count++;
}
}
out:
VLOG_DBG("conntrack cleanup %"PRIuSIZE" entries in %lld msec", count,
time_msec() - now);
ovs_mutex_unlock(&ct->ct_lock);
return min_expiration;
}
/* Cleans up old connection entries from 'ct'. Returns the time when the
* next expiration might happen. The return value might be smaller than
* 'now', meaning that an internal limit has been reached, and some expired
* connections have not been deleted. */
static long long
conntrack_clean(struct conntrack *ct, long long now)
{
unsigned int n_conn_limit;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
size_t clean_max = n_conn_limit > 10 ? n_conn_limit / 10 : 1;
long long min_exp = ct_sweep(ct, now, clean_max);
long long next_wakeup = MIN(min_exp, now + CT_DPIF_NETDEV_TP_MIN);
return next_wakeup;
}
/* Cleanup:
*
* We must call conntrack_clean() periodically. conntrack_clean() return
* value gives an hint on when the next cleanup must be done (either because
* there is an actual connection that expires, or because a new connection
* might be created with the minimum timeout).
*
* The logic below has two goals:
*
2016-07-27 18:32:15 -07:00
* - We want to reduce the number of wakeups and batch connection cleanup
* when the load is not very high. CT_CLEAN_INTERVAL ensures that if we
* are coping with the current cleanup tasks, then we wait at least
* 5 seconds to do further cleanup.
*
* - We don't want to keep the map locked too long, as we might prevent
2016-07-27 18:32:15 -07:00
* traffic from flowing. CT_CLEAN_MIN_INTERVAL ensures that if cleanup is
* behind, there is at least some 200ms blocks of time when the map will be
2016-07-27 18:32:15 -07:00
* left alone, so the datapath can operate unhindered.
*/
#define CT_CLEAN_INTERVAL 5000 /* 5 seconds */
#define CT_CLEAN_MIN_INTERVAL 200 /* 0.2 seconds */
static void *
clean_thread_main(void *f_)
{
struct conntrack *ct = f_;
while (!latch_is_set(&ct->clean_thread_exit)) {
long long next_wake;
long long now = time_msec();
next_wake = conntrack_clean(ct, now);
if (next_wake < now) {
poll_timer_wait_until(now + CT_CLEAN_MIN_INTERVAL);
} else {
poll_timer_wait_until(MAX(next_wake, now + CT_CLEAN_INTERVAL));
}
latch_wait(&ct->clean_thread_exit);
poll_block();
}
return NULL;
}
/* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is
* used to store a pointer to the first byte after the L3 header. 'Size' is
* the size of the packet beyond the data pointer. */
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum)
{
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
return false;
}
const struct ip_header *ip = data;
size_t ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
return false;
}
if (OVS_UNLIKELY(size < ip_len)) {
return false;
}
if (IP_IS_FRAGMENT(ip->ip_frag_off)) {
return false;
}
if (validate_checksum && csum(data, ip_len) != 0) {
COVERAGE_INC(conntrack_l3csum_err);
return false;
}
if (new_data) {
*new_data = (char *) data + ip_len;
}
key->src.addr.ipv4 = get_16aligned_be32(&ip->ip_src);
key->dst.addr.ipv4 = get_16aligned_be32(&ip->ip_dst);
key->nw_proto = ip->ip_proto;
return true;
}
/* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is
* used to store a pointer to the first byte after the L3 header. 'Size' is
* the size of the packet beyond the data pointer. */
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data)
{
const struct ovs_16aligned_ip6_hdr *ip6 = data;
if (OVS_UNLIKELY(size < sizeof *ip6)) {
return false;
}
data = ip6 + 1;
size -= sizeof *ip6;
uint8_t nw_proto = ip6->ip6_nxt;
uint8_t nw_frag = 0;
const struct ovs_16aligned_ip6_frag *frag_hdr;
if (!parse_ipv6_ext_hdrs(&data, &size, &nw_proto, &nw_frag, &frag_hdr)) {
return false;
}
if (nw_frag) {
return false;
}
if (new_data) {
*new_data = data;
}
memcpy(&key->src.addr.ipv6, &ip6->ip6_src, sizeof key->src.addr);
memcpy(&key->dst.addr.ipv6, &ip6->ip6_dst, sizeof key->dst.addr);
key->nw_proto = nw_proto;
return true;
}
static inline bool
checksum_valid(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
bool valid;
if (key->dl_type == htons(ETH_TYPE_IP)) {
uint32_t csum = packet_csum_pseudoheader(l3);
valid = (csum_finish(csum_continue(csum, data, size)) == 0);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
valid = (packet_csum_upperlayer6(l3, data, key->nw_proto, size) == 0);
} else {
valid = false;
}
if (!valid) {
COVERAGE_INC(conntrack_l4csum_err);
}
return valid;
}
static inline bool
check_l4_tcp(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
const struct tcp_header *tcp = data;
if (size < sizeof *tcp) {
return false;
}
size_t tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (OVS_UNLIKELY(tcp_len < TCP_HEADER_LEN || tcp_len > size)) {
return false;
}
return validate_checksum ? checksum_valid(key, data, size, l3) : true;
}
static inline bool
check_l4_udp(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
const struct udp_header *udp = data;
if (size < sizeof *udp) {
return false;
}
size_t udp_len = ntohs(udp->udp_len);
if (OVS_UNLIKELY(udp_len < UDP_HEADER_LEN || udp_len > size)) {
return false;
}
/* Validation must be skipped if checksum is 0 on IPv4 packets */
return (udp->udp_csum == 0 && key->dl_type == htons(ETH_TYPE_IP))
|| (validate_checksum ? checksum_valid(key, data, size, l3) : true);
}
static inline bool
check_l4_icmp(const void *data, size_t size, bool validate_checksum)
{
if (validate_checksum && csum(data, size) != 0) {
COVERAGE_INC(conntrack_l4csum_err);
return false;
} else {
return true;
}
}
static inline bool
check_l4_icmp6(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
return validate_checksum ? checksum_valid(key, data, size, l3) : true;
}
static inline bool
extract_l4_tcp(struct conn_key *key, const void *data, size_t size,
size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : TCP_HEADER_LEN))) {
return false;
}
const struct tcp_header *tcp = data;
key->src.port = tcp->tcp_src;
key->dst.port = tcp->tcp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool
extract_l4_udp(struct conn_key *key, const void *data, size_t size,
size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : UDP_HEADER_LEN))) {
return false;
}
const struct udp_header *udp = data;
key->src.port = udp->udp_src;
key->dst.port = udp->udp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool extract_l4(struct conn_key *key, const void *data,
size_t size, bool *related, const void *l3,
bool validate_checksum, size_t *chk_len);
static uint8_t
reverse_icmp_type(uint8_t type)
{
switch (type) {
case ICMP4_ECHO_REQUEST:
return ICMP4_ECHO_REPLY;
case ICMP4_ECHO_REPLY:
return ICMP4_ECHO_REQUEST;
case ICMP4_TIMESTAMP:
return ICMP4_TIMESTAMPREPLY;
case ICMP4_TIMESTAMPREPLY:
return ICMP4_TIMESTAMP;
case ICMP4_INFOREQUEST:
return ICMP4_INFOREPLY;
case ICMP4_INFOREPLY:
return ICMP4_INFOREQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline int
extract_l4_icmp(struct conn_key *key, const void *data, size_t size,
bool *related, size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : ICMP_HEADER_LEN))) {
return false;
}
const struct icmp_header *icmp = data;
switch (icmp->icmp_type) {
case ICMP4_ECHO_REQUEST:
case ICMP4_ECHO_REPLY:
case ICMP4_TIMESTAMP:
case ICMP4_TIMESTAMPREPLY:
case ICMP4_INFOREQUEST:
case ICMP4_INFOREPLY:
if (icmp->icmp_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = icmp->icmp_fields.echo.id;
key->src.icmp_type = icmp->icmp_type;
key->dst.icmp_type = reverse_icmp_type(icmp->icmp_type);
break;
case ICMP4_DST_UNREACH:
case ICMP4_TIME_EXCEEDED:
case ICMP4_PARAM_PROB:
case ICMP4_SOURCEQUENCH:
case ICMP4_REDIRECT: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) (icmp + 1);
const char *tail = (const char *) data + size;
const char *l4;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IP);
bool ok = extract_l3_ipv4(&inner_key, l3, tail - l3, &l4, false);
if (!ok) {
return false;
}
if (inner_key.src.addr.ipv4 != key->dst.addr.ipv4) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
size_t check_len = ICMP_ERROR_DATA_L4_LEN;
ok = extract_l4(key, l4, tail - l4, NULL, l3, false, &check_len);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
static uint8_t
reverse_icmp6_type(uint8_t type)
{
switch (type) {
case ICMP6_ECHO_REQUEST:
return ICMP6_ECHO_REPLY;
case ICMP6_ECHO_REPLY:
return ICMP6_ECHO_REQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline bool
extract_l4_icmp6(struct conn_key *key, const void *data, size_t size,
bool *related)
{
const struct icmp6_header *icmp6 = data;
/* All the messages that we support need at least 4 bytes after
* the header */
if (size < sizeof *icmp6 + 4) {
return false;
}
switch (icmp6->icmp6_type) {
case ICMP6_ECHO_REQUEST:
case ICMP6_ECHO_REPLY:
if (icmp6->icmp6_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = *(ovs_be16 *) (icmp6 + 1);
key->src.icmp_type = icmp6->icmp6_type;
key->dst.icmp_type = reverse_icmp6_type(icmp6->icmp6_type);
break;
case ICMP6_DST_UNREACH:
case ICMP6_PACKET_TOO_BIG:
case ICMP6_TIME_EXCEEDED:
case ICMP6_PARAM_PROB: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) icmp6 + 8;
const char *tail = (const char *) data + size;
const char *l4 = NULL;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IPV6);
bool ok = extract_l3_ipv6(&inner_key, l3, tail - l3, &l4);
if (!ok) {
return false;
}
/* pf doesn't do this, but it seems a good idea */
if (!ipv6_addr_equals(&inner_key.src.addr.ipv6,
&key->dst.addr.ipv6)) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
ok = extract_l4(key, l4, tail - l4, NULL, l3, false, NULL);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
/* Extract l4 fields into 'key', which must already contain valid l3
* members.
*
* If 'related' is not NULL and an ICMP error packet is being
* processed, the function will extract the key from the packet nested
* in the ICMP payload and set '*related' to true.
*
* 'size' here is the layer 4 size, which can be a nested size if parsing
* an ICMP or ICMP6 header.
*
* If 'related' is NULL, it means that we're already parsing a header nested
* in an ICMP error. In this case, we skip the checksum and some length
* validations. */
static inline bool
extract_l4(struct conn_key *key, const void *data, size_t size, bool *related,
const void *l3, bool validate_checksum, size_t *chk_len)
{
if (key->nw_proto == IPPROTO_TCP) {
return (!related || check_l4_tcp(key, data, size, l3,
validate_checksum))
&& extract_l4_tcp(key, data, size, chk_len);
} else if (key->nw_proto == IPPROTO_UDP) {
return (!related || check_l4_udp(key, data, size, l3,
validate_checksum))
&& extract_l4_udp(key, data, size, chk_len);
} else if (key->dl_type == htons(ETH_TYPE_IP)
&& key->nw_proto == IPPROTO_ICMP) {
return (!related || check_l4_icmp(data, size, validate_checksum))
&& extract_l4_icmp(key, data, size, related, chk_len);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)
&& key->nw_proto == IPPROTO_ICMPV6) {
return (!related || check_l4_icmp6(key, data, size, l3,
validate_checksum))
&& extract_l4_icmp6(key, data, size, related);
}
/* For all other protocols we do not have L4 keys, so keep them zero. */
return true;
}
static bool
conn_key_extract(struct conntrack *ct, struct dp_packet *pkt, ovs_be16 dl_type,
struct conn_lookup_ctx *ctx, uint16_t zone)
{
userspace: Add packet_type in dp_packet and flow This commit adds a packet_type attribute to the structs dp_packet and flow to explicitly carry the type of the packet as prepration for the introduction of the so-called packet type-aware pipeline (PTAP) in OVS. The packet_type is a big-endian 32 bit integer with the encoding as specified in OpenFlow verion 1.5. The upper 16 bits contain the packet type name space. Pre-defined values are defined in openflow-common.h: enum ofp_header_type_namespaces { OFPHTN_ONF = 0, /* ONF namespace. */ OFPHTN_ETHERTYPE = 1, /* ns_type is an Ethertype. */ OFPHTN_IP_PROTO = 2, /* ns_type is a IP protocol number. */ OFPHTN_UDP_TCP_PORT = 3, /* ns_type is a TCP or UDP port. */ OFPHTN_IPV4_OPTION = 4, /* ns_type is an IPv4 option number. */ }; The lower 16 bits specify the actual type in the context of the name space. Only name spaces 0 and 1 will be supported for now. For name space OFPHTN_ONF the relevant packet type is 0 (Ethernet). This is the default packet_type in OVS and the only one supported so far. Packets of type (OFPHTN_ONF, 0) are called Ethernet packets. In name space OFPHTN_ETHERTYPE the type is the Ethertype of the packet. A packet of type (OFPHTN_ETHERTYPE, <Ethertype>) is a standard L2 packet whith the Ethernet header (and any VLAN tags) removed to expose the L3 (or L2.5) payload of the packet. These will simply be called L3 packets. The Ethernet address fields dl_src and dl_dst in struct flow are not applicable for an L3 packet and must be zero. However, to maintain compatibility with the large code base, we have chosen to copy the Ethertype of an L3 packet into the the dl_type field of struct flow. This does not mean that it will be possible to match on dl_type for L3 packets with PTAP later on. Matching must be done on packet_type instead. New dp_packets are initialized with packet_type Ethernet. Ports that receive L3 packets will have to explicitly adjust the packet_type. Signed-off-by: Jean Tourrilhes <jt@labs.hpe.com> Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com> Co-authored-by: Zoltan Balogh <zoltan.balogh@ericsson.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-04-25 16:29:59 +00:00
const struct eth_header *l2 = dp_packet_eth(pkt);
const struct ip_header *l3 = dp_packet_l3(pkt);
const char *l4 = dp_packet_l4(pkt);
memset(ctx, 0, sizeof *ctx);
if (!l2 || !l3 || !l4) {
return false;
}
ctx->key.zone = zone;
/* XXX In this function we parse the packet (again, it has already
* gone through miniflow_extract()) for two reasons:
*
* 1) To extract the l3 addresses and l4 ports.
* We already have the l3 and l4 headers' pointers. Extracting
* the l3 addresses and the l4 ports is really cheap, since they
* can be found at fixed locations.
* 2) To extract the l4 type.
* Extracting the l4 types, for IPv6 can be quite expensive, because
* it's not at a fixed location.
*
* Here's a way to avoid (2) with the help of the datapath.
* The datapath doesn't keep the packet's extracted flow[1], so
* using that is not an option. We could use the packet's matching
* megaflow, but we have to make sure that the l4 type (nw_proto)
* is unwildcarded. This means either:
*
* a) dpif-netdev unwildcards the l4 type when a new flow is installed
* if the actions contains ct().
*
* b) ofproto-dpif-xlate unwildcards the l4 type when translating a ct()
* action. This is already done in different actions, but it's
* unnecessary for the kernel.
*
* ---
* [1] The reasons for this are that keeping the flow increases
* (slightly) the cache footprint and increases computation
* time as we move the packet around. Most importantly, the flow
* should be updated by the actions and this can be slow, as
* we use a sparse representation (miniflow).
*
*/
bool ok;
ctx->key.dl_type = dl_type;
if (ctx->key.dl_type == htons(ETH_TYPE_IP)) {
bool hwol_bad_l3_csum = dp_packet_ip_checksum_bad(pkt);
if (hwol_bad_l3_csum) {
ok = false;
COVERAGE_INC(conntrack_l3csum_err);
} else {
bool hwol_good_l3_csum = dp_packet_ip_checksum_valid(pkt)
|| dp_packet_hwol_is_ipv4(pkt);
/* Validate the checksum only when hwol is not supported. */
ok = extract_l3_ipv4(&ctx->key, l3, dp_packet_l3_size(pkt), NULL,
!hwol_good_l3_csum);
}
} else if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
ok = extract_l3_ipv6(&ctx->key, l3, dp_packet_l3_size(pkt), NULL);
} else {
ok = false;
}
if (ok) {
bool hwol_bad_l4_csum = dp_packet_l4_checksum_bad(pkt);
if (!hwol_bad_l4_csum) {
bool hwol_good_l4_csum = dp_packet_l4_checksum_valid(pkt)
|| dp_packet_hwol_tx_l4_checksum(pkt);
/* Validate the checksum only when hwol is not supported. */
if (extract_l4(&ctx->key, l4, dp_packet_l4_size(pkt),
&ctx->icmp_related, l3, !hwol_good_l4_csum,
NULL)) {
ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis);
return true;
}
} else {
COVERAGE_INC(conntrack_l4csum_err);
}
}
return false;
}
static uint32_t
ct_addr_hash_add(uint32_t hash, const union ct_addr *addr)
{
BUILD_ASSERT_DECL(sizeof *addr % 4 == 0);
return hash_add_bytes32(hash, (const uint32_t *) addr, sizeof *addr);
}
static uint32_t
ct_endpoint_hash_add(uint32_t hash, const struct ct_endpoint *ep)
{
BUILD_ASSERT_DECL(sizeof *ep % 4 == 0);
return hash_add_bytes32(hash, (const uint32_t *) ep, sizeof *ep);
}
/* Symmetric */
static uint32_t
conn_key_hash(const struct conn_key *key, uint32_t basis)
{
uint32_t hsrc, hdst, hash;
hsrc = hdst = basis;
hsrc = ct_endpoint_hash_add(hsrc, &key->src);
hdst = ct_endpoint_hash_add(hdst, &key->dst);
/* Even if source and destination are swapped the hash will be the same. */
hash = hsrc ^ hdst;
/* Hash the rest of the key(L3 and L4 types and zone). */
return hash_words((uint32_t *) (&key->dst + 1),
(uint32_t *) (key + 1) - (uint32_t *) (&key->dst + 1),
hash);
}
static void
conn_key_reverse(struct conn_key *key)
{
struct ct_endpoint tmp = key->src;
key->src = key->dst;
key->dst = tmp;
}
static uint32_t
nat_ipv6_addrs_delta(struct in6_addr *ipv6_min, struct in6_addr *ipv6_max)
{
uint8_t *ipv6_min_hi = &ipv6_min->s6_addr[0];
uint8_t *ipv6_min_lo = &ipv6_min->s6_addr[0] + sizeof(uint64_t);
uint8_t *ipv6_max_hi = &ipv6_max->s6_addr[0];
uint8_t *ipv6_max_lo = &ipv6_max->s6_addr[0] + sizeof(uint64_t);
ovs_be64 addr6_64_min_hi;
ovs_be64 addr6_64_min_lo;
memcpy(&addr6_64_min_hi, ipv6_min_hi, sizeof addr6_64_min_hi);
memcpy(&addr6_64_min_lo, ipv6_min_lo, sizeof addr6_64_min_lo);
ovs_be64 addr6_64_max_hi;
ovs_be64 addr6_64_max_lo;
memcpy(&addr6_64_max_hi, ipv6_max_hi, sizeof addr6_64_max_hi);
memcpy(&addr6_64_max_lo, ipv6_max_lo, sizeof addr6_64_max_lo);
uint64_t diff;
if (addr6_64_min_hi == addr6_64_max_hi &&
ntohll(addr6_64_min_lo) <= ntohll(addr6_64_max_lo)) {
diff = ntohll(addr6_64_max_lo) - ntohll(addr6_64_min_lo);
} else if (ntohll(addr6_64_min_hi) + 1 == ntohll(addr6_64_max_hi) &&
ntohll(addr6_64_min_lo) > ntohll(addr6_64_max_lo)) {
diff = UINT64_MAX - (ntohll(addr6_64_min_lo) -
ntohll(addr6_64_max_lo) - 1);
} else {
/* Limit address delta supported to 32 bits or 4 billion approximately.
* Possibly, this should be visible to the user through a datapath
* support check, however the practical impact is probably nil. */
diff = 0xfffffffe;
}
if (diff > 0xfffffffe) {
diff = 0xfffffffe;
}
return diff;
}
/* This function must be used in tandem with nat_ipv6_addrs_delta(), which
* restricts the input parameters. */
static void
nat_ipv6_addr_increment(struct in6_addr *ipv6, uint32_t increment)
{
uint8_t *ipv6_hi = &ipv6->s6_addr[0];
uint8_t *ipv6_lo = &ipv6->s6_addr[0] + sizeof(ovs_be64);
ovs_be64 addr6_64_hi;
ovs_be64 addr6_64_lo;
memcpy(&addr6_64_hi, ipv6_hi, sizeof addr6_64_hi);
memcpy(&addr6_64_lo, ipv6_lo, sizeof addr6_64_lo);
if (UINT64_MAX - increment >= ntohll(addr6_64_lo)) {
addr6_64_lo = htonll(increment + ntohll(addr6_64_lo));
} else if (addr6_64_hi != OVS_BE64_MAX) {
addr6_64_hi = htonll(1 + ntohll(addr6_64_hi));
addr6_64_lo = htonll(increment - (UINT64_MAX -
ntohll(addr6_64_lo) + 1));
} else {
OVS_NOT_REACHED();
}
memcpy(ipv6_hi, &addr6_64_hi, sizeof addr6_64_hi);
memcpy(ipv6_lo, &addr6_64_lo, sizeof addr6_64_lo);
}
static uint32_t
nat_range_hash(const struct conn *conn, uint32_t basis)
{
uint32_t hash = basis;
hash = ct_addr_hash_add(hash, &conn->nat_info->min_addr);
hash = ct_addr_hash_add(hash, &conn->nat_info->max_addr);
hash = hash_add(hash,
(conn->nat_info->max_port << 16)
| conn->nat_info->min_port);
hash = ct_endpoint_hash_add(hash, &conn->key.src);
hash = ct_endpoint_hash_add(hash, &conn->key.dst);
hash = hash_add(hash, (OVS_FORCE uint32_t) conn->key.dl_type);
hash = hash_add(hash, conn->key.nw_proto);
hash = hash_add(hash, conn->key.zone);
/* The purpose of the second parameter is to distinguish hashes of data of
* different length; our data always has the same length so there is no
* value in counting. */
return hash_finish(hash, 0);
}
static bool
nat_select_range_tuple(struct conntrack *ct, const struct conn *conn,
struct conn *nat_conn)
{
enum { MIN_NAT_EPHEMERAL_PORT = 1024,
MAX_NAT_EPHEMERAL_PORT = 65535 };
uint16_t min_port;
uint16_t max_port;
uint16_t first_port;
uint32_t hash = nat_range_hash(conn, ct->hash_basis);
if ((conn->nat_info->nat_action & NAT_ACTION_SRC) &&
(!(conn->nat_info->nat_action & NAT_ACTION_SRC_PORT))) {
min_port = ntohs(conn->key.src.port);
max_port = ntohs(conn->key.src.port);
first_port = min_port;
} else if ((conn->nat_info->nat_action & NAT_ACTION_DST) &&
(!(conn->nat_info->nat_action & NAT_ACTION_DST_PORT))) {
min_port = ntohs(conn->key.dst.port);
max_port = ntohs(conn->key.dst.port);
first_port = min_port;
} else {
uint16_t deltap = conn->nat_info->max_port - conn->nat_info->min_port;
uint32_t port_index = hash % (deltap + 1);
first_port = conn->nat_info->min_port + port_index;
min_port = conn->nat_info->min_port;
max_port = conn->nat_info->max_port;
}
uint32_t deltaa = 0;
uint32_t address_index;
union ct_addr ct_addr;
memset(&ct_addr, 0, sizeof ct_addr);
union ct_addr max_ct_addr;
memset(&max_ct_addr, 0, sizeof max_ct_addr);
max_ct_addr = conn->nat_info->max_addr;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
deltaa = ntohl(conn->nat_info->max_addr.ipv4) -
ntohl(conn->nat_info->min_addr.ipv4);
address_index = hash % (deltaa + 1);
ct_addr.ipv4 = htonl(
ntohl(conn->nat_info->min_addr.ipv4) + address_index);
} else {
deltaa = nat_ipv6_addrs_delta(&conn->nat_info->min_addr.ipv6,
&conn->nat_info->max_addr.ipv6);
/* deltaa must be within 32 bits for full hash coverage. A 64 or
* 128 bit hash is unnecessary and hence not used here. Most code
* is kept common with V4; nat_ipv6_addrs_delta() will do the
* enforcement via max_ct_addr. */
max_ct_addr = conn->nat_info->min_addr;
nat_ipv6_addr_increment(&max_ct_addr.ipv6, deltaa);
address_index = hash % (deltaa + 1);
ct_addr.ipv6 = conn->nat_info->min_addr.ipv6;
nat_ipv6_addr_increment(&ct_addr.ipv6, address_index);
}
uint16_t port = first_port;
bool all_ports_tried = false;
/* For DNAT or for specified port ranges, we don't use ephemeral ports. */
bool ephemeral_ports_tried
= conn->nat_info->nat_action & NAT_ACTION_DST ||
conn->nat_info->nat_action & NAT_ACTION_SRC_PORT
? true : false;
union ct_addr first_addr = ct_addr;
bool pat_enabled = conn->key.nw_proto == IPPROTO_TCP ||
conn->key.nw_proto == IPPROTO_UDP;
while (true) {
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
nat_conn->rev_key.dst.addr = ct_addr;
if (pat_enabled) {
nat_conn->rev_key.dst.port = htons(port);
}
} else {
nat_conn->rev_key.src.addr = ct_addr;
if (pat_enabled) {
nat_conn->rev_key.src.port = htons(port);
}
}
bool found = conn_lookup(ct, &nat_conn->rev_key, time_msec(), NULL,
NULL);
if (!found) {
return true;
} else if (pat_enabled && !all_ports_tried) {
if (min_port == max_port) {
all_ports_tried = true;
} else if (port == max_port) {
port = min_port;
} else {
port++;
}
if (port == first_port) {
all_ports_tried = true;
}
} else {
if (memcmp(&ct_addr, &max_ct_addr, sizeof ct_addr)) {
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
ct_addr.ipv4 = htonl(ntohl(ct_addr.ipv4) + 1);
} else {
nat_ipv6_addr_increment(&ct_addr.ipv6, 1);
}
} else {
ct_addr = conn->nat_info->min_addr;
}
if (!memcmp(&ct_addr, &first_addr, sizeof ct_addr)) {
if (pat_enabled && !ephemeral_ports_tried) {
ephemeral_ports_tried = true;
ct_addr = conn->nat_info->min_addr;
first_addr = ct_addr;
min_port = MIN_NAT_EPHEMERAL_PORT;
max_port = MAX_NAT_EPHEMERAL_PORT;
} else {
break;
}
}
first_port = min_port;
port = first_port;
all_ports_tried = false;
}
}
return false;
}
static enum ct_update_res
conn_update(struct conntrack *ct, struct conn *conn, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, long long now)
{
ovs_mutex_lock(&conn->lock);
enum ct_update_res update_res =
l4_protos[conn->key.nw_proto]->conn_update(ct, conn, pkt, ctx->reply,
now);
ovs_mutex_unlock(&conn->lock);
return update_res;
}
static bool
conn_expired(struct conn *conn, long long now)
{
if (conn->conn_type == CT_CONN_TYPE_DEFAULT) {
ovs_mutex_lock(&conn->lock);
bool expired = now >= conn->expiration ? true : false;
ovs_mutex_unlock(&conn->lock);
return expired;
}
return false;
}
static bool
valid_new(struct dp_packet *pkt, struct conn_key *key)
{
return l4_protos[key->nw_proto]->valid_new(pkt);
}
static struct conn *
new_conn(struct conntrack *ct, struct dp_packet *pkt, struct conn_key *key,
long long now, uint32_t tp_id)
{
return l4_protos[key->nw_proto]->new_conn(ct, pkt, now, tp_id);
}
static void
delete_conn_cmn(struct conn *conn)
{
free(conn->nat_info);
free(conn->alg);
free(conn);
}
static void
delete_conn(struct conn *conn)
{
ovs_assert(conn->conn_type == CT_CONN_TYPE_DEFAULT);
ovs_mutex_destroy(&conn->lock);
free(conn->nat_conn);
delete_conn_cmn(conn);
}
/* Only used by conn_clean_one(). */
static void
delete_conn_one(struct conn *conn)
{
if (conn->conn_type == CT_CONN_TYPE_DEFAULT) {
ovs_mutex_destroy(&conn->lock);
}
delete_conn_cmn(conn);
}
/* Convert a conntrack address 'a' into an IP address 'b' based on 'dl_type'.
*
* Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6"
* in network-byte order. */
static void
ct_endpoint_to_ct_dpif_inet_addr(const union ct_addr *a,
union ct_dpif_inet_addr *b,
ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ip = a->ipv4;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->in6 = a->ipv6;
}
}
/* Convert an IP address 'a' into a conntrack address 'b' based on 'dl_type'.
*
* Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6"
* in network-byte order. */
static void
ct_dpif_inet_addr_to_ct_endpoint(const union ct_dpif_inet_addr *a,
union ct_addr *b, ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ipv4 = a->ip;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->ipv6 = a->in6;
}
}
static void
conn_key_to_tuple(const struct conn_key *key, struct ct_dpif_tuple *tuple)
{
if (key->dl_type == htons(ETH_TYPE_IP)) {
tuple->l3_type = AF_INET;
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
tuple->l3_type = AF_INET6;
}
tuple->ip_proto = key->nw_proto;
ct_endpoint_to_ct_dpif_inet_addr(&key->src.addr, &tuple->src,
key->dl_type);
ct_endpoint_to_ct_dpif_inet_addr(&key->dst.addr, &tuple->dst,
key->dl_type);
if (key->nw_proto == IPPROTO_ICMP || key->nw_proto == IPPROTO_ICMPV6) {
tuple->icmp_id = key->src.icmp_id;
tuple->icmp_type = key->src.icmp_type;
tuple->icmp_code = key->src.icmp_code;
} else {
tuple->src_port = key->src.port;
tuple->dst_port = key->dst.port;
}
}
static void
tuple_to_conn_key(const struct ct_dpif_tuple *tuple, uint16_t zone,
struct conn_key *key)
{
if (tuple->l3_type == AF_INET) {
key->dl_type = htons(ETH_TYPE_IP);
} else if (tuple->l3_type == AF_INET6) {
key->dl_type = htons(ETH_TYPE_IPV6);
}
key->nw_proto = tuple->ip_proto;
ct_dpif_inet_addr_to_ct_endpoint(&tuple->src, &key->src.addr,
key->dl_type);
ct_dpif_inet_addr_to_ct_endpoint(&tuple->dst, &key->dst.addr,
key->dl_type);
if (tuple->ip_proto == IPPROTO_ICMP || tuple->ip_proto == IPPROTO_ICMPV6) {
key->src.icmp_id = tuple->icmp_id;
key->src.icmp_type = tuple->icmp_type;
key->src.icmp_code = tuple->icmp_code;
key->dst.icmp_id = tuple->icmp_id;
key->dst.icmp_type = reverse_icmp_type(tuple->icmp_type);
key->dst.icmp_code = tuple->icmp_code;
} else {
key->src.port = tuple->src_port;
key->dst.port = tuple->dst_port;
}
key->zone = zone;
}
static void
conn_to_ct_dpif_entry(const struct conn *conn, struct ct_dpif_entry *entry,
long long now)
{
memset(entry, 0, sizeof *entry);
conn_key_to_tuple(&conn->key, &entry->tuple_orig);
conn_key_to_tuple(&conn->rev_key, &entry->tuple_reply);
entry->zone = conn->key.zone;
ovs_mutex_lock(&conn->lock);
entry->mark = conn->mark;
memcpy(&entry->labels, &conn->label, sizeof entry->labels);
long long expiration = conn->expiration - now;
struct ct_l4_proto *class = l4_protos[conn->key.nw_proto];
if (class->conn_get_protoinfo) {
class->conn_get_protoinfo(conn, &entry->protoinfo);
}
ovs_mutex_unlock(&conn->lock);
entry->timeout = (expiration > 0) ? expiration / 1000 : 0;
if (conn->alg) {
/* Caller is responsible for freeing. */
entry->helper.name = xstrdup(conn->alg);
}
}
struct ipf *
conntrack_ipf_ctx(struct conntrack *ct)
{
return ct->ipf;
}
int
conntrack_dump_start(struct conntrack *ct, struct conntrack_dump *dump,
const uint16_t *pzone, int *ptot_bkts)
{
memset(dump, 0, sizeof(*dump));
if (pzone) {
dump->zone = *pzone;
dump->filter_zone = true;
}
dump->ct = ct;
*ptot_bkts = 1; /* Need to clean up the callers. */
return 0;
}
int
conntrack_dump_next(struct conntrack_dump *dump, struct ct_dpif_entry *entry)
{
struct conntrack *ct = dump->ct;
long long now = time_msec();
for (;;) {
struct cmap_node *cm_node = cmap_next_position(&ct->conns,
&dump->cm_pos);
if (!cm_node) {
break;
}
struct conn *conn;
INIT_CONTAINER(conn, cm_node, cm_node);
if ((!dump->filter_zone || conn->key.zone == dump->zone) &&
(conn->conn_type != CT_CONN_TYPE_UN_NAT)) {
conn_to_ct_dpif_entry(conn, entry, now);
return 0;
}
}
return EOF;
}
int
conntrack_dump_done(struct conntrack_dump *dump OVS_UNUSED)
{
return 0;
}
int
conntrack_flush(struct conntrack *ct, const uint16_t *zone)
{
struct conn *conn;
ovs_mutex_lock(&ct->ct_lock);
CMAP_FOR_EACH (conn, cm_node, &ct->conns) {
if (!zone || *zone == conn->key.zone) {
conn_clean_one(ct, conn);
}
}
ovs_mutex_unlock(&ct->ct_lock);
return 0;
}
int
conntrack_flush_tuple(struct conntrack *ct, const struct ct_dpif_tuple *tuple,
uint16_t zone)
{
int error = 0;
struct conn_key key;
struct conn *conn;
memset(&key, 0, sizeof(key));
tuple_to_conn_key(tuple, zone, &key);
ovs_mutex_lock(&ct->ct_lock);
conn_lookup(ct, &key, time_msec(), &conn, NULL);
if (conn && conn->conn_type == CT_CONN_TYPE_DEFAULT) {
conn_clean(ct, conn);
} else {
VLOG_WARN("Must flush tuple using the original pre-NATed tuple");
error = ENOENT;
}
ovs_mutex_unlock(&ct->ct_lock);
return error;
}
int
conntrack_set_maxconns(struct conntrack *ct, uint32_t maxconns)
{
atomic_store_relaxed(&ct->n_conn_limit, maxconns);
return 0;
}
int
conntrack_get_maxconns(struct conntrack *ct, uint32_t *maxconns)
{
atomic_read_relaxed(&ct->n_conn_limit, maxconns);
return 0;
}
int
conntrack_get_nconns(struct conntrack *ct, uint32_t *nconns)
{
*nconns = atomic_count_get(&ct->n_conn);
return 0;
}
int
conntrack_set_tcp_seq_chk(struct conntrack *ct, bool enabled)
{
atomic_store_relaxed(&ct->tcp_seq_chk, enabled);
return 0;
}
bool
conntrack_get_tcp_seq_chk(struct conntrack *ct)
{
bool enabled;
atomic_read_relaxed(&ct->tcp_seq_chk, &enabled);
return enabled;
}
/* This function must be called with the ct->resources read lock taken. */
static struct alg_exp_node *
expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key,
uint32_t basis, bool src_ip_wc)
{
struct conn_key check_key;
memcpy(&check_key, key, sizeof check_key);
check_key.src.port = ALG_WC_SRC_PORT;
if (src_ip_wc) {
memset(&check_key.src.addr, 0, sizeof check_key.src.addr);
}
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node,
conn_key_hash(&check_key, basis),
alg_expectations) {
if (!conn_key_cmp(&alg_exp_node->key, &check_key)) {
return alg_exp_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources write lock taken. */
static void
expectation_remove(struct hmap *alg_expectations,
const struct conn_key *key, uint32_t basis)
{
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node, conn_key_hash(key, basis),
alg_expectations) {
if (!conn_key_cmp(&alg_exp_node->key, key)) {
hmap_remove(alg_expectations, &alg_exp_node->node);
break;
}
}
}
/* This function must be called with the ct->resources read lock taken. */
static struct alg_exp_node *
expectation_ref_lookup_unique(const struct hindex *alg_expectation_refs,
const struct conn_key *parent_key,
const struct conn_key *alg_exp_key,
uint32_t basis)
{
struct alg_exp_node *alg_exp_node;
HINDEX_FOR_EACH_WITH_HASH (alg_exp_node, node_ref,
conn_key_hash(parent_key, basis),
alg_expectation_refs) {
if (!conn_key_cmp(&alg_exp_node->parent_key, parent_key) &&
!conn_key_cmp(&alg_exp_node->key, alg_exp_key)) {
return alg_exp_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources write lock taken. */
static void
expectation_ref_create(struct hindex *alg_expectation_refs,
struct alg_exp_node *alg_exp_node,
uint32_t basis)
{
if (!expectation_ref_lookup_unique(alg_expectation_refs,
&alg_exp_node->parent_key,
&alg_exp_node->key, basis)) {
hindex_insert(alg_expectation_refs, &alg_exp_node->node_ref,
conn_key_hash(&alg_exp_node->parent_key, basis));
}
}
static void
expectation_clean(struct conntrack *ct, const struct conn_key *parent_key)
{
ovs_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *node, *next;
HINDEX_FOR_EACH_WITH_HASH_SAFE (node, next, node_ref,
conn_key_hash(parent_key, ct->hash_basis),
&ct->alg_expectation_refs) {
if (!conn_key_cmp(&node->parent_key, parent_key)) {
expectation_remove(&ct->alg_expectations, &node->key,
ct->hash_basis);
hindex_remove(&ct->alg_expectation_refs, &node->node_ref);
free(node);
}
}
ovs_rwlock_unlock(&ct->resources_lock);
}
static void
expectation_create(struct conntrack *ct, ovs_be16 dst_port,
const struct conn *parent_conn, bool reply, bool src_ip_wc,
bool skip_nat)
{
union ct_addr src_addr;
union ct_addr dst_addr;
union ct_addr alg_nat_repl_addr;
struct alg_exp_node *alg_exp_node = xzalloc(sizeof *alg_exp_node);
if (reply) {
src_addr = parent_conn->key.src.addr;
dst_addr = parent_conn->key.dst.addr;
alg_exp_node->nat_rpl_dst = true;
if (skip_nat) {
alg_nat_repl_addr = dst_addr;
} else if (parent_conn->nat_info &&
parent_conn->nat_info->nat_action & NAT_ACTION_DST) {
alg_nat_repl_addr = parent_conn->rev_key.src.addr;
alg_exp_node->nat_rpl_dst = false;
} else {
alg_nat_repl_addr = parent_conn->rev_key.dst.addr;
}
} else {
src_addr = parent_conn->rev_key.src.addr;
dst_addr = parent_conn->rev_key.dst.addr;
alg_exp_node->nat_rpl_dst = false;
if (skip_nat) {
alg_nat_repl_addr = src_addr;
} else if (parent_conn->nat_info &&
parent_conn->nat_info->nat_action & NAT_ACTION_DST) {
alg_nat_repl_addr = parent_conn->key.dst.addr;
alg_exp_node->nat_rpl_dst = true;
} else {
alg_nat_repl_addr = parent_conn->key.src.addr;
}
}
if (src_ip_wc) {
memset(&src_addr, 0, sizeof src_addr);
}
alg_exp_node->key.dl_type = parent_conn->key.dl_type;
alg_exp_node->key.nw_proto = parent_conn->key.nw_proto;
alg_exp_node->key.zone = parent_conn->key.zone;
alg_exp_node->key.src.addr = src_addr;
alg_exp_node->key.dst.addr = dst_addr;
alg_exp_node->key.src.port = ALG_WC_SRC_PORT;
alg_exp_node->key.dst.port = dst_port;
alg_exp_node->parent_mark = parent_conn->mark;
alg_exp_node->parent_label = parent_conn->label;
memcpy(&alg_exp_node->parent_key, &parent_conn->key,
sizeof alg_exp_node->parent_key);
/* Take the write lock here because it is almost 100%
* likely that the lookup will fail and
* expectation_create() will be called below. */
ovs_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *alg_exp = expectation_lookup(
&ct->alg_expectations, &alg_exp_node->key, ct->hash_basis, src_ip_wc);
if (alg_exp) {
free(alg_exp_node);
ovs_rwlock_unlock(&ct->resources_lock);
return;
}
alg_exp_node->alg_nat_repl_addr = alg_nat_repl_addr;
hmap_insert(&ct->alg_expectations, &alg_exp_node->node,
conn_key_hash(&alg_exp_node->key, ct->hash_basis));
expectation_ref_create(&ct->alg_expectation_refs, alg_exp_node,
ct->hash_basis);
ovs_rwlock_unlock(&ct->resources_lock);
}
static void
replace_substring(char *substr, uint8_t substr_size,
uint8_t total_size, char *rep_str,
uint8_t rep_str_size)
{
memmove(substr + rep_str_size, substr + substr_size,
total_size - substr_size);
memcpy(substr, rep_str, rep_str_size);
}
static void
repl_bytes(char *str, char c1, char c2)
{
while (*str) {
if (*str == c1) {
*str = c2;
}
str++;
}
}
static void
modify_packet(struct dp_packet *pkt, char *pkt_str, size_t size,
char *repl_str, size_t repl_size,
uint32_t orig_used_size)
{
replace_substring(pkt_str, size,
(const char *) dp_packet_tail(pkt) - pkt_str,
repl_str, repl_size);
dp_packet_set_size(pkt, orig_used_size + (int) repl_size - (int) size);
}
/* Replace IPV4 address in FTP message with NATed address. */
static int
repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep,
char *ftp_data_start,
size_t addr_offset_from_ftp_data_start,
size_t addr_size OVS_UNUSED)
{
enum { MAX_FTP_V4_NAT_DELTA = 8 };
/* Do conservative check for pathological MTU usage. */
uint32_t orig_used_size = dp_packet_size(pkt);
if (orig_used_size + MAX_FTP_V4_NAT_DELTA >
dp_packet_get_allocated(pkt)) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V4",
dp_packet_get_allocated(pkt));
return 0;
}
char v4_addr_str[INET_ADDRSTRLEN] = {0};
ovs_assert(inet_ntop(AF_INET, &v4_addr_rep, v4_addr_str,
sizeof v4_addr_str));
repl_bytes(v4_addr_str, '.', ',');
modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start,
addr_size, v4_addr_str, strlen(v4_addr_str),
orig_used_size);
return (int) strlen(v4_addr_str) - (int) addr_size;
}
static char *
skip_non_digits(char *str)
{
while (!isdigit(*str) && *str != 0) {
str++;
}
return str;
}
static char *
terminate_number_str(char *str, uint8_t max_digits)
{
uint8_t digits_found = 0;
while (isdigit(*str) && digits_found <= max_digits) {
str++;
digits_found++;
}
*str = 0;
return str;
}
static void
get_ftp_ctl_msg(struct dp_packet *pkt, char *ftp_msg)
{
struct tcp_header *th = dp_packet_l4(pkt);
char *tcp_hdr = (char *) th;
uint32_t tcp_payload_len = dp_packet_get_tcp_payload_length(pkt);
size_t tcp_payload_of_interest = MIN(tcp_payload_len,
LARGEST_FTP_MSG_OF_INTEREST);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
ovs_strlcpy(ftp_msg, tcp_hdr + tcp_hdr_len,
tcp_payload_of_interest);
}
static enum ftp_ctl_pkt
detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt)
{
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
if (strncasecmp(ftp_msg, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD)) &&
!strcasestr(ftp_msg, FTP_EPSV_REPLY)) {
return CT_FTP_CTL_OTHER;
}
} else {
if (strncasecmp(ftp_msg, FTP_PORT_CMD, strlen(FTP_PORT_CMD)) &&
strncasecmp(ftp_msg, FTP_PASV_REPLY_CODE,
strlen(FTP_PASV_REPLY_CODE))) {
return CT_FTP_CTL_OTHER;
}
}
return CT_FTP_CTL_INTEREST;
}
static enum ftp_ctl_pkt
process_ftp_ctl_v4(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
ovs_be32 *v4_addr_rep,
char **ftp_data_v4_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size)
{
struct tcp_header *th = dp_packet_l4(pkt);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
char *tcp_hdr = (char *) th;
*ftp_data_v4_start = tcp_hdr + tcp_hdr_len;
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
char *ftp = ftp_msg;
enum ct_alg_mode mode;
if (!strncasecmp(ftp, FTP_PORT_CMD, strlen(FTP_PORT_CMD))) {
ftp = ftp_msg + strlen(FTP_PORT_CMD);
mode = CT_FTP_MODE_ACTIVE;
} else {
ftp = ftp_msg + strlen(FTP_PASV_REPLY_CODE);
mode = CT_FTP_MODE_PASSIVE;
}
/* Find first space. */
ftp = strchr(ftp, ' ');
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
/* Find the first digit, after space. */
ftp = skip_non_digits(ftp);
if (*ftp == 0) {
return CT_FTP_CTL_INVALID;
}
char *ip_addr_start = ftp;
*addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg;
uint8_t comma_count = 0;
while (comma_count < 4 && *ftp) {
if (*ftp == ',') {
comma_count++;
if (comma_count == 4) {
*ftp = 0;
} else {
*ftp = '.';
}
}
ftp++;
}
if (comma_count != 4) {
return CT_FTP_CTL_INVALID;
}
struct in_addr ip_addr;
int rc2 = inet_pton(AF_INET, ip_addr_start, &ip_addr);
if (rc2 != 1) {
return CT_FTP_CTL_INVALID;
}
*addr_size = ftp - ip_addr_start - 1;
char *save_ftp = ftp;
ftp = terminate_number_str(ftp, MAX_FTP_PORT_DGTS);
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
int value;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
/* This is derived from the L4 port maximum is 65535. */
if (value > 255) {
return CT_FTP_CTL_INVALID;
}
uint16_t port_hs = value;
port_hs <<= 8;
/* Skip over comma. */
ftp++;
save_ftp = ftp;
bool digit_found = false;
while (isdigit(*ftp)) {
ftp++;
digit_found = true;
}
if (!digit_found) {
return CT_FTP_CTL_INVALID;
}
*ftp = 0;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
if (value > 255) {
return CT_FTP_CTL_INVALID;
}
port_hs |= value;
ovs_be16 port = htons(port_hs);
ovs_be32 conn_ipv4_addr;
switch (mode) {
case CT_FTP_MODE_ACTIVE:
*v4_addr_rep = conn_for_expectation->rev_key.dst.addr.ipv4;
conn_ipv4_addr = conn_for_expectation->key.src.addr.ipv4;
break;
case CT_FTP_MODE_PASSIVE:
*v4_addr_rep = conn_for_expectation->key.dst.addr.ipv4;
conn_ipv4_addr = conn_for_expectation->rev_key.src.addr.ipv4;
break;
case CT_TFTP_MODE:
default:
OVS_NOT_REACHED();
}
ovs_be32 ftp_ipv4_addr;
ftp_ipv4_addr = ip_addr.s_addr;
/* Although most servers will block this exploit, there may be some
* less well managed. */
if (ftp_ipv4_addr != conn_ipv4_addr && ftp_ipv4_addr != *v4_addr_rep) {
return CT_FTP_CTL_INVALID;
}
expectation_create(ct, port, conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
return CT_FTP_CTL_INTEREST;
}
static char *
skip_ipv6_digits(char *str)
{
while (isxdigit(*str) || *str == ':' || *str == '.') {
str++;
}
return str;
}
static enum ftp_ctl_pkt
process_ftp_ctl_v6(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
union ct_addr *v6_addr_rep, char **ftp_data_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size, enum ct_alg_mode *mode)
{
struct tcp_header *th = dp_packet_l4(pkt);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
char *tcp_hdr = (char *) th;
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
*ftp_data_start = tcp_hdr + tcp_hdr_len;
char *ftp = ftp_msg;
struct in6_addr ip6_addr;
if (!strncasecmp(ftp, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD))) {
ftp = ftp_msg + strlen(FTP_EPRT_CMD);
ftp = skip_non_digits(ftp);
if (*ftp != FTP_AF_V6 || isdigit(ftp[1])) {
return CT_FTP_CTL_INVALID;
}
/* Jump over delimiter. */
ftp += 2;
memset(&ip6_addr, 0, sizeof ip6_addr);
char *ip_addr_start = ftp;
*addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg;
ftp = skip_ipv6_digits(ftp);
*ftp = 0;
*addr_size = ftp - ip_addr_start;
int rc2 = inet_pton(AF_INET6, ip_addr_start, &ip6_addr);
if (rc2 != 1) {
return CT_FTP_CTL_INVALID;
}
ftp++;
*mode = CT_FTP_MODE_ACTIVE;
} else {
ftp = ftp_msg + strcspn(ftp_msg, "(");
ftp = skip_non_digits(ftp);
if (!isdigit(*ftp)) {
return CT_FTP_CTL_INVALID;
}
/* Not used for passive mode. */
*addr_offset_from_ftp_data_start = 0;
*addr_size = 0;
*mode = CT_FTP_MODE_PASSIVE;
}
char *save_ftp = ftp;
ftp = terminate_number_str(ftp, MAX_EXT_FTP_PORT_DGTS);
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
int value;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
if (value > CT_MAX_L4_PORT) {
return CT_FTP_CTL_INVALID;
}
uint16_t port_hs = value;
ovs_be16 port = htons(port_hs);
switch (*mode) {
case CT_FTP_MODE_ACTIVE:
*v6_addr_rep = conn_for_expectation->rev_key.dst.addr;
/* Although most servers will block this exploit, there may be some
* less well managed. */
if (memcmp(&ip6_addr, &v6_addr_rep->ipv6, sizeof ip6_addr) &&
memcmp(&ip6_addr, &conn_for_expectation->key.src.addr.ipv6,
sizeof ip6_addr)) {
return CT_FTP_CTL_INVALID;
}
break;
case CT_FTP_MODE_PASSIVE:
*v6_addr_rep = conn_for_expectation->key.dst.addr;
break;
case CT_TFTP_MODE:
default:
OVS_NOT_REACHED();
}
expectation_create(ct, port, conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
return CT_FTP_CTL_INTEREST;
}
static int
repl_ftp_v6_addr(struct dp_packet *pkt, union ct_addr v6_addr_rep,
char *ftp_data_start,
size_t addr_offset_from_ftp_data_start,
size_t addr_size, enum ct_alg_mode mode)
{
/* This is slightly bigger than really possible. */
enum { MAX_FTP_V6_NAT_DELTA = 45 };
if (mode == CT_FTP_MODE_PASSIVE) {
return 0;
}
/* Do conservative check for pathological MTU usage. */
uint32_t orig_used_size = dp_packet_size(pkt);
if (orig_used_size + MAX_FTP_V6_NAT_DELTA >
dp_packet_get_allocated(pkt)) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V6",
dp_packet_get_allocated(pkt));
return 0;
}
char v6_addr_str[INET6_ADDRSTRLEN] = {0};
ovs_assert(inet_ntop(AF_INET6, &v6_addr_rep.ipv6, v6_addr_str,
sizeof v6_addr_str));
modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start,
addr_size, v6_addr_str, strlen(v6_addr_str),
orig_used_size);
return (int) strlen(v6_addr_str) - (int) addr_size;
}
/* Increment/decrement a TCP sequence number. */
static void
adj_seqnum(ovs_16aligned_be32 *val, int32_t inc)
{
put_16aligned_be32(val, htonl(ntohl(get_16aligned_be32(val)) + inc));
}
static void
handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, struct conn *ec, long long now,
enum ftp_ctl_pkt ftp_ctl, bool nat)
{
struct ip_header *l3_hdr = dp_packet_l3(pkt);
ovs_be32 v4_addr_rep = 0;
union ct_addr v6_addr_rep;
size_t addr_offset_from_ftp_data_start = 0;
size_t addr_size = 0;
char *ftp_data_start;
enum ct_alg_mode mode = CT_FTP_MODE_ACTIVE;
if (detect_ftp_ctl_type(ctx, pkt) != ftp_ctl) {
return;
}
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
int64_t seq_skew = 0;
if (ftp_ctl == CT_FTP_CTL_INTEREST) {
enum ftp_ctl_pkt rc;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
rc = process_ftp_ctl_v6(ct, pkt, ec,
&v6_addr_rep, &ftp_data_start,
&addr_offset_from_ftp_data_start,
&addr_size, &mode);
} else {
rc = process_ftp_ctl_v4(ct, pkt, ec,
&v4_addr_rep, &ftp_data_start,
&addr_offset_from_ftp_data_start,
&addr_size);
}
if (rc == CT_FTP_CTL_INVALID) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Invalid FTP control packet format");
pkt->md.ct_state |= CS_TRACKED | CS_INVALID;
return;
} else if (rc == CT_FTP_CTL_INTEREST) {
uint16_t ip_len;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
if (nat) {
seq_skew = repl_ftp_v6_addr(pkt, v6_addr_rep,
ftp_data_start,
addr_offset_from_ftp_data_start,
addr_size, mode);
}
if (seq_skew) {
ip_len = ntohs(nh6->ip6_ctlun.ip6_un1.ip6_un1_plen) +
seq_skew;
nh6->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(ip_len);
}
} else {
if (nat) {
seq_skew = repl_ftp_v4_addr(pkt, v4_addr_rep,
ftp_data_start,
addr_offset_from_ftp_data_start,
addr_size);
}
if (seq_skew) {
ip_len = ntohs(l3_hdr->ip_tot_len) + seq_skew;
if (!dp_packet_hwol_is_ipv4(pkt)) {
l3_hdr->ip_csum = recalc_csum16(l3_hdr->ip_csum,
l3_hdr->ip_tot_len,
htons(ip_len));
}
l3_hdr->ip_tot_len = htons(ip_len);
}
}
} else {
OVS_NOT_REACHED();
}
}
struct tcp_header *th = dp_packet_l4(pkt);
if (nat && ec->seq_skew != 0) {
ctx->reply != ec->seq_skew_dir ?
adj_seqnum(&th->tcp_ack, -ec->seq_skew) :
adj_seqnum(&th->tcp_seq, ec->seq_skew);
}
th->tcp_csum = 0;
if (!dp_packet_hwol_tx_l4_checksum(pkt)) {
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
th->tcp_csum = packet_csum_upperlayer6(nh6, th, ctx->key.nw_proto,
dp_packet_l4_size(pkt));
} else {
uint32_t tcp_csum = packet_csum_pseudoheader(l3_hdr);
th->tcp_csum = csum_finish(
csum_continue(tcp_csum, th, dp_packet_l4_size(pkt)));
}
}
if (seq_skew) {
conn_seq_skew_set(ct, ec, now, seq_skew + ec->seq_skew,
ctx->reply);
}
}
static void
handle_tftp_ctl(struct conntrack *ct,
const struct conn_lookup_ctx *ctx OVS_UNUSED,
struct dp_packet *pkt, struct conn *conn_for_expectation,
long long now OVS_UNUSED, enum ftp_ctl_pkt ftp_ctl OVS_UNUSED,
bool nat OVS_UNUSED)
{
expectation_create(ct, conn_for_expectation->key.src.port,
conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
}